Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The racemic form of the title secondary monoalcohol, C16H14O, forms crystals in which the mol­ecules are linked into chains by hydrogen bonding. The chain architecture is unusual; adjacent mol­ecules are related pseudosymmetrically, by either a pseudo-diad or a pseudo-glide plane, while alternate mol­ecules are related exactly by a crystallographic glide plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010300708X/bm1526sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010300708X/bm1526Isup2.hkl
Contains datablock I

CCDC reference: 214386

Comment top

Our interest in the modes of hydrogen bonding adopted by polycyclic monoalcohols (Morris et al., 2001, 2002) has led us to determine the crystal structure of the racemic form of the secondary alcohol (I) (Fig. 1 and Table 1). Monoalcohols in general show a preference for trigonal and tetragonal space groups, and their crystal structures frequently contain more than one crystallographically independent molecule (i.e. Z' > 1) (Brock & Duncan, 1994). These preferences are thought to arise from steric constraints in forming hydrogen bonds. Consistently with this view, we have recently shown (Fraile et al., 2003) that tertiary monoalcohols display these preferences in a particularly pronounced fashion.

The polycyclic and sterically hindered secondary alcohol (I) crystallizes in the non-centrosymmetric but non-chiral space group Pca21 (No. 29) with Z' equal to 2. Chains of molecules running parallel to the short c axis are linked by conventional hydrogen bonds (Table 2 and Fig. 2). In itself, this is not an unusual arrangement in homomolecular monoalcohol crystal structures (Brock & Duncan, 1994). However, the translationally repeated unit of the chain, consisting of four molecules related by an exact c-glide normal to a and by additional pseudosymmetry, is unusual and merits discussion.

The asymmetric unit we have chosen contains two enantiomeric molecules, and the coordinates of the atoms of molecule 2 are approximately related to those of the corresponding atoms of molecule 1 by the pseudosymmetric operation (x, 1/2 − y, 1/2 + z-δ); δ is 0.01–0.09 for individual C atoms, rising to 0.13 for the two O atoms, and its mean value is 0.038. If δ were 0 this operation would correspond exactly to that of a c-glide plane normal to the b axis, and the space group would become Iba2 (No. 45). The pseudosymmetry causes the hkl reflections to be systematically weak when h+k+l = 2n+1, this pseudo-absence being especially pronounced for the hk0 zone.

In each chain, the unit repeated by translation comprises four molecules linked by ···H—O1i···H—O2i···H—O1···H—O2··· hydrogen bonds; the symmetry operation (i), (3/2 − x, y, z − 1/2), defines a c-glide normal to a, and the molecule containing O1 is related to that containing O2 and O2i by pseudo-operations approximating respectively to a c-glide normal to b (see above) and to a diad axis parallel to c (3/2 − x, 1/2 − y, z-δ). Thus the chain sequence is ···RSSR··· where R and S indicate the configuration at Cn02 (n = 1 or 2) in successive molecules. The hydrogen bonds in each chain therefore connect pairs of molecules which may be of the same, or of opposite, chiralities.

The tendency for monoalcohols to crystallize with two or more molecules in the asymmetric unit is well established, and this feature of the structure of (I) is therefore not surprising. However, in their survey of hydrogen-bonding motifs adopted by monoalcohols, Brock & Duncan (1994) found only five out of 55 structures in which four molecules make up the translational repeat unit. Of these, only one, namely ethanol, resembles (I) in generating the chain by application of a glide operation to two independent molecules. However, the two independent ethanol molecules are not pseudosymmetrically related (Jonsson, 1976).

The two crystallographically independent molecules of (II) are structurally nearly identical. A least-squares fit of the positions of corresponding C or O atoms gives an r.m.s. Δ of 0.057 Å, with the O atoms showing the largest individual discrepancy [0.174 (5) Å]. Furthermore, for bond lengths and angles, the r.m.s. Δ values are respectively 0.011 Å and 1.1° (PLATON; Spek, 2003). Table 1 lists only the distances and angles in the CH(OH)—CH bridging units where the differences between the two molecules are greatest. Though complicated by minor disorder of the O atoms (see below), these differences are probably a consequence of the differing orientations of the OH bonds [Cn01—Cn02—On—H = −85 (4) and 8(4)° for n = 1 and 2, respectively]. This result illustrates the factors that cause sterically hindered alcohols to crystallize with Z' greater than 1; a pseudosymmetric relationship between molecules 1 and 2 permits differing hydrogen-bond orientations, which would be precluded if 1 and 2 were related exactly by space-group symmetry. Each molecule contains two C8 units (defined by an aromatic ring plus the two C atoms directly attached to it), which are coplanar to within 0.05 Å and which define dihedral angles of 53.4 (1) and 52.8 (1)°. The mean Car—Car and Car—Csp3 bond lengths are 1.391 and 1.516 Å, and their respective ranges are 1.380 (6)–1.405 (5) and 1.508 (4)–1.526 (4) Å. The atomic Uij values are moderately well reproduced by a TLS analysis [Schomacher & Trueblood, 1968; R2 = (ΣΔU2/ΣU2)1/2 = 0.16 and 0.14 for individual molecules]. The worst discrepancy in the Hirshfeld (1976) rigid-bond test is the value of ΔU for C202—C203 [0.008(24) Å2].

Experimental top

The title compound was first synthesized by Wawzonek and Hallum (1953). Our sample was provided by Professor Marie-Joséphe Brienne, Collége de France, Paris.

Refinement top

The absolute structure has not been determined experimentally. Our coordinates and drawings arbitrarily show S and R configurations at C102 and C202, respectively. All H atoms appeared in difference syntheses in stereochemically acceptable positions. In the final calculations, hydroxyl H atoms were freely refined. The other H atoms were placed in positions calculated using the HFIX option in SHELXL97 (Sheldrick, 1997) and then refined riding on their parent C atoms, with C—H distances of 1.00, 0.99 and 0.95 Å, respectively, for methine, methylene and aromatic C atoms and Uiso(H) values of 1.2Ueq(C). At a late stage in the analysis (R1 = 0.068 for observed data, wR2 = 0.180 for all data) two peaks of 0.8 e Å−3 with coordinates derived from those of O1 and O2 by inversion through the origin were found in the difference map. Accordingly, O1 and O2 have been disordered over two sites with occupancies α and 1-α [α = 0.856 (8)] after refinement. This disordered model led to significantly lower agreement indices and a featureless difference synthesis. There is no indication that disorder affects any of the C atoms.

Computing details top

Data collection: COLLECT (Nonius, 1997–2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of (I), showing displacement ellipsoids at the 20% probability level. Here and in Fig. 2 dotted lines represent O—H···O hydrogen bonds. For clarity, the minor disorder sites of the two O atoms are not shown.
[Figure 2] Fig. 2. One of the hydrogen-bonded chains, viewed down the c axis. The a axis runs from left to right, and the b axis points upwards in the plane of the drawing.
[Figure 3] Fig. 3. A hydrogen-bonded chain, viewed down the a axis. The c axis points upwards, and the b axis runs horizontally from left to right. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) 3/2 − x,y,1/2 + z.]
(I) top
Crystal data top
C16H14OF(000) = 944
Mr = 222.27Dx = 1.271 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2967 reflections
a = 14.3719 (3) Åθ = 2.9–27.5°
b = 22.8650 (6) ŵ = 0.08 mm1
c = 7.0703 (1) ÅT = 100 K
V = 2323.40 (8) Å3Needle, colourless
Z = 80.40 × 0.17 × 0.12 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
Rint = 0.057
CCD; rotation images; thick slices scansθmax = 27.5°, θmin = 3°
17231 measured reflectionsh = 018
2863 independent reflectionsk = 029
2385 reflections with I > 2σ(I)l = 09
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + 1.24P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.34 e Å3
2863 reflectionsΔρmin = 0.24 e Å3
324 parameters
Crystal data top
C16H14OV = 2323.40 (8) Å3
Mr = 222.27Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.3719 (3) ŵ = 0.08 mm1
b = 22.8650 (6) ÅT = 100 K
c = 7.0703 (1) Å0.40 × 0.17 × 0.12 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2385 reflections with I > 2σ(I)
17231 measured reflectionsRint = 0.057
2863 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2863 reflectionsΔρmin = 0.24 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1010.6182 (2)0.14290 (12)0.1204 (5)0.0250 (7)
H1010.65720.1560.01130.03*
C1020.6522 (2)0.16967 (13)0.3125 (6)0.0325 (8)
H1020.71450.15270.34320.039*
C1030.5841 (2)0.15254 (14)0.4695 (5)0.0317 (7)
H13A0.55040.18770.51430.038*
H13B0.61880.13580.57780.038*
C1040.5136 (2)0.10697 (12)0.3938 (4)0.0254 (7)
H1040.47170.09210.4960.03*
C1050.4597 (2)0.13735 (12)0.2384 (5)0.0234 (6)
C1060.5165 (2)0.15814 (11)0.0936 (5)0.0232 (7)
C1070.6258 (2)0.07728 (12)0.1547 (5)0.0224 (6)
C1080.57027 (18)0.05830 (12)0.3051 (4)0.0206 (6)
C1090.3645 (2)0.14696 (13)0.2329 (5)0.0283 (7)
H1090.32560.1320.33020.034*
C1100.3265 (2)0.17840 (13)0.0850 (6)0.0327 (8)
H1100.26130.18510.08120.039*
C1110.3826 (2)0.20023 (13)0.0580 (5)0.0335 (8)
H1110.35590.22190.15890.04*
C1120.4784 (2)0.19034 (12)0.0534 (5)0.0307 (7)
H1120.51720.20560.15030.037*
C1130.6846 (2)0.03828 (13)0.0640 (5)0.0282 (7)
H1130.72260.05090.0380.034*
C1140.6872 (2)0.02004 (13)0.1246 (5)0.0298 (7)
H1140.72770.04710.06410.036*
C1150.6310 (2)0.03854 (13)0.2728 (5)0.0286 (7)
H1150.6330.07820.31230.034*
C1160.5721 (2)0.00041 (12)0.3633 (5)0.0260 (7)
H1160.53350.01240.46410.031*
O10.65976 (19)0.23177 (10)0.3135 (5)0.0256 (8)0.856 (8)
H10.715 (4)0.2364 (19)0.266 (9)0.077 (18)*
O1'0.6631 (17)0.2341 (10)0.185 (5)0.056 (7)*0.144 (8)
C2010.6178 (2)0.36156 (12)0.5562 (5)0.0260 (7)
H2010.65080.35320.43470.031*
C2020.6625 (2)0.32924 (13)0.7232 (5)0.0299 (8)
H2020.72720.34430.74040.036*
C2030.6065 (2)0.34264 (14)0.9035 (5)0.0327 (8)
H23A0.64850.35911.00090.039*
H23B0.57960.3060.95390.039*
C2040.5267 (2)0.38716 (12)0.8610 (5)0.0267 (7)
H2040.49050.39750.9770.032*
C2050.4665 (2)0.35950 (12)0.7108 (5)0.0252 (7)
C2060.5165 (2)0.34405 (12)0.5475 (5)0.0248 (7)
C2070.62434 (19)0.42600 (12)0.6105 (5)0.0250 (7)
C2080.57468 (19)0.43973 (13)0.7747 (5)0.0242 (7)
C2090.3721 (2)0.34676 (13)0.7225 (6)0.0299 (7)
H2090.33740.35790.83110.036*
C2100.3292 (2)0.31781 (13)0.5750 (6)0.0314 (8)
H2100.26450.30950.58220.038*
C2110.3792 (2)0.30053 (12)0.4157 (5)0.0323 (8)
H2110.3490.27970.31690.039*
C2120.4734 (2)0.31383 (12)0.4018 (5)0.0312 (8)
H2120.50790.30230.29350.037*
C2130.6769 (2)0.46819 (14)0.5184 (6)0.0333 (8)
H2130.71070.45880.40710.04*
C2140.6789 (2)0.52472 (13)0.5927 (6)0.0362 (9)
H2140.71560.55390.53240.043*
C2150.6286 (2)0.53890 (13)0.7524 (6)0.0345 (9)
H2150.62990.57780.79960.041*
C2160.5758 (2)0.49640 (13)0.8452 (5)0.0302 (7)
H2160.54110.50610.95520.036*
O20.66724 (18)0.26707 (10)0.6876 (4)0.0243 (8)0.856 (8)
H20.651 (4)0.259 (2)0.572 (10)0.10 (2)*
O2'0.6604 (16)0.2697 (11)0.820 (5)0.078 (8)*0.144 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1010.0205 (14)0.0201 (14)0.0343 (18)0.0032 (11)0.0081 (13)0.0014 (13)
C1020.0210 (14)0.0214 (15)0.055 (2)0.0000 (12)0.0082 (15)0.0050 (15)
C1030.0372 (17)0.0274 (15)0.0305 (18)0.0012 (14)0.0086 (15)0.0047 (13)
C1040.0277 (15)0.0266 (14)0.0218 (16)0.0013 (12)0.0001 (13)0.0037 (12)
C1050.0246 (14)0.0166 (13)0.0291 (17)0.0007 (11)0.0034 (13)0.0043 (12)
C1060.0231 (14)0.0154 (12)0.0311 (18)0.0019 (11)0.0018 (13)0.0021 (12)
C1070.0186 (13)0.0192 (13)0.0294 (17)0.0040 (11)0.0014 (12)0.0007 (12)
C1080.0162 (13)0.0237 (13)0.0220 (15)0.0015 (11)0.0017 (11)0.0007 (12)
C1090.0257 (15)0.0239 (15)0.0353 (18)0.0003 (12)0.0029 (14)0.0075 (14)
C1100.0267 (15)0.0240 (14)0.048 (2)0.0053 (13)0.0090 (16)0.0112 (15)
C1110.0430 (19)0.0186 (14)0.039 (2)0.0062 (13)0.0144 (16)0.0032 (14)
C1120.0394 (18)0.0214 (14)0.0314 (19)0.0009 (13)0.0022 (15)0.0002 (13)
C1130.0244 (14)0.0268 (15)0.0333 (19)0.0009 (12)0.0055 (14)0.0016 (13)
C1140.0275 (15)0.0211 (14)0.041 (2)0.0021 (12)0.0018 (15)0.0065 (13)
C1150.0265 (15)0.0185 (13)0.041 (2)0.0018 (12)0.0100 (14)0.0022 (13)
C1160.0252 (14)0.0235 (14)0.0293 (17)0.0053 (12)0.0055 (13)0.0046 (13)
O10.0241 (14)0.0178 (12)0.035 (2)0.0044 (10)0.0041 (11)0.0050 (11)
C2010.0223 (15)0.0213 (14)0.0346 (18)0.0020 (11)0.0018 (13)0.0042 (13)
C2020.0249 (15)0.0213 (14)0.043 (2)0.0003 (12)0.0066 (15)0.0032 (14)
C2030.0402 (18)0.0240 (14)0.0338 (19)0.0067 (14)0.0135 (16)0.0038 (13)
C2040.0288 (15)0.0244 (14)0.0268 (18)0.0031 (12)0.0018 (14)0.0028 (12)
C2050.0260 (15)0.0156 (13)0.0341 (19)0.0002 (11)0.0037 (14)0.0028 (12)
C2060.0242 (15)0.0164 (12)0.0337 (19)0.0050 (11)0.0015 (13)0.0002 (13)
C2070.0171 (13)0.0220 (13)0.0359 (19)0.0039 (11)0.0002 (13)0.0024 (13)
C2080.0171 (13)0.0215 (14)0.0341 (19)0.0020 (11)0.0026 (12)0.0006 (12)
C2090.0254 (15)0.0249 (15)0.0393 (19)0.0008 (12)0.0043 (15)0.0041 (14)
C2100.0222 (15)0.0251 (14)0.047 (2)0.0055 (12)0.0067 (15)0.0081 (15)
C2110.0383 (18)0.0186 (13)0.040 (2)0.0036 (13)0.0130 (15)0.0001 (14)
C2120.0343 (17)0.0196 (13)0.040 (2)0.0034 (13)0.0040 (15)0.0038 (13)
C2130.0220 (15)0.0312 (16)0.047 (2)0.0000 (13)0.0044 (15)0.0033 (15)
C2140.0271 (16)0.0227 (14)0.059 (3)0.0017 (13)0.0008 (17)0.0064 (16)
C2150.0266 (16)0.0162 (13)0.061 (3)0.0034 (12)0.0109 (16)0.0032 (15)
C2160.0245 (15)0.0236 (14)0.042 (2)0.0057 (12)0.0048 (15)0.0065 (14)
O20.0284 (14)0.0182 (12)0.0263 (18)0.0050 (10)0.0063 (11)0.0051 (10)
Geometric parameters (Å, º) top
C101—C1061.514 (4)C201—C2061.511 (4)
C101—C1071.524 (4)C201—C2071.526 (4)
C101—C1021.568 (5)C201—C2021.533 (5)
C101—H1011C201—H2011
C102—O11.424 (4)C202—O21.445 (4)
C102—C1031.531 (5)C202—C2031.538 (5)
C102—H1021C202—H2021
C103—C1041.548 (4)C203—C2041.564 (4)
C103—H13A0.99C203—H23A0.99
C103—H13B0.99C203—H23B0.99
C104—C1051.513 (4)C204—C2051.508 (4)
C104—C1081.515 (4)C204—C2081.514 (4)
C104—H1041C204—H2041
C105—C1091.387 (4)C205—C2091.390 (4)
C105—C1061.392 (4)C205—C2061.405 (5)
C106—C1121.386 (5)C206—C2121.386 (5)
C107—C1131.386 (4)C207—C2131.387 (4)
C107—C1081.398 (4)C207—C2081.398 (4)
C108—C1161.386 (4)C208—C2161.389 (4)
C109—C1101.381 (5)C209—C2101.381 (5)
C109—H1090.95C209—H2090.95
C110—C1111.386 (5)C210—C2111.393 (5)
C110—H1100.95C210—H2100.95
C111—C1121.396 (5)C211—C2121.392 (5)
C111—H1110.95C211—H2110.95
C112—H1120.95C212—H2120.95
C113—C1141.401 (4)C213—C2141.395 (4)
C113—H1130.95C213—H2130.95
C114—C1151.389 (5)C214—C2151.380 (6)
C114—H1140.95C214—H2140.95
C115—C1161.385 (4)C215—C2161.397 (5)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
O1—H10.87 (5)O2—H20.87 (7)
O1'—H10.95 (5)
C106—C101—C107108.4 (2)C206—C201—C207109.0 (2)
C106—C101—C102108.6 (2)C206—C201—C202107.9 (3)
C107—C101—C102103.0 (3)C207—C201—C202104.2 (3)
C106—C101—H101112.1C206—C201—H201111.8
C107—C101—H101112.1C207—C201—H201111.8
C102—C101—H101112.1C202—C201—H201111.8
O1—C102—C103107.5 (3)O2—C202—C201111.1 (3)
O1—C102—C101114.7 (3)O2—C202—C203111.4 (3)
C103—C102—C101109.2 (2)C201—C202—C203108.9 (2)
O1—C102—H102108.4O2—C202—H202108.5
C103—C102—H102108.4C201—C202—H202108.5
C101—C102—H102108.4C203—C202—H202108.5
C102—C103—C104109.8 (3)C202—C203—C204110.7 (3)
C102—C103—H13A109.7C202—C203—H23A109.5
C104—C103—H13A109.7C204—C203—H23A109.5
C102—C103—H13B109.7C202—C203—H23B109.5
C104—C103—H13B109.7C204—C203—H23B109.5
H13A—C103—H13B108.2H23A—C203—H23B108.1
C105—C104—C108108.2 (2)C205—C204—C208108.1 (3)
C105—C104—C103106.1 (2)C205—C204—C203106.5 (2)
C108—C104—C103106.6 (2)C208—C204—C203105.0 (2)
C105—C104—H104111.9C205—C204—H204112.3
C108—C104—H104111.9C208—C204—H204112.3
C103—C104—H104111.9C203—C204—H204112.3
C109—C105—C106120.2 (3)C209—C205—C206119.7 (3)
C109—C105—C104126.8 (3)C209—C205—C204127.2 (3)
C106—C105—C104113.0 (3)C206—C205—C204113.0 (3)
C112—C106—C105120.1 (3)C212—C206—C205120.5 (3)
C112—C106—C101126.7 (3)C212—C206—C201126.3 (3)
C105—C106—C101113.3 (3)C205—C206—C201113.1 (3)
C113—C107—C108120.0 (3)C213—C207—C208120.8 (3)
C113—C107—C101127.1 (3)C213—C207—C201125.9 (3)
C108—C107—C101112.7 (3)C208—C207—C201113.2 (3)
C116—C108—C107120.7 (3)C216—C208—C207120.1 (3)
C116—C108—C104126.1 (3)C216—C208—C204127.0 (3)
C107—C108—C104113.2 (2)C207—C208—C204112.9 (3)
C110—C109—C105119.6 (3)C210—C209—C205119.4 (3)
C110—C109—H109120.2C210—C209—H209120.3
C105—C109—H109120.2C205—C209—H209120.3
C109—C110—C111120.6 (3)C209—C210—C211121.1 (3)
C109—C110—H110119.7C209—C210—H210119.5
C111—C110—H110119.7C211—C210—H210119.5
C110—C111—C112119.9 (3)C212—C211—C210119.8 (3)
C110—C111—H111120C212—C211—H211120.1
C112—C111—H111120C210—C211—H211120.1
C106—C112—C111119.5 (3)C206—C212—C211119.4 (3)
C106—C112—H112120.2C206—C212—H212120.3
C111—C112—H112120.2C211—C212—H212120.3
C107—C113—C114119.2 (3)C207—C213—C214118.6 (3)
C107—C113—H113120.4C207—C213—H213120.7
C114—C113—H113120.4C214—C213—H213120.7
C115—C114—C113120.3 (3)C215—C214—C213121.0 (3)
C115—C114—H114119.8C215—C214—H214119.5
C113—C114—H114119.8C213—C214—H214119.5
C116—C115—C114120.5 (3)C214—C215—C216120.4 (3)
C116—C115—H115119.7C214—C215—H215119.8
C114—C115—H115119.7C216—C215—H215119.8
C115—C116—C108119.2 (3)C208—C216—C215119.1 (3)
C115—C116—H116120.4C208—C216—H216120.4
C108—C116—H116120.4C215—C216—H216120.4
C102—O1—H1101 (3)C202—O2—H2111 (4)
C106—C101—C102—O170.4 (3)C206—C201—C202—O268.0 (3)
C107—C101—C102—O1174.8 (3)C207—C201—C202—O2176.2 (2)
C106—C101—C102—C10350.2 (3)C206—C201—C202—C20355.0 (3)
C107—C101—C102—C10364.6 (3)C207—C201—C202—C20360.7 (3)
O1—C102—C103—C104133.8 (3)O2—C202—C203—C204126.0 (3)
C101—C102—C103—C1048.8 (3)C201—C202—C203—C2043.2 (3)
C102—C103—C104—C10563.0 (3)C202—C203—C204—C20558.6 (3)
C102—C103—C104—C10852.1 (3)C202—C203—C204—C20855.9 (3)
C108—C104—C105—C109126.1 (3)C208—C204—C205—C209126.3 (3)
C103—C104—C105—C109119.8 (3)C203—C204—C205—C209121.3 (3)
C108—C104—C105—C10655.9 (3)C208—C204—C205—C20656.3 (3)
C103—C104—C105—C10658.2 (3)C203—C204—C205—C20656.1 (3)
C109—C105—C106—C1122.3 (4)C209—C205—C206—C2123.0 (4)
C104—C105—C106—C112175.8 (3)C204—C205—C206—C212174.7 (3)
C109—C105—C106—C101179.0 (3)C209—C205—C206—C201179.3 (3)
C104—C105—C106—C1012.9 (3)C204—C205—C206—C2013.0 (3)
C107—C101—C106—C112129.3 (3)C207—C201—C206—C212131.3 (3)
C102—C101—C106—C112119.5 (3)C202—C201—C206—C212116.1 (3)
C107—C101—C106—C10552.1 (3)C207—C201—C206—C20551.1 (3)
C102—C101—C106—C10559.1 (3)C202—C201—C206—C20561.5 (3)
C106—C101—C107—C113130.2 (3)C206—C201—C207—C213130.6 (3)
C102—C101—C107—C113114.8 (3)C202—C201—C207—C213114.4 (3)
C106—C101—C107—C10854.7 (3)C206—C201—C207—C20852.7 (4)
C102—C101—C107—C10860.2 (3)C202—C201—C207—C20862.3 (3)
C113—C107—C108—C1161.0 (4)C213—C207—C208—C2161.4 (4)
C101—C107—C108—C116176.5 (3)C201—C207—C208—C216178.3 (3)
C113—C107—C108—C104177.3 (3)C213—C207—C208—C204176.4 (3)
C101—C107—C108—C1041.9 (4)C201—C207—C208—C2040.5 (4)
C105—C104—C108—C116128.7 (3)C205—C204—C208—C216127.7 (3)
C103—C104—C108—C116117.6 (3)C203—C204—C208—C216119.0 (3)
C105—C104—C108—C10753.0 (3)C205—C204—C208—C20754.7 (3)
C103—C104—C108—C10760.7 (3)C203—C204—C208—C20758.7 (3)
C106—C105—C109—C1101.4 (4)C206—C205—C209—C2101.5 (4)
C104—C105—C109—C110176.4 (3)C204—C205—C209—C210175.8 (3)
C105—C109—C110—C1110.2 (5)C205—C209—C210—C2110.8 (5)
C109—C110—C111—C1120.2 (5)C209—C210—C211—C2121.7 (5)
C105—C106—C112—C1111.9 (4)C205—C206—C212—C2112.1 (4)
C101—C106—C112—C111179.6 (3)C201—C206—C212—C211179.5 (3)
C110—C111—C112—C1060.7 (5)C210—C211—C212—C2060.2 (4)
C108—C107—C113—C1140.2 (5)C208—C207—C213—C2140.2 (5)
C101—C107—C113—C114175.0 (3)C201—C207—C213—C214176.6 (3)
C107—C113—C114—C1150.5 (5)C207—C213—C214—C2151.2 (5)
C113—C114—C115—C1160.4 (5)C213—C214—C215—C2161.3 (5)
C114—C115—C116—C1080.4 (5)C207—C208—C216—C2151.3 (4)
C107—C108—C116—C1151.1 (4)C204—C208—C216—C215176.2 (3)
C104—C108—C116—C115177.0 (3)C214—C215—C216—C2080.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (5)1.91 (5)2.761 (4)165 (4)
O2—H2···O10.87 (7)1.94 (7)2.768 (4)159 (5)
Symmetry code: (i) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14O
Mr222.27
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)14.3719 (3), 22.8650 (6), 7.0703 (1)
V3)2323.40 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.17 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17231, 2863, 2385
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.03
No. of reflections2863
No. of parameters324
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: COLLECT (Nonius, 1997–2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C101—C1021.568 (5)C201—C2021.533 (5)
C102—O11.424 (4)C202—O21.445 (4)
C102—C1031.531 (5)C202—C2031.538 (5)
C103—C1041.548 (4)C203—C2041.564 (4)
O1—C102—C103107.5 (3)O2—C202—C201111.1 (3)
O1—C102—C101114.7 (3)O2—C202—C203111.4 (3)
C103—C102—C101109.2 (2)C201—C202—C203108.9 (2)
O1—C102—C103—C104133.8 (3)O2—C202—C203—C204126.0 (3)
C101—C102—C103—C1048.8 (3)C201—C202—C203—C2043.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (5)1.91 (5)2.761 (4)165 (4)
O2—H2···O10.87 (7)1.94 (7)2.768 (4)159 (5)
Symmetry code: (i) x+3/2, y, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds