Download citation
Download citation
link to html
Apart from the O and H atoms of the hydroxy­methyl group, mol­ecules of the title compound, C7H7BrO2, are essentially planar. Both O atoms act as hydrogen-bond donors and acceptors, resulting in helical hydrogen bonding in the direction of the b axis and the formation of R22(12) rings. Weaker C-H...[pi] interactions are also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013635/bm1532sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013635/bm1532Isup2.hkl
Contains datablock I

CCDC reference: 221079

Comment top

Many bromophenols have been detected in blood (Olsen et al., 2002) and several antibacterial bromophenols are found in marine algae (Flodin & Whitfield, 1999). 4-Bromo-2-hydroxymethyl-phenol (also known as 5-bromo-2-hydroxybenzyl alcohol or bromosaligenin) is an anti-inflammatory agent (Merck, 1989) and spasmolytic (Negwer, 2000). When two OH groups are present in a molecule, a variety of hydrogen-bonding patterns are possible (Brock, 2002), so the main interest in the solid-state structure of the title compound, (I), is the determination of the hydrogen-bonding motifs.

A view of the molecule is shown in Fig. 1. The out-of-plane O2 atom is 1.330 (3) Å from the mean plane of the remaining non-H atoms in the molecule, as indicated by the C1—C2—C7—O2 torsion angle [72.5 (3)°]. There is no intramolecular hydrogen bonding between the two O atoms.

The intermolecular hydrogen-bonding geometry is shown in Table 2. In both cases, the intermolecular O···O separations [2.642 (3) and 2.781 (3) Å] are shorter than the corresponding intramolecular separation [3.086 (3) Å]. The hydrogen bonding is maximized by both O atoms acting as hydrogen-bond donors and acceptors, which results in an unusual three-dimensional pattern of hydrogen bonds. Fig. 2 shows a continuous corkscrew or helical arrangement of hydrogen bonds along the b axis. Each helix involves all four symmetry-related molecules in the unit cell. The formation of the helices depends on the intermolecular symmetries [(x,-y − 0.5,z + 0.5) and (1 − x,-y,2 − z)] of the hydrogen bonds, and both left-handed (L) and right-handed (R) helices are present in the lattice. The pitch of the helix equates to the length of the b axis [5.3329 (2) Å], and overall each molecule is linked to three other molecules by four classical hydrogen bonds. Fig. 3 shows that the hydrogen bonding also produces a R22(12) ring between two molecules. This dimer formation, also shown in Fig. 2, is across an inversion centre. In addition, there are weak intermolecular C—H···π interactions (Desiraju & Steiner, 1999), as shown in Fig. 4 and Table 2 where Cg is the centre of gravity of the aryl ring. No evidence of any aromatic π···π interactions is present. The shortest Br···Br intermolecular separation is 3.7173 (1) Å, which is comparable to the sum of the van der Waals radii (3.70 Å; Bondi, 1964). The crystal structure of the related saligenin (C7H8O2) molecule is also known (Zorkii et al., 1985), but no atom coordinates are available.

Experimental top

The title compound was purchased from Sigma and recrystallized from diethyl ether.

Refinement top

H atoms were refined freely, with isotropic displacement parameters. The highest residual electron density in the final difference map was associated with the Br-atom position.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular packing of (I), showing the formation of left-handed (L) and right-handed (R) helical hydrogen bonding and R22(12) ring formation.
[Figure 3] Fig. 3. The formation of an R22(12) ring through intermolecular hydrogen bonding in (I). Atoms marked with an asterisk (*) are at the symmetry position (1 − x,-y,2 − z).
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing C—H···π interactions.
4-Bromo-2-hydroxymethyl-phenol top
Crystal data top
C7H7BrO2F(000) = 400
Mr = 203.04Dx = 1.868 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.3632 (5) ÅCell parameters from 3029 reflections
b = 5.3329 (2) Åθ = 2.9–27.5°
c = 8.4108 (3) ŵ = 5.62 mm1
β = 100.364 (2)°T = 120 K
V = 721.98 (4) Å3Rod, colourless
Z = 40.40 × 0.24 × 0.18 mm
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
1614 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.8°
ϕ and ω scans to fill Ewald sphereh = 2020
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 66
Tmin = 0.212, Tmax = 0.431l = 1010
5019 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.074P)2 + 0.392P]
where P = (Fo2 + 2Fc2)/3
1614 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.39 e Å3
Crystal data top
C7H7BrO2V = 721.98 (4) Å3
Mr = 203.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.3632 (5) ŵ = 5.62 mm1
b = 5.3329 (2) ÅT = 120 K
c = 8.4108 (3) Å0.40 × 0.24 × 0.18 mm
β = 100.364 (2)°
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
1614 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1430 reflections with I > 2σ(I)
Tmin = 0.212, Tmax = 0.431Rint = 0.067
5019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114All H-atom parameters refined
S = 1.04Δρmax = 1.17 e Å3
1614 reflectionsΔρmin = 1.39 e Å3
119 parameters
Special details top

Experimental. Please note cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All non-hydrogen atoms were refined in SHELX97 with anisotropic thermal displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.06742 (2)0.23305 (6)0.85762 (4)0.02832 (18)
O10.40099 (14)0.1916 (4)1.1577 (3)0.0183 (4)
H10.399 (2)0.317 (7)1.224 (4)0.020 (9)*
O20.43380 (13)0.0820 (4)0.8520 (2)0.0173 (4)
H20.480 (2)0.118 (8)0.870 (5)0.028 (10)*
C10.32411 (16)0.1025 (5)1.0901 (3)0.0144 (5)
C20.32050 (16)0.1128 (5)0.9944 (3)0.0138 (5)
C30.2431 (2)0.2091 (6)0.9268 (3)0.0169 (6)
H30.2402 (19)0.357 (7)0.859 (4)0.019 (8)*
C40.17083 (17)0.0914 (5)0.9541 (3)0.0187 (6)
C50.17422 (18)0.1219 (6)1.0472 (3)0.0192 (6)
H50.125 (2)0.193 (6)1.067 (4)0.016 (8)*
C60.2515 (2)0.2198 (5)1.1170 (4)0.0188 (6)
H60.250 (2)0.349 (7)1.182 (4)0.022 (9)*
C70.3979 (2)0.2361 (5)0.9623 (3)0.0141 (6)
H7A0.3861 (19)0.394 (7)0.915 (4)0.019 (8)*
H7B0.438 (3)0.260 (5)1.059 (5)0.021 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0174 (3)0.0376 (3)0.0267 (2)0.00236 (11)0.00499 (16)0.00646 (11)
O10.0177 (11)0.0177 (10)0.0186 (10)0.0039 (9)0.0009 (8)0.0078 (8)
O20.0179 (10)0.0231 (11)0.0105 (9)0.0034 (8)0.0016 (7)0.0052 (7)
C10.0194 (12)0.0141 (13)0.0090 (11)0.0009 (10)0.0011 (9)0.0031 (9)
C20.0196 (12)0.0141 (13)0.0071 (11)0.0004 (10)0.0009 (9)0.0032 (9)
C30.0220 (16)0.0166 (13)0.0109 (12)0.0012 (11)0.0003 (11)0.0012 (10)
C40.0178 (13)0.0245 (14)0.0118 (12)0.0020 (11)0.0028 (10)0.0032 (10)
C50.0185 (13)0.0214 (15)0.0180 (13)0.0052 (11)0.0042 (10)0.0034 (11)
C60.0251 (17)0.0138 (13)0.0166 (14)0.0032 (11)0.0012 (12)0.0008 (10)
C70.0201 (16)0.0126 (13)0.0083 (12)0.0005 (9)0.0012 (11)0.0014 (9)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C3—C41.394 (4)
O1—C11.369 (3)C3—H30.97 (4)
O1—H10.87 (4)C4—C51.377 (4)
O2—C71.441 (3)C5—C61.397 (5)
O2—H20.76 (4)C5—H50.93 (4)
C1—C61.396 (4)C6—H60.88 (4)
C1—C21.397 (4)C7—H7A0.94 (4)
C2—C31.390 (4)C7—H7B0.96 (5)
C2—C71.494 (4)
C1—O1—H1113 (2)C3—C4—Br1117.9 (2)
C7—O2—H2103 (3)C4—C5—C6119.3 (3)
O1—C1—C6121.5 (3)C4—C5—H5120 (2)
O1—C1—C2117.7 (2)C6—C5—H5121 (2)
C6—C1—C2120.8 (3)C1—C6—C5119.8 (3)
C3—C2—C1118.7 (2)C1—C6—H6125 (2)
C3—C2—C7120.2 (2)C5—C6—H6115 (2)
C1—C2—C7121.1 (2)O2—C7—C2108.8 (2)
C2—C3—C4120.2 (3)O2—C7—H7A108 (2)
C2—C3—H3119.0 (18)C2—C7—H7A111 (2)
C4—C3—H3120.7 (18)O2—C7—H7B109 (2)
C5—C4—C3121.2 (3)C2—C7—H7B112 (2)
C5—C4—Br1120.9 (2)H7A—C7—H7B107 (3)
O1—C1—C2—C3178.9 (2)C3—C4—C5—C60.8 (4)
C6—C1—C2—C30.3 (4)Br1—C4—C5—C6179.7 (2)
O1—C1—C2—C72.1 (3)O1—C1—C6—C5179.4 (3)
C6—C1—C2—C7178.7 (2)C2—C1—C6—C50.2 (4)
C1—C2—C3—C40.2 (4)C4—C5—C6—C10.8 (4)
C7—C2—C3—C4178.8 (2)C3—C2—C7—O2106.5 (3)
C2—C3—C4—C50.3 (4)C1—C2—C7—O272.5 (3)
C2—C3—C4—Br1179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.88 (4)1.81 (4)2.642 (3)159 (3)
O2—H2···O1ii0.77 (3)2.04 (3)2.781 (3)162 (4)
C3—H3···Cgiii0.97 (3)2.97 (3)3.768 (3)141 (3)
C6—H6···Cgiv0.88 (4)2.97 (3)3.717 (3)144 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+2; (iii) x, y1/2, z3/2; (iv) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H7BrO2
Mr203.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)16.3632 (5), 5.3329 (2), 8.4108 (3)
β (°) 100.364 (2)
V3)721.98 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.62
Crystal size (mm)0.40 × 0.24 × 0.18
Data collection
DiffractometerEnraf Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.212, 0.431
No. of measured, independent and
observed [I > 2σ(I)] reflections
5019, 1614, 1430
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.04
No. of reflections1614
No. of parameters119
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.17, 1.39

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Br1—C41.897 (3)O2—C71.441 (3)
O1—C11.369 (3)C2—C71.494 (4)
C3—C2—C7—O2106.5 (3)C1—C2—C7—O272.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i.88 (4)1.81 (4)2.642 (3)159 (3)
O2—H2···O1ii.77 (3)2.04 (3)2.781 (3)162 (4)
C3—H3···Cgiii.97 (3)2.97 (3)3.768 (3)141 (3)
C6—H6···Cgiv.88 (4)2.97 (3)3.717 (3)144 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+2; (iii) x, y1/2, z3/2; (iv) x, y3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds