Download citation
Download citation
link to html
Both coordination and hydrogen bonds contribute to networking in the supramolecular title compound, [Co(C6H6­NO3S)(C12H8N2)(H2O)3]Cl, which contains a discrete [Co(C6H6NO3S)(C12H8N2)(H2O)3]+ complex cation, formed by one 4-amino­benzene­sulfonate ligand, one 1,10-phenanthroline ligand and three coordinated water mol­ecules, together with one uncoordinated chloride anion. These discrete cations and chloride anions are connected by hydrogen-bonding interactions into a two-dimensional supramolecular motif. Further hydrogen-bonding interactions consolidate the structural architecture and extend the two-dimensional supramol­ecular structure into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103026957/bm1550sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103026957/bm1550Isup2.hkl
Contains datablock I

CCDC reference: 231040

Comment top

Supramolecular frameworks based on metal and organic building blocks that contain diverse topologies with desired features are increasing receiving attention, because of their promising potential properties in catalysis (Fujita et al., 1994), gas storage (Kitaura et al., 2003) and magnetism (Inoue et al., 1996). However, there have been few reports of metal-based organosulfonate anions containing supramolecular compounds to date (Cai et al., 2001a; Cai et al., 2001b; Wang et al., 2002). We present here a novel compound, [Co(H2O)3(C6H6NO3S)(C12H8N2)]+Cl (1), built from discrete [Co(H2O)3(C6H6NO3S)(C12H8N2)]+ cations, each formed by one 4-aminobenzenesulfonate (4-ABS) ligand, one 1,10-phenanthroline (1,10-phen) ligand and three coordinated water molecules, and one uncoordinated chlorine anion.

As depicted by Fig. 1, the CoII center exhibits slightly distorted octahedral coordination geometry, defined by three aqua O atoms [Co—OW1 = 2.065 (2) Å, Co—OW2 = 2.083 (2) Å and Co—OW3 = 2.0912 (18) Å], and two N atoms from a 1,10-phen ligand [Co—N1 = 2.119 (2) Å and Co—N2 = 2.116 (2) Å], and an N atom donor from a 4-ABS ligand [Co—N3 = 2.270 (2) Å]. The coordination environment and mode of 4-ABS differ from that in [Co(H2O)4(4-ABS)2(4,4'-bipy)]·H2O (Wang et al., 2002), in which the 4-ABS ligands are not coordinated to CoII and form one-dimensional head-to-tail zigzag chains via hydrogen-bonding interactions. The two different rings from the 4-ABS and 1,10-phen groups are not completely parallel to one another, the dihedral angles between their planes being 12.6° and their average ring separation being 3.324 Å.

As shown in Fig. 2, these discrete [Co(H2O)3(C6H6NO3S)(C12H8N2)]+ cations and chloride anions are connected into a two-dimensional supramolecular motif. The rings of two 4-ABS and two 1,10-phen ligands from two different discrete cations lie parallel to one another. In the supramolecular architecture, unusual hydrogen-bonding interactions play a crucial role. The coordinated water molecules (OW2 and OW1) from one [Co(H2O)3(4-ABS)(1,10-phen)]+ cation interact with the SO3 group of the 4-ABS ligand from another, thus forming hydrogen-bonding interactions. ##AUTHOR: Supply s.u.'s for all the following O···O and Cl···O distances: [OW2A···O1 = 2.875 (2) and OW2A···O1(2) = 2.664(?) Å]. Furthermore, the coordinated water molecules (OW2 and OW1) from two adjacent cations are bridged via hydrogen-bonding interactions with a chloride anion [Cl···OW1 = 3.072(?) Å and Cl···OW2 = 3.018(?) Å]. In addition, there are hydrogen-bonding interactions between the OW3 coordinated water molecules and the SO3 groups of 4-ABS anions from two adjacent building blocks [O1···OW3 = 2.824(?)Å and O2···OW3 = 2.748(?) Å]. Therefore, such hydrogen-bonding interactions consolidate the structural architecture and further extend the two-dimensional supramolecular structure into a three-dimensional network containing many nanocavities formed by hydrogen bonds (see Fig. 3). ##AUTHOR: Are these "nanocavities" still present when (a) H atoms are considered and (b) van der Waals radii are used? Please check. If they are present I would expect to find voids in the structure.

Experimental top

To a solution of CoCl2·6H2O (0.2379 g, 1.00 mmol) was added 4-aminobenzenesulfonic acid (0.074 g, 0.54 mmol) with stirring. ##AUTHOR: Give temperature used for the above reaction. After the solution pH had been adjusted to ca 5.5 with dilute NaOH, 1,10-phen (0.078 g, 0.50 mmol) was added slowly and the mixture was stirred for 30 min at 333 K. After filtration, a clear orange solution was obtained, which was allowed to stand at room temperatur. Orange crystals were obtained after two weeks.

Refinement top

An 8% decay correction was applied to the data during processing. Water H atoms were located from difference maps and their positions were fixed during refinement. Other H atoms were placed in geometric positions using a riding model, with C—H distances of 0.93 Å and N—H distances of 0.90 Å [Uiso(H) = 1.2 Ueq(C)].

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The two-dimensional network of [Co(H2O)3(4-ABS)(1,10-phen)]+ cations and chloride anions formed via hydrogen-bonding interactions.
[Figure 3] Fig. 3. A packing diagram, showing the three-dimensional structure viewed along the a axis.
mer-(4-Aminobenzenesulfonate-κN)triaqua(1,10-phenanthroline- κ2N,N')cobalt(II) chloride top
Crystal data top
[Co(C6H6NO3S)(C12H8N2)(H2O)3]ClF(000) = 1028
Mr = 500.81Dx = 1.616 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0148 (10) ÅCell parameters from 24 reflections
b = 15.896 (4) Åθ = 5.2–10.2°
c = 18.587 (5) ŵ = 1.11 mm1
β = 96.548 (18)°T = 293 K
V = 2059.0 (8) Å3Block, orange
Z = 40.50 × 0.38 × 0.32 mm
Data collection top
Siemens P4
diffractometer
2959 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω scansh = 18
Absorption correction: ψ scan
(SHELXTL; Siemens, 1994)
k = 119
Tmin = 0.561, Tmax = 0.687l = 2222
5562 measured reflections3 standard reflections every 97 reflections
4060 independent reflections intensity decay: 8.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
4060 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co(C6H6NO3S)(C12H8N2)(H2O)3]ClV = 2059.0 (8) Å3
Mr = 500.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0148 (10) ŵ = 1.11 mm1
b = 15.896 (4) ÅT = 293 K
c = 18.587 (5) Å0.50 × 0.38 × 0.32 mm
β = 96.548 (18)°
Data collection top
Siemens P4
diffractometer
2959 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SHELXTL; Siemens, 1994)
Rint = 0.026
Tmin = 0.561, Tmax = 0.6873 standard reflections every 97 reflections
5562 measured reflections intensity decay: 8.0%
4060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
4060 reflectionsΔρmin = 0.37 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.18360 (6)0.18776 (2)0.42688 (2)0.0273 (1)
S0.16070 (10)0.48381 (4)0.14583 (3)0.0277 (2)
O10.0033 (3)0.46813 (11)0.10247 (10)0.0387 (7)
OW10.0349 (3)0.15217 (13)0.51162 (11)0.0521 (8)
O20.3478 (3)0.47139 (11)0.10292 (9)0.0350 (6)
OW20.4412 (3)0.14893 (11)0.48404 (10)0.0437 (7)
O30.1511 (3)0.56343 (10)0.18319 (9)0.0398 (6)
OW30.1668 (3)0.06711 (11)0.38174 (10)0.0366 (6)
N10.3058 (3)0.24285 (13)0.33898 (11)0.0283 (7)
N20.2252 (3)0.31366 (13)0.46217 (11)0.0292 (7)
N30.1159 (3)0.21745 (13)0.37323 (11)0.0311 (7)
C10.3422 (4)0.20688 (17)0.27748 (14)0.0359 (9)
C20.3801 (5)0.2534 (2)0.21722 (15)0.0443 (10)
C30.3821 (4)0.33875 (19)0.22010 (15)0.0423 (10)
C40.3509 (4)0.37970 (18)0.28475 (15)0.0356 (9)
C50.3116 (4)0.32830 (15)0.34274 (14)0.0276 (8)
C60.2756 (4)0.36596 (15)0.40964 (14)0.0290 (8)
C70.2905 (4)0.45374 (16)0.41875 (16)0.0371 (9)
C80.2583 (5)0.48595 (18)0.48658 (17)0.0475 (11)
C90.2159 (5)0.43275 (19)0.53929 (16)0.0468 (10)
C100.1983 (4)0.34738 (17)0.52587 (14)0.0372 (9)
C110.3577 (5)0.46915 (18)0.29430 (17)0.0460 (11)
C120.3299 (5)0.50389 (17)0.35808 (18)0.0473 (11)
C130.1362 (4)0.28042 (16)0.31810 (13)0.0282 (8)
C140.1596 (4)0.36385 (16)0.33630 (13)0.0314 (9)
C150.1645 (4)0.42566 (15)0.28423 (13)0.0307 (9)
C160.1458 (4)0.40461 (14)0.21292 (13)0.0262 (8)
C170.1216 (4)0.32105 (15)0.19419 (13)0.0306 (8)
C180.1182 (4)0.25938 (15)0.24649 (14)0.0315 (8)
Cl0.22774 (12)0.21391 (4)0.02904 (4)0.0433 (2)
H10.342300.148500.274500.0430*
HW10.071900.114400.541800.0630*
H20.404100.226000.175000.0530*
HW20.072600.182400.525500.0630*
H30.404000.369900.179500.0510*
HW30.527400.193100.503900.0520*
H3A0.166900.169500.353900.0370*
H3B0.187500.233200.408200.0370*
HW40.452800.103600.512800.0520*
HW50.055900.038800.386000.0440*
HW60.281900.037900.392000.0440*
H80.266000.543500.495300.0570*
H90.198500.453700.584800.0560*
H100.166600.312200.562700.0450*
H110.381500.503500.255800.0550*
H120.336500.562100.363100.0570*
H140.172100.378300.384000.0380*
H150.180400.481600.296900.0370*
H170.107700.306700.146600.0370*
H180.103700.203300.233800.0380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0355 (2)0.0203 (2)0.0257 (2)0.0001 (2)0.0020 (2)0.0024 (2)
S0.0342 (4)0.0189 (3)0.0289 (3)0.0003 (3)0.0005 (3)0.0001 (3)
O10.0407 (13)0.0335 (10)0.0438 (11)0.0029 (10)0.0131 (10)0.0023 (9)
OW10.0613 (16)0.0519 (12)0.0468 (12)0.0231 (12)0.0222 (12)0.0273 (10)
O20.0380 (12)0.0289 (9)0.0354 (10)0.0036 (9)0.0075 (9)0.0033 (8)
OW20.0471 (13)0.0306 (10)0.0485 (12)0.0048 (10)0.0153 (11)0.0074 (9)
O30.0587 (14)0.0206 (9)0.0378 (10)0.0025 (10)0.0039 (10)0.0031 (8)
OW30.0347 (11)0.0249 (9)0.0501 (11)0.0001 (9)0.0047 (10)0.0039 (8)
N10.0293 (13)0.0274 (11)0.0282 (11)0.0020 (10)0.0036 (10)0.0008 (9)
N20.0342 (13)0.0252 (10)0.0276 (11)0.0015 (11)0.0011 (10)0.0022 (9)
N30.0385 (14)0.0255 (10)0.0282 (11)0.0013 (11)0.0003 (11)0.0035 (9)
C10.0365 (17)0.0368 (15)0.0348 (15)0.0055 (14)0.0061 (14)0.0023 (12)
C20.0434 (19)0.0610 (19)0.0302 (15)0.0042 (17)0.0115 (14)0.0019 (14)
C30.0396 (19)0.0548 (18)0.0337 (15)0.0008 (16)0.0088 (14)0.0159 (14)
C40.0274 (16)0.0388 (15)0.0392 (16)0.0007 (13)0.0019 (13)0.0109 (13)
C50.0253 (15)0.0239 (13)0.0333 (14)0.0008 (11)0.0021 (12)0.0044 (10)
C60.0262 (15)0.0241 (12)0.0355 (14)0.0010 (12)0.0021 (12)0.0025 (11)
C70.0359 (17)0.0244 (13)0.0492 (17)0.0008 (13)0.0026 (14)0.0005 (12)
C80.050 (2)0.0282 (14)0.062 (2)0.0002 (15)0.0038 (18)0.0155 (15)
C90.055 (2)0.0427 (17)0.0423 (16)0.0009 (17)0.0041 (16)0.0181 (14)
C100.0420 (18)0.0389 (15)0.0300 (14)0.0016 (14)0.0017 (14)0.0031 (12)
C110.047 (2)0.0369 (16)0.0535 (19)0.0075 (15)0.0037 (17)0.0214 (15)
C120.045 (2)0.0240 (14)0.071 (2)0.0044 (14)0.0014 (18)0.0084 (14)
C130.0269 (15)0.0266 (12)0.0298 (13)0.0026 (12)0.0018 (12)0.0033 (11)
C140.0372 (17)0.0310 (14)0.0255 (13)0.0047 (13)0.0017 (13)0.0025 (11)
C150.0375 (17)0.0230 (13)0.0312 (14)0.0039 (13)0.0017 (13)0.0046 (11)
C160.0292 (15)0.0207 (11)0.0278 (13)0.0005 (11)0.0004 (12)0.0003 (10)
C170.0398 (17)0.0268 (13)0.0243 (12)0.0012 (13)0.0006 (12)0.0022 (11)
C180.0398 (17)0.0192 (12)0.0340 (14)0.0013 (12)0.0017 (13)0.0033 (11)
Cl0.0453 (5)0.0342 (3)0.0498 (4)0.0008 (3)0.0025 (4)0.0056 (3)
Geometric parameters (Å, º) top
Co—OW12.065 (2)C4—C111.433 (4)
Co—OW22.083 (2)C5—C61.428 (4)
Co—OW32.091 (2)C6—C71.408 (4)
Co—N12.119 (2)C7—C81.403 (4)
Co—N22.116 (2)C7—C121.433 (4)
Co—N32.270 (2)C8—C91.353 (4)
S—O11.461 (2)C9—C101.383 (4)
S—O21.469 (2)C11—C121.342 (5)
S—O31.4415 (18)C13—C181.392 (4)
S—C161.767 (2)C13—C141.383 (4)
OW1—HW10.8422C14—C151.377 (3)
OW1—HW20.9542C15—C161.388 (3)
OW2—HW30.9716C16—C171.389 (3)
OW2—HW40.8954C17—C181.379 (3)
OW3—HW60.9321C1—H10.93
OW3—HW50.9100C2—H20.93
N1—C11.329 (3)C3—H30.93
N1—C51.361 (3)C8—H80.93
N2—C101.333 (3)C9—H90.93
N2—C61.360 (3)C10—H100.93
N3—C131.428 (3)C11—H110.93
N3—H3A0.90C12—H120.93
N3—H3B0.90C14—H140.93
C1—C21.393 (4)C15—H150.93
C2—C31.358 (4)C17—H170.93
C3—C41.406 (4)C18—H180.93
C4—C51.405 (4)
OW1—Co—OW290.81 (8)N1—C5—C6117.1 (2)
OW1—Co—OW392.55 (8)C4—C5—C6119.6 (2)
OW1—Co—N1170.16 (8)N1—C5—C4123.3 (2)
OW1—Co—N294.96 (8)C5—C6—C7120.1 (2)
OW1—Co—N382.49 (8)N2—C6—C5117.1 (2)
OW2—Co—OW386.49 (8)N2—C6—C7122.8 (2)
OW2—Co—N196.43 (8)C8—C7—C12124.7 (2)
OW2—Co—N292.36 (8)C6—C7—C12118.4 (3)
OW2—Co—N3172.50 (8)C6—C7—C8116.9 (3)
OW3—Co—N194.52 (8)C7—C8—C9119.6 (3)
OW3—Co—N2172.41 (8)C8—C9—C10120.4 (3)
OW3—Co—N390.43 (8)N2—C10—C9122.4 (2)
N1—Co—N278.14 (8)C4—C11—C12120.8 (3)
N1—Co—N390.62 (8)C7—C12—C11121.8 (3)
N2—Co—N391.58 (8)N3—C13—C18120.4 (2)
O1—S—O2111.23 (11)N3—C13—C14120.1 (2)
O1—S—O3114.76 (12)C14—C13—C18119.4 (2)
O1—S—C16106.28 (12)C13—C14—C15120.4 (2)
O2—S—O3111.67 (12)C14—C15—C16120.1 (2)
O2—S—C16105.35 (12)C15—C16—C17119.9 (2)
O3—S—C16106.85 (11)S—C16—C15119.86 (18)
Co—OW1—HW2123.49S—C16—C17120.25 (19)
HW1—OW1—HW2111.84C16—C17—C18119.8 (2)
Co—OW1—HW1124.00C13—C18—C17120.5 (2)
Co—OW2—HW3116.48N1—C1—H1118.84
HW3—OW2—HW4110.15C2—C1—H1118.72
Co—OW2—HW4123.89C1—C2—H2119.98
Co—OW3—HW5115.36C3—C2—H2119.96
HW5—OW3—HW6117.71C2—C3—H3120.13
Co—OW3—HW6111.52C4—C3—H3120.23
Co—N1—C5112.67 (16)C7—C8—H8120.25
C1—N1—C5117.8 (2)C9—C8—H8120.14
Co—N1—C1128.30 (18)C8—C9—H9119.83
C6—N2—C10117.8 (2)C10—C9—H9119.82
Co—N2—C6113.19 (16)N2—C10—H10118.81
Co—N2—C10128.86 (18)C9—C10—H10118.76
Co—N3—C13118.20 (17)C4—C11—H11119.57
Co—N3—H3B107.76C12—C11—H11119.66
C13—N3—H3A107.75C7—C12—H12119.07
C13—N3—H3B107.74C11—C12—H12119.15
H3A—N3—H3B107.14C13—C14—H14119.80
Co—N3—H3A107.78C15—C14—H14119.77
N1—C1—C2122.4 (3)C14—C15—H15119.90
C1—C2—C3120.1 (3)C16—C15—H15119.98
C2—C3—C4119.6 (3)C16—C17—H17120.17
C3—C4—C11124.0 (3)C18—C17—H17120.08
C5—C4—C11119.3 (3)C13—C18—H18119.80
C3—C4—C5116.7 (3)C17—C18—H18119.73
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1···O2i0.841.822.664 (3)177
OW1—HW2···Clii0.952.173.072 (2)158
OW2—HW3···Cli0.972.063.018 (2)170
N3—H3A···O3iii0.902.183.062 (3)167
N3—H3B···Clii0.902.533.392 (2)160
OW2—HW4···O1i0.902.012.875 (3)161
OW3—HW5···O2iii0.911.842.748 (3)174
OW3—HW6···O1iv0.931.902.824 (3)170
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H6NO3S)(C12H8N2)(H2O)3]Cl
Mr500.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.0148 (10), 15.896 (4), 18.587 (5)
β (°) 96.548 (18)
V3)2059.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.50 × 0.38 × 0.32
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(SHELXTL; Siemens, 1994)
Tmin, Tmax0.561, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
5562, 4060, 2959
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.073, 1.09
No. of reflections4060
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Co—OW12.065 (2)S—O31.4415 (18)
Co—OW22.083 (2)S—C161.767 (2)
Co—OW32.091 (2)N1—C11.329 (3)
Co—N12.119 (2)N1—C51.361 (3)
Co—N22.116 (2)N2—C101.333 (3)
Co—N32.270 (2)N2—C61.360 (3)
S—O11.461 (2)N3—C131.428 (3)
S—O21.469 (2)
OW1—Co—OW290.81 (8)O2—S—C16105.35 (12)
OW1—Co—OW392.55 (8)O3—S—C16106.85 (11)
OW1—Co—N1170.16 (8)Co—N1—C5112.67 (16)
OW1—Co—N294.96 (8)C1—N1—C5117.8 (2)
OW1—Co—N382.49 (8)Co—N1—C1128.30 (18)
OW2—Co—OW386.49 (8)C6—N2—C10117.8 (2)
OW2—Co—N196.43 (8)Co—N2—C6113.19 (16)
OW2—Co—N292.36 (8)Co—N2—C10128.86 (18)
OW2—Co—N3172.50 (8)Co—N3—C13118.20 (17)
OW3—Co—N194.52 (8)N1—C1—C2122.4 (3)
OW3—Co—N2172.41 (8)N1—C5—C6117.1 (2)
OW3—Co—N390.43 (8)N1—C5—C4123.3 (2)
N1—Co—N278.14 (8)N2—C6—C5117.1 (2)
N1—Co—N390.62 (8)N2—C6—C7122.8 (2)
N2—Co—N391.58 (8)N2—C10—C9122.4 (2)
O1—S—O2111.23 (11)N3—C13—C18120.4 (2)
O1—S—O3114.76 (12)N3—C13—C14120.1 (2)
O1—S—C16106.28 (12)S—C16—C15119.86 (18)
O2—S—O3111.67 (12)S—C16—C17120.25 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1···O2i0.841.822.664 (3)177
OW1—HW2···Clii0.952.173.072 (2)158
OW2—HW3···Cli0.972.063.018 (2)170
N3—H3A···O3iii0.902.183.062 (3)167
N3—H3B···Clii0.902.533.392 (2)160
OW2—HW4···O1i0.902.012.875 (3)161
OW3—HW5···O2iii0.911.842.748 (3)174
OW3—HW6···O1iv0.931.902.824 (3)170
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds