Download citation
Download citation
link to html
Colourless crystals of the title compound, bis(2-bromo­phenyl) di­sulfide, C12H8Br2S2, are obtained from the reaction of 2-bromo­phenyl­mercaptan with metallic sodium and either zinc chloride or cadmium chloride in methanol. In the presence of ZnII ions, the crystals are orthorhombic (space group Pbca, with Z′ = 1); with CdII ions present, the product is triclinic (space group P \overline1, with Z′ = 4). Both polymorphs exhibit significant intramolecular C—H...S hydrogen bonds. In the ortho­rhombic form, mol­ecules are linked by intermolecular C—H...Br hydrogen bonds, while in the triclinic form, mol­ecules exhibit Br...Br contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103006851/bm1522sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006851/bm1522Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006851/bm1522IIsup3.hkl
Contains datablock II

CCDC references: 214182; 214183

Comment top

The electronic and structural properties of transition and main group metal complexes coordinated by S-donor atoms have attracted intense research interest over the past 30 years (Kasper et al., 1976; Kobayashi et al., 1982; Pullen et al., 1998; Kie-Moon et al. 2001). Although some works have appeared describing the behaviour of the disulfide group as a donor (Valde et al., 1983; Matsubayashi et al., 1990; Ohio, 1993; Kobayashi et al., 1990), it has not been subjected to such detailed study as a number of other donor groups (Balch et al., 1968; Gray, 1966; Schrauzer & Mayweg, 1966). This neglect is in part because the disulfide group tends to give bridged or polymeric metal complexes, which are extremely insoluble and are accordingly difficult to characterize or study. We report here the structures of two polymorphs of bis(2-bromophenyl)disulfide isolated during attempts to synthesize zinc(II) or cadmium(II) complexes of the ligand. There are no significant differences in the bond lengths observed for the two polymorphs (Figs. 1 and 2 and Tables 1 and 2). The substituents are essentially coplanar with their respective ring, giving molecules in which all the atoms lie in two planes. The dihedral angle between the two phenyl rings in the orthorhombic form is 83.34 (9)°, while an average value of 84.90 (2)° is observed for the triclinic form. The values of the S11—S21—C21—C22, S11—S21—C21—C26, S21—S11—C11—C12 and S21—S11—C11—C16 torsion angles in the orthorhombic form [−174.7 (2), 7.5 (2), −172.7 (2) and 8.3 (2)°, respectively] are slightly different from the corresponding mean angles in the triclinic system [−169.9 (2), 11.1 (2), −169.2 (2) and 13.5 (2)°, respectively]. The orthorhombic form crystallizes with one independent molecule in each asymmetric unit (Fig. 1), while in the triclinic form there are four (Fig. 2). In both polymorphs, phenyl rings participate in significant intramolecular C—H···S interactions, with average H···S distances of 2.69 and 2.72 Å (for the orthorhombic and triclinic forms, respectively). The crystal packing for the orthorhombic form shows repulsion between Br atoms, leading to a staggered arrangement of Br atoms in adjacent molecules. The staggered conformation in the orthorhombic form involves intermolecular C—H···S and C—H···Br hydrogen bonds, which are not present in the triclinic form (Fig. 3 and Table 2). The orthorhombic form exhibits mean H···S and H···Br distances of 2.98 and 3.04 Å, respectively. In contrast, the triclinic form shows eclipsed dispositions for the br atoms in different molecules (Fig. 4), which minimizes the intermolecular hydrogen bonding predominant in the orthorhombic form (Table 5). As a result of this eclipsed conformation between adjacent Br atoms and the large covalent radius of the Br atoms (1.14 Å), an accumulation of charge exists around each Br atom. The higher electron density around the Br atoms produces closer [3.770 (9) Å] repulsive contacts between them (Table 4), giving rise to less efficient packing, which can be seen by comparing the cell volumes [2480.4 (6) Å3 and 2531.4 (8) Å3] and crystal densities (2.014 and 1.974 g cm−3) for the orthorhombic and triclinic forms.

Experimental top

The title compound was prepared by refluxing a methanolic solution (15 ml) of 2-bromophenylmercaptan (2 mmol) in the presence of metallic sodium (1 g) and either ZnCl2 or CdCl2 (1 mmol). After refluxing for 4 h at 338 K, the volume of the solution was concentrated to 5 ml and maintained at 278 K for a week, leading to the formation of colourless columns (ZnCl2) or plates (CdCl2). IR and NMR spectra for both crystals correspond to the title compound. Analysis; found for the orthorhomic form: C 38.15, H 2.38, S 17.22%; found for the triclinic form: C 38.15, H 2.30, S 16.98%; calculated for C12H8Br2S2: C 38.30, H 2.13, S 17.02%.

Refinement top

All H atoms were initially located from difference Fourier maps and thereafter placed at idealized positions and refined using a riding model with a C—H distance of 0.93 Å and Uiso(H) equal to 1.2Uiso(C).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SHELXS97 (Sheldrick, 1997a) for (II). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I); SHELXL97 (Sheldrick, 1997b) for (II). Molecular graphics: SHELXTL (Sheldrick, 1994) for (I); SHELXTL version 5.03 (Sheldrick, 1994) for (II). For both compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the orthorhombic form (Z' = 1). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The asymmetric unit of the triclinic form (Z' = 4). Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. The packing arrangement in the orthorhombic form, viewed along b. Hydrogen bonds are indicated by dashed lines.
[Figure 4] Fig. 4. The packing arrangement in the triclinic form, viewed along c. Hydrogen bonds are indicated by dashed lines. ## AUTHOR: Other interactions shown as well?
(I) Bis(2-bromophenyl) disulfide top
Crystal data top
C12H8Br2S2F(000) = 1456
Mr = 376.12Dx = 2.014 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2137 reflections
a = 7.6844 (10) Åθ = 1.8–26.4°
b = 14.4240 (18) ŵ = 6.84 mm1
c = 22.378 (3) ÅT = 150 K
V = 2480.4 (6) Å3Column, colourless
Z = 80.38 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD with an Oxford Cryosystems low-temperature device
diffractometer
2537 independent reflections
Radiation source: normal-focus sealed tube2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.211, Tmax = 0.335k = 1818
18462 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.049H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0317P)2]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max = 0.003
145 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H8Br2S2V = 2480.4 (6) Å3
Mr = 376.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.6844 (10) ŵ = 6.84 mm1
b = 14.4240 (18) ÅT = 150 K
c = 22.378 (3) Å0.38 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD with an Oxford Cryosystems low-temperature device
diffractometer
2537 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2224 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.335Rint = 0.028
18462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
2537 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.05417 (3)0.23178 (15)0.77159 (9)0.02855 (7)
Br210.16418 (3)0.08851 (16)0.41499 (9)0.02884 (7)
S110.08670 (7)0.19803 (4)0.63232 (2)0.02425 (12)
S210.08815 (6)0.14544 (4)0.54832 (2)0.02407 (12)
C110.1261 (2)0.10068 (13)0.67967 (8)0.0205 (4)
C120.1127 (3)0.11313 (14)0.74100 (9)0.0216 (4)
C130.1414 (3)0.04130 (15)0.78041 (9)0.0267 (5)
H130.13250.05110.82140.032*
C140.1837 (3)0.04574 (16)0.75844 (9)0.0298 (5)
H140.20150.09490.78460.036*
C150.1993 (3)0.05908 (15)0.69761 (9)0.0270 (5)
H150.22830.11730.68290.032*
C160.1722 (3)0.01333 (14)0.65864 (9)0.0235 (4)
H160.18480.00370.61780.028*
C210.3112 (3)0.14005 (13)0.52705 (8)0.0204 (4)
C220.3488 (3)0.11346 (14)0.46889 (8)0.0217 (4)
C230.5177 (3)0.10200 (14)0.44959 (9)0.0254 (4)
H230.54000.08290.41060.030*
C240.6535 (3)0.11899 (15)0.48833 (9)0.0282 (5)
H240.76780.11150.47560.034*
C250.6188 (3)0.14731 (14)0.54629 (9)0.0270 (5)
H250.71030.15930.57240.032*
C260.4494 (3)0.15788 (14)0.56553 (9)0.0245 (4)
H260.42740.17710.60450.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.03719 (14)0.02434 (12)0.02411 (12)0.00021 (9)0.00742 (9)0.00358 (8)
Br210.02800 (12)0.03817 (14)0.02035 (11)0.00169 (10)0.00360 (8)0.00441 (9)
S110.0287 (3)0.0247 (3)0.0193 (2)0.0037 (2)0.0021 (2)0.0014 (2)
S210.0205 (2)0.0338 (3)0.0179 (2)0.0007 (2)0.00069 (19)0.0005 (2)
C110.0171 (9)0.0230 (11)0.0213 (10)0.0022 (8)0.0004 (8)0.0024 (8)
C120.0210 (10)0.0199 (10)0.0240 (10)0.0005 (8)0.0031 (8)0.0037 (8)
C130.0326 (12)0.0286 (12)0.0189 (10)0.0011 (10)0.0012 (9)0.0013 (8)
C140.0361 (13)0.0263 (11)0.0272 (11)0.0007 (9)0.0006 (9)0.0067 (9)
C150.0282 (11)0.0227 (11)0.0300 (11)0.0001 (9)0.0009 (9)0.0028 (9)
C160.0239 (11)0.0266 (11)0.0201 (10)0.0008 (8)0.0013 (8)0.0018 (8)
C210.0227 (10)0.0189 (10)0.0196 (9)0.0002 (8)0.0007 (8)0.0031 (8)
C220.0233 (10)0.0213 (10)0.0204 (9)0.0026 (8)0.0032 (8)0.0018 (8)
C230.0290 (11)0.0250 (11)0.0222 (10)0.0009 (9)0.0048 (9)0.0022 (8)
C240.0199 (10)0.0308 (11)0.0340 (12)0.0010 (9)0.0037 (9)0.0028 (10)
C250.0212 (10)0.0320 (12)0.0278 (11)0.0026 (9)0.0044 (9)0.0012 (9)
C260.0263 (11)0.0270 (11)0.0202 (10)0.0026 (9)0.0017 (8)0.0007 (9)
Geometric parameters (Å, º) top
Br11—C121.897 (2)C15—H150.9300
Br21—C221.897 (2)C16—H160.9300
S11—C111.785 (2)C21—C221.387 (3)
S11—S212.0270 (7)C21—C261.391 (3)
S21—C211.780 (2)C22—C231.378 (3)
C11—C121.388 (3)C23—C241.378 (3)
C11—C161.391 (3)C23—H230.9300
C12—C131.378 (3)C24—C251.386 (3)
C13—C141.387 (3)C24—H240.9300
C13—H130.9300C25—C261.380 (3)
C14—C151.380 (3)C25—H250.9300
C14—H140.9300C26—H260.9300
C15—C161.377 (3)
C11—S11—S21104.78 (7)C11—C16—H16119.6
C21—S21—S11105.64 (7)C22—C21—C26118.21 (18)
C12—C11—C16118.08 (17)C22—C21—S21117.61 (15)
C12—C11—S11118.20 (15)C26—C21—S21124.15 (15)
C16—C11—S11123.71 (15)C23—C22—C21121.55 (19)
C13—C12—C11121.57 (19)C23—C22—Br21118.86 (15)
C13—C12—Br11119.02 (15)C21—C22—Br21119.56 (15)
C11—C12—Br11119.41 (15)C24—C23—C22119.64 (18)
C12—C13—C14119.41 (18)C24—C23—H23120.2
C12—C13—H13120.3C22—C23—H23120.2
C14—C13—H13120.3C23—C24—C25119.73 (19)
C15—C14—C13119.75 (19)C23—C24—H24120.1
C15—C14—H14120.1C25—C24—H24120.1
C13—C14—H14120.1C26—C25—C24120.4 (2)
C16—C15—C14120.4 (2)C26—C25—H25119.8
C16—C15—H15119.8C24—C25—H25119.8
C14—C15—H15119.8C25—C26—C21120.46 (19)
C15—C16—C11120.77 (18)C25—C26—H26119.8
C15—C16—H16119.6C21—C26—H26119.8
C11—S11—S21—C2183.34 (9)S11—S21—C21—C22174.69 (14)
S21—S11—C11—C12172.68 (14)S11—S21—C21—C267.46 (19)
S21—S11—C11—C168.33 (18)C26—C21—C22—C231.9 (3)
C16—C11—C12—C130.9 (3)S21—C21—C22—C23176.04 (16)
S11—C11—C12—C13179.94 (17)C26—C21—C22—Br21179.99 (15)
C16—C11—C12—Br11178.90 (15)S21—C21—C22—Br212.0 (2)
S11—C11—C12—Br110.1 (2)C21—C22—C23—C241.3 (3)
C11—C12—C13—C140.4 (3)Br21—C22—C23—C24179.40 (16)
Br11—C12—C13—C14179.80 (16)C22—C23—C24—C250.1 (3)
C12—C13—C14—C151.0 (3)C23—C24—C25—C260.5 (3)
C13—C14—C15—C160.4 (3)C24—C25—C26—C210.2 (3)
C14—C15—C16—C111.0 (3)C22—C21—C26—C251.3 (3)
C12—C11—C16—C151.6 (3)S21—C21—C26—C25176.50 (16)
S11—C11—C16—C15179.43 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S210.932.673.185 (2)115
C26—H26···S110.932.713.215 (2)115
C25—H25···S21i0.932.963.607 (2)128
C24—H24···S21i0.932.993.620 (2)126
C26—H26···Br11ii0.933.043.882 (2)151
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+3/2.
(II) Bis(2-bromophenyl) disulfide top
Crystal data top
C12H8Br2S2Z = 8
Mr = 376.12F(000) = 1456
Triclinic, P1Dx = 1.974 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.8186 (19) ÅCell parameters from 3180 reflections
b = 15.489 (3) Åθ = 1.4–28.8°
c = 15.653 (3) ŵ = 6.70 mm1
α = 102.122 (5)°T = 150 K
β = 100.393 (5)°Plate, colourless
γ = 110.001 (5)°0.13 × 0.11 × 0.06 mm
V = 2531.4 (8) Å3
Data collection top
Bruker SMART APEX CCD with an Oxford Cryosystems low-temperature device
diffractometer
13188 independent reflections
Radiation source: normal-focus sealed tube8387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.8°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.408, Tmax = 0.669k = 2020
22934 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.060H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0121P)2]
where P = (Fo2 + 2Fc2)/3
11915 reflections(Δ/σ)max = 0.002
577 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
C12H8Br2S2γ = 110.001 (5)°
Mr = 376.12V = 2531.4 (8) Å3
Triclinic, P1Z = 8
a = 11.8186 (19) ÅMo Kα radiation
b = 15.489 (3) ŵ = 6.70 mm1
c = 15.653 (3) ÅT = 150 K
α = 102.122 (5)°0.13 × 0.11 × 0.06 mm
β = 100.393 (5)°
Data collection top
Bruker SMART APEX CCD with an Oxford Cryosystems low-temperature device
diffractometer
13188 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8387 reflections with I > 2σ(I)
Tmin = 0.408, Tmax = 0.669Rint = 0.031
22934 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.00Δρmax = 0.98 e Å3
11915 reflectionsΔρmin = 1.03 e Å3
577 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.48434 (3)0.14082 (2)0.16448 (3)0.03224 (9)
Br210.96195 (3)0.12266 (3)0.03784 (3)0.03552 (10)
S110.68930 (8)0.05653 (6)0.13605 (7)0.0309 (2)
S210.78582 (8)0.01581 (7)0.08068 (6)0.0317 (2)
C110.5307 (3)0.0289 (2)0.1035 (2)0.0227 (8)
C120.4404 (3)0.0067 (2)0.1184 (2)0.0221 (7)
C130.3166 (3)0.0544 (2)0.1015 (2)0.0282 (8)
H130.25770.02950.11320.034*
C140.2808 (3)0.1522 (2)0.0675 (2)0.0313 (9)
H140.19770.19360.05570.038*
C150.3699 (3)0.1884 (2)0.0509 (2)0.0304 (9)
H150.34610.25440.02810.036*
C160.4941 (3)0.1270 (2)0.0682 (2)0.0268 (8)
H160.55280.15180.05600.032*
C210.8256 (3)0.0752 (2)0.1600 (2)0.0224 (8)
C220.9021 (3)0.1232 (2)0.1423 (2)0.0252 (8)
C230.9352 (3)0.1730 (2)0.1995 (3)0.0350 (9)
H230.98630.20530.18660.042*
C240.8921 (3)0.1746 (3)0.2750 (3)0.0394 (10)
H240.91470.20770.31360.047*
C250.8153 (3)0.1273 (3)0.2941 (2)0.0363 (9)
H250.78570.12900.34520.044*
C260.7826 (3)0.0774 (2)0.2373 (2)0.0293 (8)
H260.73170.04500.25060.035*
Br310.50331 (3)0.30046 (3)0.38136 (3)0.03634 (10)
Br410.98069 (3)0.66116 (3)0.88201 (2)0.03702 (10)
S310.69929 (8)0.42892 (6)0.57070 (6)0.0282 (2)
S410.78617 (8)0.52974 (7)0.69348 (6)0.0313 (2)
C310.6561 (3)0.4911 (2)0.4953 (2)0.0228 (8)
C320.5738 (3)0.4367 (2)0.4108 (2)0.0256 (8)
C330.5392 (3)0.4780 (3)0.3468 (2)0.0337 (9)
H330.48220.43990.29100.040*
C340.5904 (3)0.5774 (3)0.3665 (3)0.0386 (10)
H340.56950.60630.32310.046*
C350.6724 (3)0.6336 (3)0.4508 (3)0.0358 (9)
H350.70510.70020.46440.043*
C360.7057 (3)0.5911 (2)0.5144 (2)0.0277 (8)
H360.76170.62920.57060.033*
C410.9454 (3)0.5836 (2)0.6920 (2)0.0230 (8)
C421.0326 (3)0.6403 (2)0.7746 (2)0.0242 (8)
C431.1584 (3)0.6869 (2)0.7793 (2)0.0277 (8)
H431.21600.72530.83480.033*
C441.1968 (3)0.6757 (2)0.7011 (3)0.0303 (9)
H441.28090.70540.70400.036*
C451.1107 (3)0.6205 (2)0.6185 (2)0.0302 (9)
H451.13670.61460.56570.036*
C460.9853 (3)0.5739 (2)0.6140 (2)0.0268 (8)
H460.92790.53590.55830.032*
Br510.16503 (4)0.13950 (3)0.20227 (3)0.04086 (11)
Br610.36130 (3)0.12415 (3)0.58307 (3)0.04290 (11)
S510.25242 (8)0.03597 (7)0.33919 (6)0.0329 (2)
S610.26338 (8)0.04125 (7)0.42816 (6)0.0316 (2)
C510.1415 (3)0.0850 (2)0.3643 (2)0.0246 (8)
C520.1022 (3)0.1319 (2)0.3047 (2)0.0272 (8)
C530.0171 (3)0.1720 (2)0.3192 (3)0.0342 (9)
H530.00940.20190.27870.041*
C540.0286 (3)0.1676 (2)0.3941 (3)0.0374 (10)
H540.08660.19420.40370.045*
C550.0114 (3)0.1240 (2)0.4547 (3)0.0357 (9)
H550.01790.12280.50590.043*
C560.0948 (3)0.0823 (2)0.4391 (2)0.0301 (8)
H560.12010.05190.47950.036*
C610.3719 (3)0.0441 (2)0.5309 (2)0.0241 (8)
C620.4148 (3)0.0102 (2)0.5995 (3)0.0275 (8)
C630.4983 (3)0.0716 (3)0.6810 (3)0.0352 (9)
H630.52570.04710.72630.042*
C640.5407 (3)0.1692 (3)0.6951 (3)0.0371 (10)
H640.59710.21090.74990.045*
C650.4996 (3)0.2055 (3)0.6276 (3)0.0364 (9)
H650.52820.27150.63700.044*
C660.4161 (3)0.1432 (2)0.5462 (2)0.0299 (9)
H660.38890.16790.50100.036*
Br710.35381 (3)0.31781 (3)0.08740 (3)0.04085 (11)
Br811.09271 (4)0.61651 (3)0.11356 (3)0.04224 (11)
S710.64557 (8)0.41596 (6)0.11577 (6)0.0310 (2)
S810.81287 (8)0.49280 (7)0.09867 (6)0.0335 (2)
C710.5633 (3)0.4934 (2)0.1174 (2)0.0223 (8)
C720.4356 (3)0.4530 (2)0.1089 (2)0.0253 (8)
C730.3659 (3)0.5080 (3)0.1143 (2)0.0297 (9)
H730.28060.47950.10860.036*
C740.4229 (3)0.6051 (3)0.1283 (2)0.0362 (9)
H740.37610.64270.13220.043*
C750.5496 (3)0.6473 (2)0.1368 (2)0.0322 (9)
H750.58810.71310.14610.039*
C760.6195 (3)0.5912 (2)0.1313 (2)0.0271 (8)
H760.70480.61980.13690.033*
C810.9092 (3)0.5642 (2)0.2106 (2)0.0244 (8)
C821.0333 (3)0.6206 (2)0.2186 (2)0.0262 (8)
C831.1141 (3)0.6801 (2)0.3021 (3)0.0334 (9)
H831.19690.71700.30640.040*
C841.0718 (3)0.6846 (2)0.3792 (3)0.0341 (9)
H841.12560.72460.43550.041*
C850.9478 (3)0.6285 (2)0.3712 (2)0.0318 (9)
H850.91880.63080.42270.038*
C860.8677 (3)0.5696 (2)0.2879 (2)0.0279 (8)
H860.78480.53300.28350.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.02924 (19)0.02342 (19)0.0378 (2)0.01103 (16)0.00326 (17)0.00035 (17)
Br210.02816 (19)0.0395 (2)0.0349 (2)0.01291 (18)0.00990 (18)0.00261 (19)
S110.0233 (5)0.0255 (5)0.0432 (6)0.0099 (4)0.0069 (4)0.0101 (5)
S210.0303 (5)0.0414 (6)0.0357 (6)0.0206 (5)0.0137 (5)0.0210 (5)
C110.0222 (18)0.0232 (19)0.020 (2)0.0073 (15)0.0016 (15)0.0065 (16)
C120.0271 (18)0.0206 (18)0.0169 (19)0.0085 (15)0.0035 (15)0.0061 (15)
C130.0249 (19)0.034 (2)0.027 (2)0.0144 (17)0.0031 (16)0.0095 (18)
C140.0272 (19)0.026 (2)0.033 (2)0.0033 (17)0.0024 (17)0.0097 (18)
C150.037 (2)0.022 (2)0.025 (2)0.0078 (17)0.0025 (18)0.0060 (17)
C160.032 (2)0.025 (2)0.025 (2)0.0132 (17)0.0068 (17)0.0069 (17)
C210.0170 (16)0.0222 (18)0.022 (2)0.0043 (15)0.0001 (15)0.0054 (16)
C220.0215 (18)0.0233 (19)0.022 (2)0.0054 (15)0.0001 (15)0.0010 (16)
C230.035 (2)0.026 (2)0.040 (3)0.0150 (18)0.0002 (19)0.0060 (19)
C240.044 (2)0.030 (2)0.037 (3)0.0112 (19)0.004 (2)0.015 (2)
C250.036 (2)0.038 (2)0.026 (2)0.0049 (19)0.0047 (18)0.0112 (19)
C260.0253 (19)0.031 (2)0.028 (2)0.0097 (17)0.0050 (17)0.0073 (18)
Br310.0327 (2)0.0279 (2)0.0352 (2)0.00597 (17)0.00460 (18)0.00316 (18)
Br410.0352 (2)0.0427 (2)0.0236 (2)0.01079 (19)0.00437 (18)0.00151 (19)
S310.0245 (5)0.0263 (5)0.0272 (5)0.0052 (4)0.0011 (4)0.0078 (4)
S410.0222 (5)0.0405 (6)0.0240 (5)0.0071 (4)0.0039 (4)0.0064 (5)
C310.0197 (17)0.0253 (19)0.023 (2)0.0091 (15)0.0052 (16)0.0068 (17)
C320.0224 (18)0.026 (2)0.025 (2)0.0082 (16)0.0053 (16)0.0041 (17)
C330.031 (2)0.046 (3)0.023 (2)0.0168 (19)0.0043 (17)0.0073 (19)
C340.046 (2)0.051 (3)0.040 (3)0.033 (2)0.020 (2)0.025 (2)
C350.034 (2)0.029 (2)0.050 (3)0.0157 (19)0.018 (2)0.014 (2)
C360.0217 (18)0.027 (2)0.031 (2)0.0085 (16)0.0056 (17)0.0059 (18)
C410.0194 (17)0.0207 (18)0.028 (2)0.0076 (15)0.0037 (16)0.0070 (16)
C420.0260 (18)0.0224 (19)0.022 (2)0.0113 (16)0.0011 (16)0.0034 (16)
C430.0252 (19)0.0211 (19)0.028 (2)0.0049 (16)0.0032 (17)0.0052 (17)
C440.0210 (18)0.023 (2)0.040 (3)0.0031 (16)0.0070 (18)0.0070 (18)
C450.031 (2)0.031 (2)0.030 (2)0.0114 (18)0.0110 (18)0.0099 (18)
C460.0251 (19)0.0236 (19)0.024 (2)0.0057 (16)0.0016 (16)0.0031 (16)
Br510.0408 (2)0.0511 (3)0.0304 (2)0.0127 (2)0.00922 (19)0.0210 (2)
Br610.0367 (2)0.0384 (2)0.0625 (3)0.01736 (19)0.0124 (2)0.0296 (2)
S510.0331 (5)0.0470 (6)0.0271 (6)0.0221 (5)0.0114 (4)0.0148 (5)
S610.0323 (5)0.0305 (5)0.0322 (6)0.0142 (4)0.0054 (4)0.0093 (5)
C510.0205 (17)0.0242 (19)0.023 (2)0.0039 (15)0.0025 (16)0.0055 (16)
C520.0236 (18)0.026 (2)0.022 (2)0.0015 (16)0.0019 (16)0.0051 (17)
C530.030 (2)0.028 (2)0.040 (3)0.0076 (17)0.0010 (19)0.0152 (19)
C540.032 (2)0.027 (2)0.052 (3)0.0133 (18)0.013 (2)0.008 (2)
C550.038 (2)0.031 (2)0.036 (2)0.0100 (19)0.0149 (19)0.0070 (19)
C560.033 (2)0.029 (2)0.028 (2)0.0122 (17)0.0068 (18)0.0100 (18)
C610.0234 (18)0.030 (2)0.021 (2)0.0121 (16)0.0075 (16)0.0089 (17)
C620.0256 (18)0.030 (2)0.036 (2)0.0142 (17)0.0146 (18)0.0173 (19)
C630.029 (2)0.053 (3)0.029 (2)0.017 (2)0.0116 (18)0.019 (2)
C640.029 (2)0.047 (3)0.026 (2)0.0105 (19)0.0060 (18)0.000 (2)
C650.038 (2)0.031 (2)0.042 (3)0.0118 (19)0.017 (2)0.012 (2)
C660.033 (2)0.029 (2)0.030 (2)0.0122 (18)0.0106 (18)0.0137 (19)
Br710.0335 (2)0.0278 (2)0.0477 (3)0.00217 (17)0.00650 (19)0.0117 (2)
Br810.0369 (2)0.0491 (3)0.0468 (3)0.0146 (2)0.0220 (2)0.0215 (2)
S710.0255 (5)0.0243 (5)0.0378 (6)0.0084 (4)0.0028 (4)0.0056 (4)
S810.0272 (5)0.0410 (6)0.0286 (6)0.0129 (4)0.0058 (4)0.0056 (5)
C710.0215 (17)0.0244 (19)0.0186 (19)0.0084 (15)0.0005 (15)0.0067 (16)
C720.0261 (19)0.0213 (19)0.020 (2)0.0016 (16)0.0015 (16)0.0053 (16)
C730.0195 (18)0.040 (2)0.025 (2)0.0083 (17)0.0036 (16)0.0080 (18)
C740.039 (2)0.041 (2)0.033 (2)0.025 (2)0.0030 (19)0.010 (2)
C750.035 (2)0.024 (2)0.031 (2)0.0084 (17)0.0017 (18)0.0088 (18)
C760.0221 (18)0.025 (2)0.027 (2)0.0038 (16)0.0003 (16)0.0078 (17)
C810.0237 (18)0.027 (2)0.023 (2)0.0126 (16)0.0023 (16)0.0090 (17)
C820.0291 (19)0.026 (2)0.027 (2)0.0130 (17)0.0095 (17)0.0101 (17)
C830.0236 (19)0.027 (2)0.045 (3)0.0068 (17)0.0038 (19)0.012 (2)
C840.033 (2)0.029 (2)0.033 (2)0.0100 (18)0.0029 (18)0.0060 (18)
C850.036 (2)0.034 (2)0.027 (2)0.0149 (18)0.0073 (18)0.0116 (19)
C860.0219 (18)0.029 (2)0.033 (2)0.0102 (16)0.0048 (17)0.0111 (18)
Geometric parameters (Å, º) top
Br11—C121.898 (3)Br51—C521.894 (3)
Br21—C221.896 (3)Br61—C621.901 (3)
S11—C111.789 (3)S51—C511.787 (3)
S11—S212.0326 (12)S51—S612.0317 (13)
S21—C211.782 (3)S61—C611.783 (3)
C11—C161.384 (4)C51—C561.383 (4)
C11—C121.391 (4)C51—C521.405 (4)
C12—C131.384 (4)C52—C531.377 (4)
C13—C141.378 (4)C53—C541.381 (5)
C13—H130.9300C53—H530.9300
C14—C151.391 (4)C54—C551.380 (5)
C14—H140.9300C54—H540.9300
C15—C161.388 (4)C55—C561.381 (4)
C15—H150.9300C55—H550.9300
C16—H160.9300C56—H560.9300
C21—C221.382 (4)C61—C621.381 (4)
C21—C261.396 (4)C61—C661.393 (4)
C22—C231.385 (4)C62—C631.379 (5)
C23—C241.371 (5)C63—C641.373 (5)
C23—H230.9300C63—H630.9300
C24—C251.383 (5)C64—C651.385 (5)
C24—H240.9300C64—H640.9300
C25—C261.381 (4)C65—C661.380 (5)
C25—H250.9300C65—H650.9300
C26—H260.9300C66—H660.9300
Br31—C321.900 (3)Br71—C721.906 (3)
Br41—C421.895 (3)Br81—C821.898 (3)
S31—C311.782 (3)S71—C711.783 (3)
S31—S412.0291 (14)S71—S812.0279 (13)
S41—C411.785 (3)S81—C811.787 (3)
C31—C321.383 (4)C71—C761.381 (4)
C31—C361.398 (4)C71—C721.391 (4)
C32—C331.371 (4)C72—C731.373 (4)
C33—C341.389 (5)C73—C741.371 (5)
C33—H330.9300C73—H730.9300
C34—C351.385 (5)C74—C751.383 (4)
C34—H340.9300C74—H740.9300
C35—C361.375 (4)C75—C761.388 (4)
C35—H350.9300C75—H750.9300
C36—H360.9300C76—H760.9300
C41—C461.384 (4)C81—C861.382 (4)
C41—C421.389 (4)C81—C821.393 (4)
C42—C431.392 (4)C82—C831.382 (5)
C43—C441.378 (4)C83—C841.384 (5)
C43—H430.9300C83—H830.9300
C44—C451.379 (4)C84—C851.392 (5)
C44—H440.9300C84—H840.9300
C45—C461.390 (4)C85—C861.376 (4)
C45—H450.9300C85—H850.9300
C46—H460.9300C86—H860.9300
Br11···Br713.8681 (9)Br21···Br51i3.7056 (10)
Br11···Br313.6755 (9)Br31···Br61iii3.6926 (9)
Br21···Br71i3.7499 (9)Br51···Br713.8931 (10)
Br21···Br41ii3.8056 (9)
C11—S11—S21105.42 (11)C51—S51—S61104.42 (12)
C21—S21—S11105.55 (12)C61—S61—S51105.17 (12)
C16—C11—C12118.9 (3)C56—C51—C52118.2 (3)
C16—C11—S11124.2 (2)C56—C51—S51124.7 (3)
C12—C11—S11117.0 (2)C52—C51—S51117.0 (2)
C13—C12—C11121.2 (3)C53—C52—C51120.8 (3)
C13—C12—Br11118.1 (2)C53—C52—Br51119.2 (3)
C11—C12—Br11120.8 (2)C51—C52—Br51120.0 (2)
C14—C13—C12119.8 (3)C52—C53—C54119.8 (3)
C14—C13—H13120.1C52—C53—H53120.1
C12—C13—H13120.1C54—C53—H53120.1
C13—C14—C15119.5 (3)C53—C54—C55120.3 (3)
C13—C14—H14120.2C53—C54—H54119.9
C15—C14—H14120.2C55—C54—H54119.9
C16—C15—C14120.6 (3)C54—C55—C56119.8 (3)
C16—C15—H15119.7C54—C55—H55120.1
C14—C15—H15119.7C56—C55—H55120.1
C11—C16—C15120.1 (3)C55—C56—C51121.1 (3)
C11—C16—H16120.0C55—C56—H56119.5
C15—C16—H16120.0C51—C56—H56119.5
C22—C21—C26118.6 (3)C62—C61—C66117.9 (3)
C22—C21—S21117.3 (3)C62—C61—S61118.3 (3)
C26—C21—S21124.1 (2)C66—C61—S61123.8 (3)
C21—C22—C23121.0 (3)C63—C62—C61121.7 (3)
C21—C22—Br21120.0 (3)C63—C62—Br61117.8 (3)
C23—C22—Br21119.0 (3)C61—C62—Br61120.4 (3)
C24—C23—C22119.7 (3)C64—C63—C62119.6 (3)
C24—C23—H23120.2C64—C63—H63120.2
C22—C23—H23120.2C62—C63—H63120.2
C23—C24—C25120.4 (3)C63—C64—C65120.1 (4)
C23—C24—H24119.8C63—C64—H64120.0
C25—C24—H24119.8C65—C64—H64120.0
C26—C25—C24119.9 (3)C66—C65—C64119.8 (4)
C26—C25—H25120.1C66—C65—H65120.1
C24—C25—H25120.1C64—C65—H65120.1
C25—C26—C21120.4 (3)C65—C66—C61120.9 (3)
C25—C26—H26119.8C65—C66—H66119.5
C21—C26—H26119.8C61—C66—H66119.5
C31—S31—S41105.39 (12)C71—S71—S81104.62 (11)
C41—S41—S31104.64 (12)C81—S81—S71105.05 (12)
C32—C31—C36118.1 (3)C76—C71—C72118.3 (3)
C32—C31—S31117.8 (2)C76—C71—S71124.1 (2)
C36—C31—S31124.0 (3)C72—C71—S71117.5 (2)
C33—C32—C31122.0 (3)C73—C72—C71121.6 (3)
C33—C32—Br31118.1 (3)C73—C72—Br71118.8 (3)
C31—C32—Br31119.9 (3)C71—C72—Br71119.6 (2)
C32—C33—C34119.1 (4)C74—C73—C72119.6 (3)
C32—C33—H33120.4C74—C73—H73120.2
C34—C33—H33120.4C72—C73—H73120.2
C35—C34—C33120.0 (4)C73—C74—C75120.2 (3)
C35—C34—H34120.0C73—C74—H74119.9
C33—C34—H34120.0C75—C74—H74119.9
C36—C35—C34120.2 (3)C74—C75—C76119.9 (3)
C36—C35—H35119.9C74—C75—H75120.0
C34—C35—H35119.9C76—C75—H75120.0
C35—C36—C31120.5 (3)C71—C76—C75120.4 (3)
C35—C36—H36119.7C71—C76—H76119.8
C31—C36—H36119.7C75—C76—H76119.8
C46—C41—C42118.9 (3)C86—C81—C82118.7 (3)
C46—C41—S41124.0 (3)C86—C81—S81124.6 (3)
C42—C41—S41117.1 (3)C82—C81—S81116.7 (3)
C41—C42—C43120.8 (3)C83—C82—C81120.9 (3)
C41—C42—Br41120.3 (2)C83—C82—Br81119.3 (3)
C43—C42—Br41118.8 (3)C81—C82—Br81119.8 (3)
C44—C43—C42119.5 (3)C82—C83—C84120.0 (3)
C44—C43—H43120.2C82—C83—H83120.0
C42—C43—H43120.2C84—C83—H83120.0
C43—C44—C45120.2 (3)C83—C84—C85119.1 (4)
C43—C44—H44119.9C83—C84—H84120.4
C45—C44—H44119.9C85—C84—H84120.4
C44—C45—C46120.2 (3)C86—C85—C84120.6 (3)
C44—C45—H45119.9C86—C85—H85119.7
C46—C45—H45119.9C84—C85—H85119.7
C41—C46—C45120.4 (3)C85—C86—C81120.7 (3)
C41—C46—H46119.8C85—C86—H86119.7
C45—C46—H46119.8C81—C86—H86119.7
C11—S11—S21—C2184.88 (16)C51—S51—S61—C6183.35 (16)
S21—S11—C11—C1614.1 (3)S61—S51—C51—C5610.2 (3)
S21—S11—C11—C12168.4 (2)S61—S51—C51—C52171.7 (2)
C16—C11—C12—C132.4 (5)C56—C51—C52—C531.6 (5)
S11—C11—C12—C13175.3 (3)S51—C51—C52—C53179.8 (3)
C16—C11—C12—Br11178.7 (2)C56—C51—C52—Br51179.0 (2)
S11—C11—C12—Br113.5 (4)S51—C51—C52—Br510.8 (4)
C11—C12—C13—C141.5 (5)C51—C52—C53—C541.2 (5)
Br11—C12—C13—C14179.6 (3)Br51—C52—C53—C54179.5 (3)
C12—C13—C14—C150.4 (5)C52—C53—C54—C550.5 (5)
C13—C14—C15—C160.1 (5)C53—C54—C55—C561.8 (5)
C12—C11—C16—C152.1 (5)C54—C55—C56—C511.3 (5)
S11—C11—C16—C15175.4 (3)C52—C51—C56—C550.4 (5)
C14—C15—C16—C111.0 (5)S51—C51—C56—C55178.4 (3)
S11—S21—C21—C22174.3 (2)S51—S61—C61—C62169.2 (2)
S11—S21—C21—C266.8 (3)S51—S61—C61—C6610.9 (3)
C26—C21—C22—C230.4 (5)C66—C61—C62—C630.2 (5)
S21—C21—C22—C23178.5 (3)S61—C61—C62—C63179.7 (2)
C26—C21—C22—Br21179.7 (2)C66—C61—C62—Br61178.9 (2)
S21—C21—C22—Br210.7 (4)S61—C61—C62—Br611.2 (4)
C21—C22—C23—C240.4 (5)C61—C62—C63—C640.1 (5)
Br21—C22—C23—C24179.6 (3)Br61—C62—C63—C64179.0 (2)
C22—C23—C24—C250.4 (5)C62—C63—C64—C650.1 (5)
C23—C24—C25—C260.6 (5)C63—C64—C65—C660.1 (5)
C24—C25—C26—C210.7 (5)C64—C65—C66—C610.2 (5)
C22—C21—C26—C250.6 (5)C62—C61—C66—C650.2 (5)
S21—C21—C26—C25178.3 (3)S61—C61—C66—C65179.6 (3)
C31—S31—S41—C4185.78 (15)C71—S71—S81—C8185.61 (15)
S41—S31—C31—C32167.6 (2)S81—S71—C71—C7616.9 (3)
S41—S31—C31—C3616.2 (3)S81—S71—C71—C72166.6 (2)
C36—C31—C32—C330.8 (5)C76—C71—C72—C730.3 (5)
S31—C31—C32—C33177.2 (2)S71—C71—C72—C73176.4 (3)
C36—C31—C32—Br31179.9 (2)C76—C71—C72—Br71178.8 (2)
S31—C31—C32—Br313.7 (3)S71—C71—C72—Br714.4 (4)
C31—C32—C33—C341.4 (5)C71—C72—C73—C740.2 (5)
Br31—C32—C33—C34179.4 (2)Br71—C72—C73—C74179.0 (3)
C32—C33—C34—C351.8 (5)C72—C73—C74—C750.1 (5)
C33—C34—C35—C361.5 (5)C73—C74—C75—C760.2 (5)
C34—C35—C36—C310.8 (5)C72—C71—C76—C750.3 (5)
C32—C31—C36—C350.4 (4)S71—C71—C76—C75176.2 (3)
S31—C31—C36—C35176.6 (2)C74—C75—C76—C710.0 (5)
S31—S41—C41—C4615.6 (3)S71—S81—C81—C866.1 (3)
S31—S41—C41—C42166.1 (2)S71—S81—C81—C82176.5 (2)
C46—C41—C42—C430.0 (5)C86—C81—C82—C830.8 (5)
S41—C41—C42—C43178.4 (2)S81—C81—C82—C83178.4 (2)
C46—C41—C42—Br41176.6 (2)C86—C81—C82—Br81179.0 (2)
S41—C41—C42—Br411.8 (4)S81—C81—C82—Br811.5 (4)
C41—C42—C43—C440.6 (5)C81—C82—C83—C840.5 (5)
Br41—C42—C43—C44177.3 (2)Br81—C82—C83—C84179.3 (2)
C42—C43—C44—C451.5 (5)C82—C83—C84—C850.3 (5)
C43—C44—C45—C461.7 (5)C83—C84—C85—C860.4 (5)
C42—C41—C46—C450.2 (5)C84—C85—C86—C810.7 (5)
S41—C41—C46—C45178.1 (2)C82—C81—C86—C850.9 (5)
C44—C45—C46—C411.1 (5)S81—C81—C86—C85178.3 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S210.932.733.232 (3)114
C26—H26···S110.932.713.216 (4)115
C36—H36···S410.932.743.230 (4)114
C46—H46···S310.932.713.205 (3)114
C56—H56···S610.932.703.202 (3)115
C66—H66···S510.932.703.206 (4)115
C76—H76···S810.932.713.207 (3)114
C86—H86···S710.932.703.208 (4)115
C44—H44···Br11iv0.932.993.743 (3)139
Symmetry code: (iv) x+2, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H8Br2S2C12H8Br2S2
Mr376.12376.12
Crystal system, space groupOrthorhombic, PbcaTriclinic, P1
Temperature (K)150150
a, b, c (Å)7.6844 (10), 14.4240 (18), 22.378 (3)11.8186 (19), 15.489 (3), 15.653 (3)
α, β, γ (°)90, 90, 90102.122 (5), 100.393 (5), 110.001 (5)
V3)2480.4 (6)2531.4 (8)
Z88
Radiation typeMo KαMo Kα
µ (mm1)6.846.70
Crystal size (mm)0.38 × 0.20 × 0.160.13 × 0.11 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD with an Oxford Cryosystems low-temperature device
diffractometer
Bruker SMART APEX CCD with an Oxford Cryosystems low-temperature device
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.211, 0.3350.408, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
18462, 2537, 2224 22934, 13188, 8387
Rint0.0280.031
(sin θ/λ)max1)0.6260.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.02 0.035, 0.060, 1.00
No. of reflections253711915
No. of parameters145577
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.220.98, 1.03

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997b), SHELXTL (Sheldrick, 1994), SHELXTL version 5.03 (Sheldrick, 1994), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Br11—C121.897 (2)S11—S212.0270 (7)
Br21—C221.897 (2)S21—C211.780 (2)
S11—C111.785 (2)
C11—S11—S21104.78 (7)C11—C12—Br11119.41 (15)
C21—S21—S11105.64 (7)C22—C21—S21117.61 (15)
C12—C11—S11118.20 (15)C26—C21—S21124.15 (15)
C16—C11—S11123.71 (15)C23—C22—Br21118.86 (15)
C13—C12—Br11119.02 (15)C21—C22—Br21119.56 (15)
C11—S11—S21—C2183.34 (9)S11—S21—C21—C22174.69 (14)
S21—S11—C11—C12172.68 (14)S11—S21—C21—C267.46 (19)
S21—S11—C11—C168.33 (18)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S210.932.673.185 (2)115
C26—H26···S110.932.713.215 (2)115
C25—H25···S21i0.932.963.607 (2)128
C24—H24···S21i0.932.993.620 (2)126
C26—H26···Br11ii0.933.043.882 (2)151
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Br11—C121.898 (3)Br51—C521.894 (3)
Br21—C221.896 (3)Br61—C621.901 (3)
S11—C111.789 (3)S51—C511.787 (3)
S11—S212.0326 (12)S51—S612.0317 (13)
S21—C211.782 (3)S61—C611.783 (3)
Br31—C321.900 (3)Br71—C721.906 (3)
Br41—C421.895 (3)Br81—C821.898 (3)
S31—C311.782 (3)S71—C711.783 (3)
S31—S412.0291 (14)S71—S812.0279 (13)
S41—C411.785 (3)S81—C811.787 (3)
Br11···Br713.8681 (9)Br21···Br51i3.7056 (10)
Br11···Br313.6755 (9)Br31···Br61iii3.6926 (9)
Br21···Br71i3.7499 (9)Br51···Br713.8931 (10)
Br21···Br41ii3.8056 (9)
C11—S11—S21105.42 (11)C42—C41—S41117.1 (3)
C21—S21—S11105.55 (12)C51—S51—S61104.42 (12)
C16—C11—S11124.2 (2)C61—S61—S51105.17 (12)
C12—C11—S11117.0 (2)C56—C51—S51124.7 (3)
C22—C21—S21117.3 (3)C52—C51—S51117.0 (2)
C26—C21—S21124.1 (2)C62—C61—S61118.3 (3)
C31—S31—S41105.39 (12)C66—C61—S61123.8 (3)
C41—S41—S31104.64 (12)C71—S71—S81104.62 (11)
C32—C31—S31117.8 (2)C81—S81—S71105.05 (12)
C36—C31—S31124.0 (3)C76—C71—S71124.1 (2)
C32—C33—C34119.1 (4)C72—C71—S71117.5 (2)
C32—C33—H33120.4C86—C81—S81124.6 (3)
C34—C33—H33120.4C82—C81—S81116.7 (3)
C46—C41—S41124.0 (3)
C11—S11—S21—C2184.88 (16)C51—S51—S61—C6183.35 (16)
S21—S11—C11—C1614.1 (3)S61—S51—C51—C5610.2 (3)
S21—S11—C11—C12168.4 (2)S61—S51—C51—C52171.7 (2)
S11—S21—C21—C22174.3 (2)S51—S61—C61—C62169.2 (2)
S11—S21—C21—C266.8 (3)S51—S61—C61—C6610.9 (3)
C31—S31—S41—C4185.78 (15)C71—S71—S81—C8185.61 (15)
S41—S31—C31—C32167.6 (2)S81—S71—C71—C7616.9 (3)
S41—S31—C31—C3616.2 (3)S81—S71—C71—C72166.6 (2)
S31—S41—C41—C4615.6 (3)S71—S81—C81—C866.1 (3)
S31—S41—C41—C42166.1 (2)S71—S81—C81—C82176.5 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S210.932.733.232 (3)114
C26—H26···S110.932.713.216 (4)115
C36—H36···S410.932.743.230 (4)114
C46—H46···S310.932.713.205 (3)114
C56—H56···S610.932.703.202 (3)115
C66—H66···S510.932.703.206 (4)115
C76—H76···S810.932.713.207 (3)114
C86—H86···S710.932.703.208 (4)115
C44—H44···Br11iv0.932.993.743 (3)139
Symmetry code: (iv) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds