Download citation
Download citation
link to html
The four oligosulfanes, bis(1-chloro-2,2,4,4-tetra­methyl-3-oxo­cyclo­butan-1-yl)­disulfane, C16H24Cl2O2S2, (III), 1,3-bis(1-chloro-2,2,4,4-tetra­methyl-3-oxo­cyclo­butan-1-yl)­trisulfane, C16H24Cl2O2S3, (V), 1,4-bis(1-chloro-2,2,4,4-tetra­methyl-3-oxo­cyclo­butan-1-yl)­tetrasulfane, C16H24Cl2O2S4, (VII), and 1,6-bis(1-chloro-2,2,4,4-tetra­methyl-3-oxo­cyclo­butan-1-yl)­hexasul­fane, C16H24Cl2O2S6, (VIII), all have similar geometric parameters, with the C-C bond lengths involving the chloro-substituted cyclo­butanyl C atom being elongated to about 1.59 Å. There are two mol­ecules in the asymmetric units of the tri- and tetrasulfanes, and the mol­ecules in the latter compound have local C2 symmetry. The mol­ecule of the hexasulfane has crystallographic C2 symmetry. Most of the cyclo­butanyl rings are not perfectly planar and have slight but varying degrees of distortion towards a flattened tetrahedron. The polysulfane chain in each structure has a helical conformation, with each additional S atom in the chain adding approximately one quarter of a turn to the helix.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102011319/bm1503sup1.cif
Contains datablocks global, III, V, VII, VIII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011319/bm1503IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011319/bm1503Vsup3.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011319/bm1503VIIsup4.hkl
Contains datablock VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011319/bm1503VIIIsup5.hkl
Contains datablock VIII

CCDC references: 193427; 193428; 193429; 193430

Comment top

Although there are some classical methods for the synthesis of organic polysulfanes (Gunderman & Hümke, 1985; Steudel & Kustos, 1994), they often result in mixtures of homologous compounds which are difficult to separate. Therefore, in recent years, new protocols for the selective preparation of linear and cyclic polysulfanes have been elaborated (Steudel, Pridöhl et al., 1995; Steudel, Westphal & Pickardt, 1995, and references therein). For example, titanocene pentasulfane has been shown to be a very useful sulfur-transfer reagent. It reacts with chloroalkanes to give dialkylpentasulfanes, and with alkylsulfenyl chlorides to give dialkylheptasulfanes (Steudel & Kustos, 1991; Westphal & Steudel, 1991; Kustos et al., 1993). On the other hand, several reactions of thioketones have been described in which polysulfur compounds are formed in the absence of a sulfur-transfer reagent, for example the formation of 1,2,4-trithiolanes on treatment with organic azides (Mloston & Heimgartner, 1995; Mloston et al., 1995, 1996). In this case, an intermediate thiaziridine is believed to be responsible for the sulfur transfer, which leads to reactive thiocarbonyl S-sulfides. Similar sulfur-transfer reactions occur under mild conditions between thiiranes and thioketones (e.g. Huisgen & Rapp, 1997; Huisgen et al., 1997), whereas the formation of reactive thiocarbonyl S-sulfides from thioketones and S8 needs higher temperatures (e.g. Saito, Nagashima et al., 1992; Saito, Shundo et al., 1992; Okuma et al., 1993) or the presence of sodium benzenethiolate as a catalyst (Huisgen et al., 1997). In the case of adamantanethione, the corresponding 1,2,4-trithiolane was formed on treatment with silica gel in dichloromethane (Linden et al., 2002).

As the intermediacy of thiocarbonyl S-sulfides and their isomeric dithiiranes has frequently been proposed to explain the formation of polysulfur heterocycles (Mloston & Heimgartner, 1995; Huisgen et al., 1997; El-Essawy et al., 1998; Fabian & Senning, 1998; Hegab et al., 1999; Hawata et al., 2000), many attempts have been undertaken to synthesize those compounds. Within the last few years, several stable dithiiranes have been prepared (Ishii et al., 1994; Ishii & Nakayama, 1999, 2000; Shimada et al., 1999), and the parent compound has been generated photolytically and isolated in a matrix at 10 K (Mloston et al., 2001).

Recently, we reported the synthesis of α-chlorosulfenyl chloride (II) from thioketone (I) by using either chlorine (Koch et al., 1999), or phosphorus pentachloride or sulfuryl chloride (Mloston et al., 2002), as the chlorinating agent (see Scheme). The reaction of (II) with thioketone (I) in dichloromethane at 298 K gave the disulfane, (III). Treatment of (I) with sulfur dichloride in tetrachloromethane at 298 K led to a 1:1 mixture of α-chlorodisulfanyl chloride (IV) and the trisulfane, (V), which was separated by trituration with petroleum ether. The latter was formed in high yield when purified (IV) was reacted with (I) in dichloromethane. The tetrasulfane, (VII), has been obtained from the reaction of (I) and disulfur dichloride in dichloromethane at 298 K, with α-chlorotrisulfanyl chloride (VI) being a likely intermediate. Unexpectedly, the reaction of (II) with tetrabutylammonium hexasulfane in tetrahydrofuran gave the symmetrical hexasulfane, (VIII), as colourless crystals in low yield. As part of their full characterization, low-temperature X-ray crystal-structure determinations of the compounds (III), (V), (VII) and (VIII) were carried out and the results are presented here. \sch

The molecules of compounds (III) and (V) do not possess any local or crystallographic symmetry (Figs. 1 and 2). The asymmetric units in compounds (V) and (VII) each contain two molecules which have very similar conformations and can be superimposed very closely; the r.m.s. fit between the non-H atoms of the symmetry-independent molecules is 0.59 Å for (V) and 0.23 Å for (VII). Both symmetry-independent molecules of (VII) display local C2 symmetry about an axis passing through the middle of the central S—S bond, with the r.m.s. deviations of the C2-related atoms being 0.08 and 0.11 Å for molecules A and B, respectively (Fig. 3). The molecule of (VIII) has crystallographic C2 symmetry about an axis passing through the middle of the central S—S bond (Fig. 4).

The pattern of bond lengths and angles is consistent across all four structures and these parameters have normal values (Tables 1–4), although the S1—C1 bond in (III) is about 0.03 Å longer than any of the other S—C bonds in these structures [mean value 1.816 (2)°], including the chemically equivalent S2—C9 bond in (III). The C—C bond lengths involving the chloro-substituted cyclobutanyl C atom are longer than normal C—C single bonds, in the range 1.585 (2)–1.601 (2) Å. However, they are consistent with those previously found in a similar environment (Mloston et al., 1999). This is evidently due to the electron-withdrawing properties of the S and Cl substituents. As a result, the cyclobutanyl rings are not perfect squares. While the C—C—C bond angle at the chloro-substituted C atom is always close to 90°, that at the oxo-substituted C atom is consistently about 96°, while those at the dimethyl-substituted C atoms hover around 86°.

With the exception of one planar ring in compound (VII), the cyclobutanyl rings in the four structures are not planar, but are slightly distorted towards a flattened tetrahedron. The magnitudes of the folds about the ring diagonals vary from structure to structure and from one end of a molecule to the next, with some rings being much flatter than others, as indicated in Table 5. The direction of the fold also varies from one ring to the next and is not necessarily the same for all rings in any one particular structure. The Cl substituent on the ring can be described as being in a pseudo-axial (ax) or a pseudo-equatorial (eq) position, depending on whether the fold about the (Me2)C···C(Me2) axis places the Cl atom above the concave or convex side, respectively, of the ring. The ax/eq assignments for each structure are also listed in Table 5.

The polysulfane chain in each structure always has a helical conformation. The magnitudes of the torsion angles about the S—S bonds are fairly constant and lie between 83 and 101°, while, in any one structure, successive torsion angles along the chain have the same sign. Thus, compounds (III), (V), (VII), and (VIII) display approximately 1/4, 1/2, 3/4, and 1.25 full turns, respectively. The one structure missing in this series is the pentasulfane, which should display one complete turn. We have actually determined the structure of this latter compound and it does display the expected full-turn conformation. However, unexpected geometrical and crystallographic anomalies in this structure determination require further investigation and the structure of the pentasulfane will be published at a later date. An analysis of the Cambridge Structural Database (April 2002 release; Allen & Kennard, 1993) indicates that a helical conformation of this type, with torsion angles about the S—S bond in the range 70–110°, is quite normal for polysulfane chains.

Table 5. A ngles (°) between the planes on each side of the diagonals of the cyclobutanyl rings.

Experimental top

The syntheses of (III), (V) and (VII) have been reported by Mloston et al. (2000), and single crystals of each compound were obtained by slow evaporation from their respective solutions in hexane/dichloromethane. For the preparation of (VIII), tetrabutylammonium hexasulfane (745 mg, 1.1 mmol) was added to a stirred solution of (II) (257 mg, 1.1 mmol) in tetrahydrofuran (5 ml) at 233 K. After stirring for 2 h at 233 K and for 24 h at 298 K, the solvent was evaporated and the residue dissolved in dichloromethane and filtered through silica gel. Evaporation of the solvent and recrystallization of the residue yielded 30 mg (10%) of (VIII) as colourless crystals (m.p. 402–404 K). The spectroscopic data for (III), (V) and (VII) have been reported by Mloston et al. (2002), and the corresponding data for (VIII) (see below) are virtually identical. These compounds cannot be distinguished by mass spectrometry, as they produce similar fragmentation patterns and the molecular ion does not appear in the spectra. Spectroscopic data for (VIII): 1H NMR (CDCl3, δ, p.p.m.): 1.38 (s, 4 Me), 1.41 (s, 4 Me); 13C NMR (CDCl3, δ, p.p.m.): 22.7 (q, 4 Me), 23.4 (q, 4 Me), 69.2 (s, C2, C2', C4, C4'), 87.4 (s, C1, C1'), 215.4 (s, 2 CO); IR (KBr, ν, cm-1): 1790 (versus, CO), 1770 (s, CO), 1461 (s), 1455 (s), 1443 (s), 1380 (s), 1365 (s), 1169 (s), 1134 (s), 1029 (s), 912 (s), 887 (s), 832 (s).

Refinement top

For each structure, the methyl H atoms were constrained to an ideal geometry (C—H = 0.96–0.98 Å), with Uiso(H) = 1.5Ueq(C), but they were allowed to rotate freely about the C—C bonds. For (III), (V) and (VII), three, five and three low-angle reflections, respectively, were omitted from the final refinement because their observed intensities were much lower than the calculated values, as a result of being partially obscured by the beam stop. The structures of (V) and (VII) have two molecules in the asymmetric unit. In each case, the possibility of the two molecules being related by additional symmetry was excluded by comparing their atomic coordinates using PLATON (Spek, 2002). Attempts to collect the data for (VII) at 160 K were unsuccessful, because the thermal shock of cooling destroyed the crystals, so the analysis for this compound was conducted at 253 K. For (VIII), even though the molecule is achiral, the compound crystallized in a polar space group. Refinement of the absolute structure parameter (Flack, 1983) yielded a value of 0.39 (13), which suggests that the crystal may be a merohedral twin, although the large standard uncertainty on this parameter means that a definitive conclusion regarding the absolute structure cannot be drawn (Flack & Bernardinelli, 2000). The absolute structure defined by the model and space group, P41212, used in the refinement has therefore been assigned arbitrarily. The inverted structure and space group, P43212, could be used equally well.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of one of the symmetry-independent molecules of (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of one of the symmetry-independent molecules of (VII) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A view of the molecule of (VIII) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) y - 1, 1 + x, -z.]
(III) bis(1-chloro-2,2,4,4-tetramethyl-3-oxocyclobutan-1-yl)disulfane top
Crystal data top
C16H24Cl2O2S2F(000) = 808
Mr = 383.39Dx = 1.377 Mg m3
Monoclinic, P21/nMelting point = 371–373 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.7379 (1) ÅCell parameters from 103426 reflections
b = 26.7454 (4) Åθ = 2.0–30.0°
c = 10.6473 (2) ŵ = 0.58 mm1
β = 105.4292 (6)°T = 160 K
V = 1849.58 (5) Å3Rod, colourless
Z = 40.32 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5400 independent reflections
Radiation source: Nonius FR591 sealed tube generator3839 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.069
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 3.0°
ϕ and ω scans with κ offsetsh = 99
Absorption correction: numerical
(Coppens et al., 1965)
k = 3737
Tmin = 0.872, Tmax = 0.961l = 1414
40268 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.5066P]
where P = (Fo2 + 2Fc2)/3
5397 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H24Cl2O2S2V = 1849.58 (5) Å3
Mr = 383.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7379 (1) ŵ = 0.58 mm1
b = 26.7454 (4) ÅT = 160 K
c = 10.6473 (2) Å0.32 × 0.12 × 0.10 mm
β = 105.4292 (6)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5400 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
3839 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.961Rint = 0.069
40268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
5397 reflectionsΔρmin = 0.35 e Å3
207 parameters
Special details top

Experimental. Solvent used: hexane/dichloromethane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.847 (1) Frames collected: 1481 Seconds exposure per frame: 12 Degrees rotation per frame: 0.6 Crystal-Detector distance (mm): 41.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.10057 (7)0.069552 (19)0.59120 (4)0.03346 (12)
Cl20.78806 (6)0.192378 (16)0.41231 (4)0.02775 (11)
S10.64412 (6)0.072255 (16)0.52548 (4)0.02409 (10)
S20.69317 (7)0.086746 (16)0.34955 (4)0.02372 (10)
O11.0234 (2)0.09743 (5)0.97583 (12)0.0380 (3)
O20.2449 (2)0.21167 (5)0.09187 (13)0.0371 (3)
C10.8859 (2)0.08087 (6)0.65477 (15)0.0218 (3)
C20.8876 (3)0.04590 (6)0.77643 (16)0.0241 (4)
C30.9560 (3)0.09207 (7)0.86002 (16)0.0254 (4)
C40.9163 (3)0.12886 (7)0.74607 (16)0.0256 (4)
C51.0378 (3)0.00234 (7)0.80294 (19)0.0363 (4)
H511.17820.01490.81500.054*
H521.00380.02080.72900.054*
H531.02820.01520.88200.054*
C60.6747 (3)0.02806 (7)0.78537 (18)0.0320 (4)
H610.62660.00090.72290.048*
H620.57700.05600.76520.048*
H630.68490.01600.87370.048*
C71.0954 (3)0.16412 (8)0.74896 (19)0.0377 (5)
H711.11400.18700.82310.057*
H721.06590.18340.66780.057*
H731.22150.14460.75780.057*
C80.7192 (3)0.15920 (7)0.73639 (18)0.0333 (4)
H810.73690.17980.81460.050*
H820.60300.13630.72910.050*
H830.69190.18080.65930.050*
C90.6083 (2)0.15057 (6)0.30954 (15)0.0213 (3)
C100.5727 (3)0.16323 (6)0.15825 (16)0.0245 (4)
C110.3665 (3)0.18532 (6)0.16538 (17)0.0251 (4)
C120.3766 (2)0.16529 (6)0.30114 (16)0.0227 (3)
C130.7134 (3)0.20109 (7)0.11823 (19)0.0341 (4)
H1310.64760.21340.03030.051*
H1320.84450.18510.11910.051*
H1330.73850.22920.17950.051*
C140.5470 (3)0.11729 (7)0.06844 (17)0.0324 (4)
H1410.49410.12790.02240.049*
H1420.45000.09380.09070.049*
H1430.68070.10090.07980.049*
C150.3348 (3)0.20333 (7)0.39731 (19)0.0317 (4)
H1510.43480.23070.40820.047*
H1520.34730.18710.48160.047*
H1530.19530.21670.36410.047*
C160.2302 (3)0.12054 (7)0.29045 (17)0.0273 (4)
H1610.25550.10400.37540.041*
H1620.25440.09680.22600.041*
H1630.08740.13230.26320.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0254 (2)0.0520 (3)0.0250 (2)0.00527 (19)0.01036 (17)0.0035 (2)
Cl20.0264 (2)0.0298 (2)0.0268 (2)0.00458 (17)0.00671 (17)0.00365 (17)
S10.0246 (2)0.0278 (2)0.01853 (19)0.00379 (17)0.00350 (16)0.00245 (16)
S20.0299 (2)0.0238 (2)0.01701 (19)0.00530 (17)0.00555 (16)0.00017 (16)
O10.0497 (8)0.0422 (8)0.0185 (6)0.0082 (7)0.0027 (6)0.0005 (6)
O20.0336 (7)0.0415 (8)0.0357 (8)0.0103 (6)0.0081 (6)0.0168 (6)
C10.0203 (8)0.0269 (9)0.0174 (7)0.0011 (6)0.0038 (6)0.0015 (6)
C20.0283 (9)0.0249 (9)0.0192 (8)0.0012 (7)0.0063 (7)0.0042 (7)
C30.0245 (8)0.0323 (10)0.0194 (8)0.0015 (7)0.0058 (7)0.0019 (7)
C40.0303 (9)0.0266 (9)0.0184 (8)0.0050 (7)0.0038 (7)0.0009 (7)
C50.0449 (12)0.0329 (10)0.0306 (10)0.0089 (9)0.0093 (9)0.0077 (8)
C60.0360 (10)0.0347 (10)0.0256 (9)0.0076 (8)0.0088 (8)0.0066 (8)
C70.0435 (11)0.0377 (11)0.0280 (10)0.0156 (9)0.0027 (9)0.0023 (8)
C80.0451 (11)0.0270 (10)0.0284 (10)0.0047 (8)0.0106 (8)0.0026 (8)
C90.0223 (8)0.0219 (8)0.0197 (8)0.0005 (6)0.0057 (6)0.0007 (6)
C100.0261 (8)0.0292 (9)0.0196 (8)0.0038 (7)0.0085 (7)0.0043 (7)
C110.0250 (8)0.0261 (9)0.0240 (8)0.0005 (7)0.0063 (7)0.0026 (7)
C120.0214 (8)0.0245 (9)0.0227 (8)0.0035 (6)0.0070 (6)0.0027 (7)
C130.0346 (10)0.0407 (11)0.0311 (10)0.0020 (8)0.0156 (8)0.0118 (8)
C140.0390 (10)0.0397 (11)0.0183 (8)0.0057 (9)0.0073 (7)0.0001 (8)
C150.0298 (9)0.0330 (10)0.0351 (10)0.0058 (8)0.0139 (8)0.0034 (8)
C160.0232 (8)0.0332 (10)0.0246 (9)0.0033 (7)0.0047 (7)0.0036 (7)
Geometric parameters (Å, º) top
Cl1—C11.7786 (17)C8—H810.9800
Cl2—C91.7915 (17)C8—H820.9800
S1—C11.8462 (16)C8—H830.9800
S1—S22.0243 (6)C9—C101.601 (2)
S2—C91.8146 (17)C9—C121.589 (2)
O1—C31.204 (2)C10—C131.523 (2)
O2—C111.200 (2)C10—C111.530 (2)
C1—C21.595 (2)C10—C141.538 (2)
C1—C41.590 (2)C11—C121.526 (2)
C2—C51.519 (2)C12—C151.522 (2)
C2—C31.520 (2)C12—C161.536 (2)
C2—C61.539 (2)C13—H1310.9800
C3—C41.529 (2)C13—H1320.9800
C4—C71.526 (3)C13—H1330.9800
C4—C81.536 (3)C14—H1410.9800
C5—H510.9800C14—H1420.9800
C5—H520.9800C14—H1430.9800
C5—H530.9800C15—H1510.9800
C6—H610.9800C15—H1520.9800
C6—H620.9800C15—H1530.9800
C6—H630.9800C16—H1610.9800
C7—H710.9800C16—H1620.9800
C7—H720.9800C16—H1630.9800
C7—H730.9800
C1—S1—S2109.71 (6)H82—C8—H83109.5
C9—S2—S1106.17 (6)C10—C9—C1290.52 (12)
C2—C1—C490.28 (12)C12—C9—Cl2111.97 (11)
C4—C1—Cl1112.62 (11)C10—C9—Cl2112.25 (11)
C2—C1—Cl1112.22 (11)C12—C9—S2119.33 (11)
C4—C1—S1120.07 (11)C10—C9—S2112.87 (11)
C2—C1—S1110.29 (11)Cl2—C9—S2108.91 (8)
Cl1—C1—S1109.91 (8)C13—C10—C11113.45 (14)
C5—C2—C3115.52 (15)C13—C10—C14109.43 (14)
C5—C2—C6109.66 (15)C11—C10—C14112.69 (15)
C3—C2—C6110.98 (14)C13—C10—C9118.97 (15)
C5—C2—C1117.46 (14)C9—C10—C1185.79 (12)
C1—C2—C386.26 (12)C14—C10—C9114.76 (14)
C6—C2—C1115.24 (14)O2—C11—C12132.43 (16)
O1—C3—C2132.01 (16)O2—C11—C10131.76 (16)
O1—C3—C4132.43 (17)C10—C11—C1295.69 (13)
C2—C3—C495.53 (13)C15—C12—C11115.66 (14)
C7—C4—C3114.26 (15)C15—C12—C16109.92 (14)
C7—C4—C8109.89 (16)C11—C12—C16109.72 (14)
C3—C4—C8111.04 (14)C15—C12—C9118.86 (14)
C7—C4—C1118.92 (15)C9—C12—C1186.33 (12)
C1—C4—C386.12 (12)C16—C12—C9114.39 (14)
C8—C4—C1114.65 (14)C10—C13—H131109.5
C2—C5—H51109.5C10—C13—H132109.5
C2—C5—H52109.5H131—C13—H132109.5
H51—C5—H52109.5C10—C13—H133109.5
C2—C5—H53109.5H131—C13—H133109.5
H51—C5—H53109.5H132—C13—H133109.5
H52—C5—H53109.5C10—C14—H141109.5
C2—C6—H61109.5C10—C14—H142109.5
C2—C6—H62109.5H141—C14—H142109.5
H61—C6—H62109.5C10—C14—H143109.5
C2—C6—H63109.5H141—C14—H143109.5
H61—C6—H63109.5H142—C14—H143109.5
H62—C6—H63109.5C12—C15—H151109.5
C4—C7—H71109.5C12—C15—H152109.5
C4—C7—H72109.5H151—C15—H152109.5
H71—C7—H72109.5C12—C15—H153109.5
C4—C7—H73109.5H151—C15—H153109.5
H71—C7—H73109.5H152—C15—H153109.5
H72—C7—H73109.5C12—C16—H161109.5
C4—C8—H81109.5C12—C16—H162109.5
C4—C8—H82109.5H161—C16—H162109.5
H81—C8—H82109.5C12—C16—H163109.5
C4—C8—H83109.5H161—C16—H163109.5
H81—C8—H83109.5H162—C16—H163109.5
C1—S1—S2—C997.90 (8)S1—S2—C9—C1258.57 (13)
S2—S1—C1—C4105.37 (12)S1—S2—C9—C10162.95 (10)
S2—S1—C1—C2151.91 (9)S1—S2—C9—Cl271.68 (8)
S2—S1—C1—Cl127.65 (10)C12—C9—C10—C13124.07 (16)
C4—C1—C2—C5126.84 (16)Cl2—C9—C10—C139.99 (19)
Cl1—C1—C2—C512.17 (19)S2—C9—C10—C13113.56 (15)
S1—C1—C2—C5110.74 (15)C12—C9—C10—C119.53 (12)
C4—C1—C2—C39.93 (12)Cl2—C9—C10—C11104.55 (12)
Cl1—C1—C2—C3104.74 (12)S2—C9—C10—C11131.90 (12)
S1—C1—C2—C3132.34 (11)C12—C9—C10—C14103.55 (15)
C4—C1—C2—C6101.53 (16)Cl2—C9—C10—C14142.38 (13)
Cl1—C1—C2—C6143.80 (13)S2—C9—C10—C1418.82 (18)
S1—C1—C2—C620.88 (18)C13—C10—C11—O246.6 (3)
C5—C2—C3—O149.2 (3)C14—C10—C11—O278.5 (2)
C6—C2—C3—O176.4 (2)C9—C10—C11—O2166.4 (2)
C1—C2—C3—O1167.9 (2)C13—C10—C11—C12129.82 (15)
C5—C2—C3—C4129.12 (15)C14—C10—C11—C12105.13 (15)
C6—C2—C3—C4105.26 (15)C9—C10—C11—C129.98 (13)
C1—C2—C3—C410.38 (13)O2—C11—C12—C1545.9 (3)
O1—C3—C4—C747.8 (3)C10—C11—C12—C15130.42 (15)
C2—C3—C4—C7130.49 (16)O2—C11—C12—C1679.1 (2)
O1—C3—C4—C877.2 (2)C10—C11—C12—C16104.57 (15)
C2—C3—C4—C8104.53 (15)O2—C11—C12—C9166.3 (2)
O1—C3—C4—C1167.9 (2)C10—C11—C12—C910.04 (13)
C2—C3—C4—C110.41 (13)C10—C9—C12—C15126.95 (16)
C2—C1—C4—C7125.53 (16)Cl2—C9—C12—C1512.62 (19)
Cl1—C1—C4—C711.22 (19)S2—C9—C12—C15116.25 (15)
S1—C1—C4—C7120.66 (15)C10—C9—C12—C119.55 (12)
C2—C1—C4—C39.87 (12)Cl2—C9—C12—C11104.77 (12)
Cl1—C1—C4—C3104.44 (12)S2—C9—C12—C11126.36 (12)
S1—C1—C4—C3123.68 (13)C10—C9—C12—C16100.45 (15)
C2—C1—C4—C8101.52 (15)Cl2—C9—C12—C16145.22 (12)
Cl1—C1—C4—C8144.16 (13)S2—C9—C12—C1616.35 (19)
S1—C1—C4—C812.3 (2)
(V) 1,3-bis(1-chloro-2,2,4,4-tetramethyl-3-oxocyclobutan-1-yl)trisulfane top
Crystal data top
C16H24Cl2O2S3F(000) = 1744
Mr = 415.45Dx = 1.370 Mg m3
Monoclinic, P21/cMelting point = 383–385 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.0673 (1) ÅCell parameters from 77343 reflections
b = 25.7808 (2) Åθ = 2.0–30.0°
c = 13.1619 (1) ŵ = 0.64 mm1
β = 114.6674 (3)°T = 160 K
V = 4029.43 (5) Å3Block, colourless
Z = 80.38 × 0.30 × 0.22 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
11777 independent reflections
Radiation source: Nonius FR591 sealed tube generator9407 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.050
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.9°
ϕ and ω scans with κ offsetsh = 1818
Absorption correction: multi-scan
(Blessing, 1995)
k = 3636
Tmin = 0.826, Tmax = 0.890l = 1818
93177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.039P)2 + 1.605P]
where P = (Fo2 + 2Fc2)/3
11772 reflections(Δ/σ)max = 0.002
431 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H24Cl2O2S3V = 4029.43 (5) Å3
Mr = 415.45Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.0673 (1) ŵ = 0.64 mm1
b = 25.7808 (2) ÅT = 160 K
c = 13.1619 (1) Å0.38 × 0.30 × 0.22 mm
β = 114.6674 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
11777 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
9407 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.890Rint = 0.050
93177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.72 e Å3
11772 reflectionsΔρmin = 0.39 e Å3
431 parameters
Special details top

Experimental. Solvent used: hexane/dichloromethane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.433 (1) Frames collected: 753 Seconds exposure per frame: 18 Degrees rotation per frame: 1.2 Crystal-Detector distance (mm): 40.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02672 (3)0.588653 (15)0.67054 (3)0.03028 (8)
Cl20.03901 (3)0.695356 (14)1.04711 (3)0.02683 (8)
S10.09745 (3)0.574333 (14)0.91119 (3)0.02538 (8)
S20.18540 (3)0.639084 (14)0.90639 (3)0.02589 (8)
S30.07172 (3)0.698115 (14)0.83988 (3)0.02374 (8)
O10.13271 (13)0.43230 (5)0.69596 (16)0.0618 (5)
O20.16487 (11)0.85621 (5)0.95325 (13)0.0457 (3)
C10.06598 (12)0.54538 (5)0.77555 (12)0.0216 (3)
C20.16760 (12)0.52558 (6)0.74884 (13)0.0254 (3)
C30.11131 (14)0.47243 (6)0.72902 (15)0.0329 (3)
C40.01761 (13)0.48791 (6)0.76338 (14)0.0273 (3)
C50.17823 (16)0.54900 (8)0.64729 (15)0.0405 (4)
H510.19960.58560.66180.061*
H520.10590.54620.58190.061*
H530.23610.53020.63290.061*
C60.28335 (13)0.52345 (7)0.84789 (15)0.0334 (4)
H610.33430.50200.82810.050*
H620.27580.50840.91280.050*
H630.31400.55860.86610.050*
C70.03006 (18)0.46208 (7)0.87293 (17)0.0435 (4)
H710.02420.47730.89790.065*
H720.10660.46760.93020.065*
H730.01570.42480.86070.065*
C80.10041 (14)0.47846 (7)0.67278 (16)0.0388 (4)
H810.10670.49390.60230.058*
H820.15600.49440.69500.058*
H830.11440.44110.66270.058*
C90.08331 (11)0.73524 (5)0.96154 (11)0.0201 (3)
C100.01791 (12)0.78874 (6)0.92120 (13)0.0245 (3)
C110.13399 (13)0.81381 (6)0.96543 (14)0.0271 (3)
C120.19846 (12)0.76558 (5)1.02601 (12)0.0238 (3)
C130.05577 (16)0.79669 (7)0.79695 (15)0.0390 (4)
H1310.08060.83290.78360.058*
H1320.12160.77390.77370.058*
H1330.01230.78840.75370.058*
C140.04654 (14)0.80678 (6)0.98898 (15)0.0324 (3)
H1410.00170.80311.06900.049*
H1420.11430.78550.96950.049*
H1430.06820.84320.97190.049*
C150.29928 (13)0.75312 (7)1.00028 (16)0.0355 (4)
H1510.27430.75000.91920.053*
H1520.33320.72031.03630.053*
H1530.35500.78101.02880.053*
C160.23636 (14)0.76976 (7)1.15272 (13)0.0341 (4)
H1610.29410.79681.18270.051*
H1620.26760.73641.18780.051*
H1630.17160.77881.16860.051*
Cl210.55028 (3)0.379865 (15)0.26866 (3)0.02916 (8)
Cl220.43895 (3)0.575603 (15)0.14433 (3)0.03025 (8)
S210.35573 (3)0.444092 (15)0.13824 (3)0.02835 (9)
S220.38074 (3)0.475055 (14)0.28959 (3)0.02596 (8)
S230.53108 (3)0.514232 (14)0.35012 (3)0.02440 (8)
O210.27743 (11)0.26508 (5)0.06956 (12)0.0464 (3)
O220.47234 (11)0.69911 (5)0.37382 (13)0.0443 (3)
C210.40492 (11)0.37764 (5)0.17175 (12)0.0219 (3)
C220.33281 (12)0.33785 (6)0.20746 (13)0.0261 (3)
C230.32033 (13)0.30635 (6)0.10489 (14)0.0287 (3)
C240.38148 (13)0.34469 (6)0.06226 (12)0.0249 (3)
C250.39527 (17)0.30777 (8)0.31592 (16)0.0454 (5)
H2510.34500.28150.32420.068*
H2520.41950.33170.37940.068*
H2530.46130.29070.31370.068*
C260.22068 (14)0.35854 (8)0.20075 (17)0.0410 (4)
H2610.18190.37740.13040.062*
H2620.23450.38200.26370.062*
H2630.17370.32950.20380.062*
C270.29920 (16)0.36946 (7)0.04749 (14)0.0386 (4)
H2710.33630.39840.06680.058*
H2720.23280.38220.03840.058*
H2730.27590.34350.10730.058*
C280.48290 (14)0.32264 (6)0.04852 (14)0.0323 (3)
H2810.53220.30480.11740.048*
H2820.52450.35090.03300.048*
H2830.45740.29800.01380.048*
C290.48614 (12)0.57861 (5)0.29427 (11)0.0216 (3)
C300.57805 (12)0.62283 (6)0.34926 (12)0.0238 (3)
C310.48196 (13)0.65397 (6)0.35750 (12)0.0259 (3)
C320.39927 (12)0.60877 (5)0.32809 (12)0.0220 (3)
C330.67236 (13)0.60886 (7)0.46285 (14)0.0326 (3)
H3310.72580.58540.45180.049*
H3320.64000.59170.50920.049*
H3330.71160.64050.50020.049*
C340.62990 (15)0.64855 (7)0.27779 (15)0.0336 (4)
H3410.57000.65890.20590.050*
H3420.68060.62400.26500.050*
H3430.67240.67930.31650.050*
C350.39210 (13)0.58841 (6)0.43468 (13)0.0267 (3)
H3510.35430.61420.46180.040*
H3520.46820.58210.49220.040*
H3530.34920.55590.41790.040*
C360.28156 (13)0.61938 (6)0.23822 (14)0.0302 (3)
H3610.24020.64120.26930.045*
H3620.24150.58650.21250.045*
H3630.28730.63730.17510.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03177 (19)0.02746 (19)0.02713 (18)0.00730 (15)0.00788 (15)0.00304 (14)
Cl20.02975 (18)0.02521 (18)0.02847 (17)0.00534 (14)0.01506 (14)0.00014 (13)
S10.03294 (19)0.02089 (17)0.02439 (17)0.00021 (14)0.01401 (15)0.00086 (13)
S20.02341 (17)0.02086 (17)0.03225 (19)0.00063 (13)0.01048 (15)0.00417 (14)
S30.02755 (17)0.02053 (17)0.02261 (17)0.00181 (13)0.00995 (14)0.00214 (13)
O10.0532 (9)0.0329 (7)0.1141 (14)0.0060 (6)0.0495 (9)0.0307 (8)
O20.0411 (7)0.0247 (6)0.0757 (10)0.0034 (5)0.0287 (7)0.0107 (6)
C10.0226 (6)0.0193 (7)0.0224 (6)0.0016 (5)0.0089 (5)0.0004 (5)
C20.0255 (7)0.0225 (7)0.0304 (7)0.0005 (6)0.0140 (6)0.0018 (6)
C30.0290 (8)0.0253 (8)0.0454 (9)0.0005 (6)0.0166 (7)0.0068 (7)
C40.0279 (7)0.0201 (7)0.0367 (8)0.0025 (6)0.0161 (6)0.0037 (6)
C50.0384 (9)0.0552 (12)0.0367 (9)0.0036 (8)0.0243 (8)0.0027 (8)
C60.0253 (7)0.0322 (9)0.0410 (9)0.0049 (6)0.0121 (7)0.0004 (7)
C70.0577 (12)0.0269 (9)0.0508 (11)0.0085 (8)0.0273 (10)0.0048 (8)
C80.0310 (8)0.0345 (9)0.0497 (10)0.0085 (7)0.0156 (8)0.0143 (8)
C90.0210 (6)0.0185 (6)0.0218 (6)0.0016 (5)0.0098 (5)0.0017 (5)
C100.0239 (7)0.0192 (7)0.0293 (7)0.0020 (5)0.0101 (6)0.0011 (6)
C110.0291 (7)0.0209 (7)0.0352 (8)0.0016 (6)0.0173 (6)0.0014 (6)
C120.0208 (6)0.0192 (7)0.0305 (7)0.0039 (5)0.0099 (6)0.0035 (6)
C130.0437 (10)0.0295 (9)0.0341 (9)0.0111 (7)0.0067 (8)0.0035 (7)
C140.0287 (8)0.0258 (8)0.0465 (10)0.0011 (6)0.0193 (7)0.0072 (7)
C150.0236 (7)0.0322 (9)0.0531 (10)0.0055 (6)0.0185 (7)0.0067 (8)
C160.0318 (8)0.0319 (9)0.0305 (8)0.0079 (7)0.0048 (7)0.0064 (7)
Cl210.01906 (16)0.02944 (19)0.03357 (19)0.00032 (13)0.00561 (14)0.00332 (15)
Cl220.0412 (2)0.02914 (19)0.01997 (16)0.00117 (15)0.01227 (15)0.00067 (13)
S210.0341 (2)0.01997 (18)0.02572 (18)0.00419 (14)0.00723 (15)0.00070 (14)
S220.02739 (18)0.02142 (17)0.03056 (19)0.00073 (14)0.01358 (15)0.00151 (14)
S230.02440 (17)0.01990 (17)0.02751 (18)0.00385 (13)0.00945 (14)0.00193 (13)
O210.0416 (7)0.0334 (7)0.0640 (9)0.0142 (6)0.0217 (7)0.0131 (6)
O220.0433 (7)0.0240 (6)0.0703 (9)0.0037 (5)0.0284 (7)0.0139 (6)
C210.0192 (6)0.0199 (7)0.0238 (7)0.0013 (5)0.0061 (5)0.0005 (5)
C220.0218 (7)0.0273 (8)0.0287 (7)0.0037 (6)0.0100 (6)0.0012 (6)
C230.0220 (7)0.0241 (7)0.0354 (8)0.0013 (6)0.0075 (6)0.0014 (6)
C240.0281 (7)0.0205 (7)0.0245 (7)0.0010 (6)0.0094 (6)0.0013 (5)
C250.0467 (11)0.0466 (11)0.0375 (10)0.0103 (9)0.0122 (8)0.0139 (8)
C260.0269 (8)0.0462 (11)0.0551 (11)0.0073 (7)0.0222 (8)0.0083 (9)
C270.0472 (10)0.0368 (9)0.0246 (8)0.0087 (8)0.0079 (7)0.0009 (7)
C280.0376 (9)0.0273 (8)0.0357 (8)0.0012 (7)0.0190 (7)0.0031 (7)
C290.0259 (7)0.0193 (7)0.0189 (6)0.0011 (5)0.0088 (5)0.0006 (5)
C300.0252 (7)0.0226 (7)0.0243 (7)0.0020 (5)0.0111 (6)0.0026 (5)
C310.0278 (7)0.0239 (7)0.0266 (7)0.0002 (6)0.0121 (6)0.0025 (6)
C320.0228 (6)0.0193 (7)0.0236 (7)0.0030 (5)0.0095 (5)0.0007 (5)
C330.0257 (7)0.0384 (9)0.0297 (8)0.0028 (7)0.0076 (6)0.0024 (7)
C340.0362 (9)0.0323 (9)0.0375 (9)0.0069 (7)0.0206 (7)0.0003 (7)
C350.0279 (7)0.0283 (8)0.0264 (7)0.0026 (6)0.0139 (6)0.0006 (6)
C360.0247 (7)0.0299 (8)0.0318 (8)0.0049 (6)0.0075 (6)0.0046 (6)
Geometric parameters (Å, º) top
Cl1—C11.7957 (14)Cl21—C211.7934 (14)
Cl2—C91.7903 (14)Cl22—C291.8070 (14)
S1—C11.8168 (14)S21—C211.8181 (14)
S1—S22.0426 (5)S21—S222.0417 (5)
S2—S32.0502 (5)S22—S232.0513 (5)
S3—C91.8167 (14)S23—C291.8110 (14)
O1—C31.200 (2)O21—C231.2021 (19)
O2—C111.1990 (19)O22—C311.1993 (19)
C1—C21.593 (2)C21—C221.591 (2)
C1—C41.592 (2)C21—C241.589 (2)
C2—C51.525 (2)C22—C231.525 (2)
C2—C31.525 (2)C22—C261.527 (2)
C2—C61.531 (2)C22—C251.527 (2)
C3—C41.525 (2)C23—C241.518 (2)
C4—C81.525 (2)C24—C281.521 (2)
C4—C71.534 (2)C24—C271.534 (2)
C5—H510.9800C25—H2510.9800
C5—H520.9800C25—H2520.9800
C5—H530.9800C25—H2530.9800
C6—H610.9800C26—H2610.9800
C6—H620.9800C26—H2620.9800
C6—H630.9800C26—H2630.9800
C7—H710.9800C27—H2710.9800
C7—H720.9800C27—H2720.9800
C7—H730.9800C27—H2730.9800
C8—H810.9800C28—H2810.9800
C8—H820.9800C28—H2820.9800
C8—H830.9800C28—H2830.9800
C9—C101.593 (2)C29—C301.594 (2)
C9—C121.5905 (19)C29—C321.585 (2)
C10—C111.523 (2)C30—C341.522 (2)
C10—C131.526 (2)C30—C331.532 (2)
C10—C141.532 (2)C30—C311.532 (2)
C11—C121.527 (2)C31—C321.525 (2)
C12—C151.525 (2)C32—C361.524 (2)
C12—C161.533 (2)C32—C351.537 (2)
C13—H1310.9800C33—H3310.9800
C13—H1320.9800C33—H3320.9800
C13—H1330.9800C33—H3330.9800
C14—H1410.9800C34—H3410.9800
C14—H1420.9800C34—H3420.9800
C14—H1430.9800C34—H3430.9800
C15—H1510.9800C35—H3510.9800
C15—H1520.9800C35—H3520.9800
C15—H1530.9800C35—H3530.9800
C16—H1610.9800C36—H3610.9800
C16—H1620.9800C36—H3620.9800
C16—H1630.9800C36—H3630.9800
C1—S1—S2101.82 (5)C21—S21—S22103.61 (5)
S1—S2—S3107.65 (2)S21—S22—S23107.99 (2)
C9—S3—S2103.63 (5)C29—S23—S22101.41 (5)
C2—C1—C490.69 (10)C22—C21—C2490.54 (11)
C4—C1—Cl1112.87 (10)C24—C21—Cl21114.09 (10)
C2—C1—Cl1112.71 (10)C22—C21—Cl21113.12 (10)
C4—C1—S1113.49 (10)C24—C21—S21111.66 (10)
C2—C1—S1118.74 (10)C22—C21—S21119.09 (10)
Cl1—C1—S1107.72 (7)Cl21—C21—S21107.74 (7)
C5—C2—C3114.81 (14)C23—C22—C26112.92 (13)
C5—C2—C6109.97 (13)C23—C22—C25112.03 (14)
C3—C2—C6110.37 (13)C26—C22—C25110.92 (15)
C5—C2—C1117.11 (13)C21—C22—C2386.53 (11)
C1—C2—C386.49 (11)C26—C22—C21115.47 (13)
C6—C2—C1116.23 (12)C25—C22—C21116.88 (13)
O1—C3—C4132.13 (16)O21—C23—C24131.74 (16)
O1—C3—C2131.91 (16)O21—C23—C22132.40 (16)
C2—C3—C495.95 (12)C22—C23—C2495.86 (12)
C8—C4—C3113.67 (14)C23—C24—C28114.83 (13)
C8—C4—C7109.98 (14)C23—C24—C27110.41 (13)
C3—C4—C7112.45 (14)C28—C24—C27110.28 (13)
C8—C4—C1117.18 (13)C21—C24—C2386.84 (11)
C1—C4—C386.51 (11)C28—C24—C21117.40 (12)
C7—C4—C1115.31 (13)C27—C24—C21115.18 (12)
C2—C5—H51109.5C22—C25—H251109.5
C2—C5—H52109.5C22—C25—H252109.5
H51—C5—H52109.5H251—C25—H252109.5
C2—C5—H53109.5C22—C25—H253109.5
H51—C5—H53109.5H251—C25—H253109.5
H52—C5—H53109.5H252—C25—H253109.5
C2—C6—H61109.5C22—C26—H261109.5
C2—C6—H62109.5C22—C26—H262109.5
H61—C6—H62109.5H261—C26—H262109.5
C2—C6—H63109.5C22—C26—H263109.5
H61—C6—H63109.5H261—C26—H263109.5
H62—C6—H63109.5H262—C26—H263109.5
C4—C7—H71109.5C24—C27—H271109.5
C4—C7—H72109.5C24—C27—H272109.5
H71—C7—H72109.5H271—C27—H272109.5
C4—C7—H73109.5C24—C27—H273109.5
H71—C7—H73109.5H271—C27—H273109.5
H72—C7—H73109.5H272—C27—H273109.5
C4—C8—H81109.5C24—C28—H281109.5
C4—C8—H82109.5C24—C28—H282109.5
H81—C8—H82109.5H281—C28—H282109.5
C4—C8—H83109.5C24—C28—H283109.5
H81—C8—H83109.5H281—C28—H283109.5
H82—C8—H83109.5H282—C28—H283109.5
C10—C9—C1290.49 (10)C30—C29—C3290.79 (10)
C12—C9—Cl2115.40 (10)C32—C29—Cl22111.70 (9)
C10—C9—Cl2115.96 (10)C30—C29—Cl22112.07 (10)
C12—C9—S3116.21 (9)C32—C29—S23118.97 (10)
C10—C9—S3109.07 (9)C30—C29—S23114.58 (10)
Cl2—C9—S3108.78 (7)Cl22—C29—S23108.00 (7)
C11—C10—C13115.78 (14)C34—C30—C33108.75 (13)
C11—C10—C14110.51 (13)C34—C30—C31113.89 (13)
C13—C10—C14109.20 (13)C33—C30—C31113.80 (13)
C9—C10—C1185.97 (10)C34—C30—C29118.45 (12)
C13—C10—C9118.96 (12)C33—C30—C29114.96 (12)
C14—C10—C9114.68 (13)C29—C30—C3185.55 (10)
O2—C11—C10132.28 (15)O22—C31—C32132.11 (14)
O2—C11—C12132.01 (15)O22—C31—C30132.18 (15)
C10—C11—C1295.65 (11)C30—C31—C3295.53 (11)
C15—C12—C11113.27 (13)C36—C32—C31116.02 (12)
C15—C12—C16109.86 (13)C36—C32—C35110.09 (12)
C11—C12—C16111.61 (13)C31—C32—C35109.63 (12)
C15—C12—C9119.37 (12)C36—C32—C29118.64 (12)
C9—C12—C1185.92 (10)C29—C32—C3186.07 (10)
C16—C12—C9114.80 (12)C35—C32—C29114.36 (11)
C10—C13—H131109.5C30—C33—H331109.5
C10—C13—H132109.5C30—C33—H332109.5
H131—C13—H132109.5H331—C33—H332109.5
C10—C13—H133109.5C30—C33—H333109.5
H131—C13—H133109.5H331—C33—H333109.5
H132—C13—H133109.5H332—C33—H333109.5
C10—C14—H141109.5C30—C34—H341109.5
C10—C14—H142109.5C30—C34—H342109.5
H141—C14—H142109.5H341—C34—H342109.5
C10—C14—H143109.5C30—C34—H343109.5
H141—C14—H143109.5H341—C34—H343109.5
H142—C14—H143109.5H342—C34—H343109.5
C12—C15—H151109.5C32—C35—H351109.5
C12—C15—H152109.5C32—C35—H352109.5
H151—C15—H152109.5H351—C35—H352109.5
C12—C15—H153109.5C32—C35—H353109.5
H151—C15—H153109.5H351—C35—H353109.5
H152—C15—H153109.5H352—C35—H353109.5
C12—C16—H161109.5C32—C36—H361109.5
C12—C16—H162109.5C32—C36—H362109.5
H161—C16—H162109.5H361—C36—H362109.5
C12—C16—H163109.5C32—C36—H363109.5
H161—C16—H163109.5H361—C36—H363109.5
H162—C16—H163109.5H362—C36—H363109.5
C1—S1—S2—S389.80 (5)C21—S21—S22—S2397.00 (5)
S1—S2—S3—C9100.76 (5)S21—S22—S23—C2990.52 (5)
S2—S1—C1—C4168.77 (9)S22—S21—C21—C24174.40 (9)
S2—S1—C1—C264.09 (11)S22—S21—C21—C2270.95 (11)
S2—S1—C1—Cl165.51 (7)S22—S21—C21—Cl2159.57 (7)
C4—C1—C2—C5120.55 (15)C24—C21—C22—C233.48 (11)
Cl1—C1—C2—C55.31 (17)Cl21—C21—C22—C23113.13 (11)
S1—C1—C2—C5121.98 (14)S21—C21—C22—C23118.79 (11)
C4—C1—C2—C34.38 (12)C24—C21—C22—C26110.30 (14)
Cl1—C1—C2—C3110.86 (11)Cl21—C21—C22—C26133.09 (13)
S1—C1—C2—C3121.85 (12)S21—C21—C22—C265.01 (18)
C4—C1—C2—C6106.62 (14)C24—C21—C22—C25116.47 (15)
Cl1—C1—C2—C6138.14 (12)Cl21—C21—C22—C250.14 (18)
S1—C1—C2—C610.85 (17)S21—C21—C22—C25128.22 (14)
C5—C2—C3—O156.1 (3)C26—C22—C23—O2167.8 (2)
C6—C2—C3—O168.9 (3)C25—C22—C23—O2158.3 (2)
C1—C2—C3—O1174.4 (2)C21—C22—C23—O21175.96 (19)
C5—C2—C3—C4122.94 (14)C26—C22—C23—C24112.59 (14)
C6—C2—C3—C4112.11 (14)C25—C22—C23—C24121.32 (14)
C1—C2—C3—C44.60 (12)C21—C22—C23—C243.66 (11)
O1—C3—C4—C856.2 (3)O21—C23—C24—C2857.1 (2)
C2—C3—C4—C8122.83 (14)C22—C23—C24—C28122.50 (14)
O1—C3—C4—C769.6 (3)O21—C23—C24—C2768.3 (2)
C2—C3—C4—C7111.39 (15)C22—C23—C24—C27112.07 (13)
O1—C3—C4—C1174.4 (2)O21—C23—C24—C21175.96 (18)
C2—C3—C4—C14.60 (12)C22—C23—C24—C213.66 (11)
C2—C1—C4—C8119.27 (14)C22—C21—C24—C233.49 (11)
Cl1—C1—C4—C84.18 (17)Cl21—C21—C24—C23112.25 (11)
S1—C1—C4—C8118.75 (13)S21—C21—C24—C23125.29 (10)
C2—C1—C4—C34.38 (11)C22—C21—C24—C28119.92 (14)
Cl1—C1—C4—C3110.71 (11)Cl21—C21—C24—C284.18 (17)
S1—C1—C4—C3126.36 (11)S21—C21—C24—C28118.28 (13)
C2—C1—C4—C7108.84 (15)C22—C21—C24—C27107.61 (14)
Cl1—C1—C4—C7136.07 (13)Cl21—C21—C24—C27136.65 (13)
S1—C1—C4—C713.14 (17)S21—C21—C24—C2714.19 (17)
S2—S3—C9—C1268.30 (10)S22—S23—C29—C3260.12 (11)
S2—S3—C9—C10168.68 (8)S22—S23—C29—C30165.82 (9)
S2—S3—C9—Cl263.96 (7)S22—S23—C29—Cl2268.51 (7)
C12—C9—C10—C1110.35 (11)C32—C29—C30—C34125.38 (14)
Cl2—C9—C10—C11129.12 (11)Cl22—C29—C30—C3411.52 (17)
S3—C9—C10—C11107.71 (10)S23—C29—C30—C34112.00 (13)
C12—C9—C10—C13127.69 (15)C32—C29—C30—C33103.66 (13)
Cl2—C9—C10—C13113.54 (14)Cl22—C29—C30—C33142.47 (11)
S3—C9—C10—C139.63 (17)S23—C29—C30—C3318.96 (16)
C12—C9—C10—C14100.40 (13)C32—C29—C30—C3110.56 (10)
Cl2—C9—C10—C1418.38 (16)Cl22—C29—C30—C31103.31 (10)
S3—C9—C10—C14141.55 (11)S23—C29—C30—C31133.18 (10)
C13—C10—C11—O246.2 (2)C34—C30—C31—O2245.3 (2)
C14—C10—C11—O278.6 (2)C33—C30—C31—O2280.2 (2)
C9—C10—C11—O2166.54 (19)C29—C30—C31—O22164.49 (19)
C13—C10—C11—C12131.17 (13)C34—C30—C31—C32130.25 (13)
C14—C10—C11—C12104.04 (14)C33—C30—C31—C32104.33 (14)
C9—C10—C11—C1210.84 (11)C29—C30—C31—C3211.03 (11)
O2—C11—C12—C1546.2 (2)O22—C31—C32—C3644.4 (2)
C10—C11—C12—C15131.15 (13)C30—C31—C32—C36131.16 (13)
O2—C11—C12—C1678.4 (2)O22—C31—C32—C3581.1 (2)
C10—C11—C12—C16104.24 (13)C30—C31—C32—C35103.40 (12)
O2—C11—C12—C9166.54 (19)O22—C31—C32—C29164.44 (19)
C10—C11—C12—C910.85 (11)C30—C31—C32—C2911.08 (11)
C10—C9—C12—C15124.80 (14)C30—C29—C32—C36128.21 (13)
Cl2—C9—C12—C15115.95 (14)Cl22—C29—C32—C3614.01 (16)
S3—C9—C12—C1513.18 (18)S23—C29—C32—C36112.90 (13)
C10—C9—C12—C1110.32 (11)C30—C29—C32—C3110.60 (10)
Cl2—C9—C12—C11129.58 (10)Cl22—C29—C32—C31103.60 (10)
S3—C9—C12—C11101.30 (11)S23—C29—C32—C31129.49 (11)
C10—C9—C12—C16101.63 (14)C30—C29—C32—C3599.19 (13)
Cl2—C9—C12—C1617.63 (16)Cl22—C29—C32—C35146.61 (11)
S3—C9—C12—C16146.75 (11)S23—C29—C32—C3519.71 (16)
(VII) 1,4-bis(1-chloro-2,2,4,4-tetramethyl-3-oxocyclobutan-1-yl)tetrasulfane top
Crystal data top
C16H24Cl2O2S4Z = 4
Mr = 447.51F(000) = 936
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Melting point = 405–407 K
a = 11.1372 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0843 (1) ÅCell parameters from 39875 reflections
c = 16.3379 (2) Åθ = 2.0–30.0°
α = 71.8478 (5)°µ = 0.69 mm1
β = 89.8055 (5)°T = 253 K
γ = 73.5431 (5)°Tablet, colourless
V = 2160.20 (4) Å30.25 × 0.25 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
12599 independent reflections
Radiation source: Nonius FR591 sealed tube generator9118 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.2°
ϕ and ω scans with κ offsetsh = 1515
Absorption correction: multi-scan
(Blessing, 1995)
k = 1818
Tmin = 0.884, Tmax = 0.936l = 2222
61153 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.5211P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
12596 reflectionsΔρmax = 0.45 e Å3
450 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (10)
Crystal data top
C16H24Cl2O2S4γ = 73.5431 (5)°
Mr = 447.51V = 2160.20 (4) Å3
Triclinic, P1Z = 4
a = 11.1372 (1) ÅMo Kα radiation
b = 13.0843 (1) ŵ = 0.69 mm1
c = 16.3379 (2) ÅT = 253 K
α = 71.8478 (5)°0.25 × 0.25 × 0.10 mm
β = 89.8055 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
12599 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
9118 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.936Rint = 0.042
61153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
12596 reflectionsΔρmin = 0.56 e Å3
450 parameters
Special details top

Experimental. Solvent used: hexane/dichloromethane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.534 (1) Frames collected: 381 Seconds exposure per frame: 80 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60123 (4)0.27674 (4)0.08168 (4)0.05255 (13)
Cl20.89837 (4)0.26835 (4)0.22743 (3)0.05085 (12)
S10.56483 (4)0.10689 (4)0.01143 (3)0.04517 (12)
S20.66408 (5)0.00384 (4)0.12373 (4)0.05424 (14)
S30.84544 (5)0.00729 (4)0.11382 (4)0.05064 (13)
S40.93563 (4)0.11413 (4)0.06302 (3)0.04337 (12)
O10.17854 (16)0.3565 (2)0.01191 (17)0.1224 (9)
O21.31772 (15)0.37814 (19)0.19871 (14)0.0945 (7)
C10.48584 (15)0.23044 (13)0.04065 (11)0.0343 (3)
C20.39258 (17)0.32410 (15)0.03731 (12)0.0418 (4)
C30.28888 (18)0.31110 (19)0.02201 (15)0.0580 (5)
C40.37223 (18)0.22151 (17)0.09875 (13)0.0474 (4)
C50.4078 (2)0.44162 (17)0.06262 (18)0.0703 (7)
H510.33730.49420.10170.105*
H520.48390.44190.09040.105*
H530.41180.46290.01170.105*
C60.3788 (3)0.2939 (2)0.11876 (15)0.0726 (7)
H610.36960.21960.10320.109*
H620.45210.29590.14950.109*
H630.30580.34710.15500.109*
C70.3726 (3)0.2580 (3)0.17796 (18)0.0877 (9)
H710.39330.32760.16300.132*
H720.43400.20120.22210.132*
H730.29090.26840.19900.132*
C80.3372 (3)0.1111 (2)0.1199 (2)0.0826 (8)
H810.25370.12260.13800.124*
H820.39560.05360.16560.124*
H830.34060.08820.06930.124*
C91.01452 (15)0.23266 (13)0.15743 (10)0.0348 (3)
C101.13192 (17)0.22354 (16)0.20647 (11)0.0425 (4)
C111.20871 (18)0.32457 (18)0.18258 (13)0.0520 (5)
C121.10139 (17)0.33522 (15)0.13192 (12)0.0424 (4)
C131.1754 (2)0.1200 (2)0.16386 (17)0.0670 (6)
H1311.25860.13230.18830.101*
H1321.11880.05540.17380.101*
H1331.17620.10740.10280.101*
C141.1296 (2)0.2448 (2)0.30343 (13)0.0623 (6)
H1411.10350.31060.32950.094*
H1421.07170.18100.31360.094*
H1431.21220.25600.32830.094*
C151.1186 (2)0.3129 (2)0.03568 (14)0.0623 (6)
H1511.13990.24380.01270.093*
H1521.04190.30680.00550.093*
H1531.18500.37390.02840.093*
C161.0748 (3)0.44772 (17)0.16906 (19)0.0729 (7)
H1611.14060.50560.15740.109*
H1620.99580.44350.14280.109*
H1631.07140.46510.23040.109*
Cl210.71636 (4)0.26896 (4)0.27609 (3)0.05166 (13)
Cl220.78294 (4)0.27841 (4)0.41765 (3)0.05102 (12)
S210.86092 (4)0.10730 (4)0.43601 (3)0.04429 (12)
S220.84084 (5)0.01087 (4)0.38475 (4)0.05559 (14)
S230.65176 (5)0.00070 (4)0.38499 (4)0.05233 (13)
S240.63673 (4)0.11695 (4)0.49701 (3)0.04265 (11)
O211.10527 (14)0.32566 (15)0.33197 (12)0.0692 (4)
O220.41045 (16)0.35990 (16)0.50155 (14)0.0829 (6)
C210.86012 (15)0.22684 (13)0.34193 (10)0.0335 (3)
C220.88989 (16)0.32241 (14)0.37163 (11)0.0388 (4)
C231.01325 (17)0.29567 (15)0.33082 (12)0.0431 (4)
C240.98270 (17)0.21408 (16)0.29156 (12)0.0426 (4)
C250.8050 (2)0.44140 (16)0.32573 (17)0.0616 (6)
H2510.83980.49480.33810.092*
H2520.72280.44950.34570.092*
H2530.79910.45480.26450.092*
C260.9064 (2)0.30321 (19)0.46888 (13)0.0551 (5)
H2610.96510.23040.49700.083*
H2620.82680.30680.49240.083*
H2630.93770.36040.47810.083*
C270.9598 (3)0.2629 (3)0.19300 (14)0.0734 (7)
H2710.89850.33590.17690.110*
H2720.92930.21390.17120.110*
H2731.03710.26980.16910.110*
C281.0834 (2)0.09960 (19)0.31916 (19)0.0715 (7)
H2811.16110.10840.29690.107*
H2821.05710.04890.29680.107*
H2831.09540.06960.38120.107*
C290.63905 (15)0.23808 (13)0.46431 (11)0.0340 (3)
C300.51717 (17)0.22879 (16)0.40883 (12)0.0439 (4)
C310.49517 (17)0.31893 (16)0.48724 (14)0.0470 (4)
C320.61360 (16)0.33608 (14)0.54180 (11)0.0377 (4)
C330.4107 (2)0.11863 (19)0.38679 (18)0.0671 (6)
H3310.33490.12970.36830.101*
H3320.43230.06180.34120.101*
H3330.39780.09510.43710.101*
C340.5400 (3)0.2676 (3)0.32983 (17)0.0788 (8)
H3410.60420.33890.34550.118*
H3420.56650.21300.28530.118*
H3430.46360.27530.30900.118*
C350.5875 (2)0.31263 (19)0.62719 (13)0.0536 (5)
H3510.52140.24320.61670.080*
H3520.66230.30690.65210.080*
H3530.56250.37310.66640.080*
C360.7068 (2)0.45262 (16)0.55966 (16)0.0575 (5)
H3610.67480.50760.59960.086*
H3620.78580.45430.58410.086*
H3630.71850.46950.50650.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0469 (3)0.0473 (2)0.0673 (3)0.0135 (2)0.0153 (2)0.0240 (2)
Cl20.0437 (2)0.0562 (3)0.0471 (2)0.0174 (2)0.0174 (2)0.0069 (2)
S10.0414 (2)0.0395 (2)0.0580 (3)0.00590 (18)0.0044 (2)0.0260 (2)
S20.0424 (3)0.0353 (2)0.0712 (3)0.00456 (19)0.0114 (2)0.0045 (2)
S30.0418 (2)0.0357 (2)0.0686 (3)0.00658 (19)0.0008 (2)0.0133 (2)
S40.0400 (2)0.0396 (2)0.0368 (2)0.00300 (18)0.00100 (18)0.00131 (17)
O10.0365 (9)0.157 (2)0.1247 (19)0.0091 (11)0.0002 (10)0.0116 (17)
O20.0406 (8)0.1137 (16)0.1145 (16)0.0145 (9)0.0085 (9)0.0503 (13)
C10.0340 (8)0.0317 (8)0.0396 (8)0.0075 (6)0.0006 (7)0.0169 (7)
C20.0409 (9)0.0379 (9)0.0442 (9)0.0079 (7)0.0094 (7)0.0131 (7)
C30.0347 (10)0.0636 (13)0.0720 (14)0.0055 (9)0.0024 (9)0.0248 (11)
C40.0413 (9)0.0500 (10)0.0512 (11)0.0082 (8)0.0108 (8)0.0220 (9)
C50.0737 (15)0.0382 (11)0.0850 (17)0.0130 (10)0.0269 (13)0.0036 (11)
C60.0919 (18)0.0664 (14)0.0528 (13)0.0107 (13)0.0253 (12)0.0212 (11)
C70.0714 (16)0.135 (3)0.0709 (16)0.0168 (17)0.0218 (13)0.0654 (18)
C80.0723 (16)0.0681 (16)0.114 (2)0.0333 (13)0.0504 (16)0.0277 (15)
C90.0327 (8)0.0341 (8)0.0308 (7)0.0082 (6)0.0062 (6)0.0028 (6)
C100.0376 (9)0.0464 (10)0.0387 (9)0.0125 (7)0.0004 (7)0.0069 (7)
C110.0375 (9)0.0558 (11)0.0490 (11)0.0018 (8)0.0033 (8)0.0090 (9)
C120.0417 (9)0.0359 (9)0.0420 (9)0.0055 (7)0.0079 (7)0.0077 (7)
C130.0575 (13)0.0668 (14)0.0740 (15)0.0328 (11)0.0081 (11)0.0057 (12)
C140.0646 (14)0.0743 (15)0.0437 (11)0.0168 (11)0.0045 (10)0.0165 (10)
C150.0666 (14)0.0651 (13)0.0503 (11)0.0059 (11)0.0164 (10)0.0242 (10)
C160.0795 (16)0.0354 (10)0.0953 (19)0.0125 (10)0.0229 (14)0.0137 (11)
Cl210.0417 (2)0.0611 (3)0.0467 (2)0.0195 (2)0.01057 (19)0.0061 (2)
Cl220.0413 (2)0.0602 (3)0.0593 (3)0.0160 (2)0.0225 (2)0.0293 (2)
S210.0460 (2)0.0407 (2)0.0400 (2)0.01731 (19)0.00370 (19)0.00060 (18)
S220.0479 (3)0.0388 (2)0.0826 (4)0.0179 (2)0.0207 (3)0.0189 (2)
S230.0466 (3)0.0393 (2)0.0653 (3)0.0165 (2)0.0033 (2)0.0055 (2)
S240.0485 (3)0.0383 (2)0.0513 (3)0.02035 (19)0.0137 (2)0.02189 (19)
O210.0495 (8)0.0782 (11)0.0864 (11)0.0385 (8)0.0095 (8)0.0178 (9)
O220.0601 (10)0.0906 (13)0.1084 (14)0.0508 (10)0.0003 (10)0.0210 (11)
C210.0308 (7)0.0354 (8)0.0312 (7)0.0110 (6)0.0009 (6)0.0054 (6)
C220.0366 (8)0.0362 (8)0.0429 (9)0.0128 (7)0.0006 (7)0.0101 (7)
C230.0371 (9)0.0423 (9)0.0436 (9)0.0160 (7)0.0002 (7)0.0013 (7)
C240.0381 (9)0.0477 (10)0.0413 (9)0.0154 (8)0.0110 (7)0.0113 (8)
C250.0617 (13)0.0354 (10)0.0799 (15)0.0083 (9)0.0055 (11)0.0133 (10)
C260.0573 (12)0.0679 (13)0.0503 (11)0.0235 (10)0.0036 (9)0.0290 (10)
C270.0782 (16)0.109 (2)0.0406 (11)0.0441 (15)0.0206 (11)0.0205 (12)
C280.0534 (13)0.0551 (13)0.1012 (19)0.0112 (10)0.0349 (13)0.0233 (13)
C290.0322 (8)0.0356 (8)0.0393 (8)0.0114 (6)0.0100 (6)0.0183 (7)
C300.0386 (9)0.0501 (10)0.0470 (10)0.0117 (8)0.0001 (8)0.0228 (8)
C310.0389 (9)0.0474 (10)0.0641 (12)0.0190 (8)0.0055 (9)0.0255 (9)
C320.0368 (8)0.0367 (8)0.0444 (9)0.0162 (7)0.0087 (7)0.0150 (7)
C330.0448 (11)0.0580 (13)0.0910 (17)0.0071 (10)0.0153 (11)0.0211 (12)
C340.0703 (16)0.121 (2)0.0684 (15)0.0312 (15)0.0041 (12)0.0609 (16)
C350.0619 (12)0.0618 (12)0.0455 (10)0.0295 (10)0.0202 (9)0.0193 (9)
C360.0548 (12)0.0375 (10)0.0741 (14)0.0110 (9)0.0052 (11)0.0122 (9)
Geometric parameters (Å, º) top
Cl1—C11.7799 (16)Cl21—C211.7796 (16)
Cl2—C91.7885 (16)Cl22—C291.7863 (16)
S1—C11.8131 (16)S21—C211.8176 (16)
S1—S22.0341 (7)S21—S222.0361 (7)
S2—S32.0680 (7)S22—S232.0681 (7)
S3—S42.0332 (7)S23—S242.0336 (7)
S4—C91.8174 (16)S24—C291.8172 (16)
O1—C31.190 (3)O21—C231.199 (2)
O2—C111.200 (2)O22—C311.200 (2)
C1—C21.587 (2)C21—C221.588 (2)
C1—C41.588 (3)C21—C241.587 (2)
C2—C31.518 (3)C22—C231.524 (3)
C2—C61.521 (3)C22—C251.524 (3)
C2—C51.522 (3)C22—C261.532 (3)
C3—C41.511 (3)C23—C241.517 (3)
C4—C71.513 (3)C24—C271.528 (3)
C4—C81.538 (3)C24—C281.528 (3)
C5—H510.9600C25—H2510.9600
C5—H520.9600C25—H2520.9600
C5—H530.9600C25—H2530.9600
C6—H610.9600C26—H2610.9600
C6—H620.9600C26—H2620.9600
C6—H630.9600C26—H2630.9600
C7—H710.9600C27—H2710.9600
C7—H720.9600C27—H2720.9600
C7—H730.9600C27—H2730.9600
C8—H810.9600C28—H2810.9600
C8—H820.9600C28—H2820.9600
C8—H830.9600C28—H2830.9600
C9—C101.588 (2)C29—C301.589 (2)
C9—C121.588 (2)C29—C321.587 (2)
C10—C111.520 (3)C30—C311.521 (3)
C10—C141.522 (3)C30—C341.523 (3)
C10—C131.528 (3)C30—C331.525 (3)
C11—C121.518 (3)C31—C321.517 (2)
C12—C161.520 (3)C32—C361.522 (3)
C12—C151.529 (3)C32—C351.529 (3)
C13—H1310.9600C33—H3310.9600
C13—H1320.9600C33—H3320.9600
C13—H1330.9600C33—H3330.9600
C14—H1410.9600C34—H3410.9600
C14—H1420.9600C34—H3420.9600
C14—H1430.9600C34—H3430.9600
C15—H1510.9600C35—H3510.9600
C15—H1520.9600C35—H3520.9600
C15—H1530.9600C35—H3530.9600
C16—H1610.9600C36—H3610.9600
C16—H1620.9600C36—H3620.9600
C16—H1630.9600C36—H3630.9600
C1—S1—S2103.59 (6)C21—S21—S22103.93 (6)
S1—S2—S3105.29 (3)S21—S22—S23105.30 (3)
S4—S3—S2105.17 (3)S24—S23—S22105.29 (3)
C9—S4—S3103.61 (6)C29—S24—S23103.69 (6)
C2—C1—C490.73 (13)C22—C21—C2490.73 (13)
C2—C1—Cl1114.49 (11)C24—C21—Cl21114.91 (11)
C4—C1—Cl1114.32 (12)C22—C21—Cl21115.54 (11)
C2—C1—S1111.37 (11)C24—C21—S21116.10 (11)
C4—C1—S1116.46 (12)C22—C21—S21109.99 (11)
Cl1—C1—S1108.69 (9)Cl21—C21—S21108.74 (9)
C3—C2—C6114.36 (18)C23—C22—C25112.44 (16)
C3—C2—C5112.44 (18)C23—C22—C26113.98 (15)
C6—C2—C5109.08 (19)C25—C22—C26109.62 (17)
C1—C2—C386.31 (14)C21—C22—C2386.14 (13)
C6—C2—C1116.78 (15)C25—C22—C21114.97 (15)
C5—C2—C1116.41 (14)C26—C22—C21117.99 (15)
O1—C3—C4131.5 (2)O21—C23—C24131.90 (19)
O1—C3—C2132.0 (2)O21—C23—C22132.05 (19)
C2—C3—C496.49 (14)C22—C23—C2496.00 (13)
C3—C4—C7113.43 (19)C23—C24—C27111.86 (17)
C3—C4—C8110.7 (2)C23—C24—C28112.30 (17)
C7—C4—C8111.0 (2)C27—C24—C28110.66 (19)
C1—C4—C386.48 (14)C21—C24—C2386.43 (13)
C7—C4—C1116.82 (18)C27—C24—C21115.46 (16)
C8—C4—C1116.18 (16)C28—C24—C21117.98 (16)
C2—C5—H51109.5C22—C25—H251109.5
C2—C5—H52109.5C22—C25—H252109.5
H51—C5—H52109.5H251—C25—H252109.5
C2—C5—H53109.5C22—C25—H253109.5
H51—C5—H53109.5H251—C25—H253109.5
H52—C5—H53109.5H252—C25—H253109.5
C2—C6—H61109.5C22—C26—H261109.5
C2—C6—H62109.5C22—C26—H262109.5
H61—C6—H62109.5H261—C26—H262109.5
C2—C6—H63109.5C22—C26—H263109.5
H61—C6—H63109.5H261—C26—H263109.5
H62—C6—H63109.5H262—C26—H263109.5
C4—C7—H71109.5C24—C27—H271109.5
C4—C7—H72109.5C24—C27—H272109.5
H71—C7—H72109.5H271—C27—H272109.5
C4—C7—H73109.5C24—C27—H273109.5
H71—C7—H73109.5H271—C27—H273109.5
H72—C7—H73109.5H272—C27—H273109.5
C4—C8—H81109.5C24—C28—H281109.5
C4—C8—H82109.5C24—C28—H282109.5
H81—C8—H82109.5H281—C28—H282109.5
C4—C8—H83109.5C24—C28—H283109.5
H81—C8—H83109.5H281—C28—H283109.5
H82—C8—H83109.5H282—C28—H283109.5
C10—C9—C1290.97 (13)C30—C29—C3290.69 (13)
C12—C9—Cl2113.88 (12)C32—C29—Cl22114.56 (11)
C10—C9—Cl2113.23 (11)C30—C29—Cl22114.38 (11)
C12—C9—S4112.18 (11)C32—C29—S24111.46 (11)
C10—C9—S4117.55 (12)C30—C29—S24116.68 (11)
Cl2—C9—S4108.35 (8)Cl22—C29—S24108.37 (9)
C11—C10—C14114.11 (16)C31—C30—C34112.67 (19)
C11—C10—C13111.16 (18)C31—C30—C33112.08 (18)
C14—C10—C13110.31 (18)C34—C30—C33110.45 (19)
C9—C10—C1186.27 (14)C29—C30—C3186.44 (13)
C14—C10—C9116.96 (16)C34—C30—C29116.14 (16)
C13—C10—C9116.06 (15)C33—C30—C29117.03 (15)
O2—C11—C12131.9 (2)O22—C31—C32132.2 (2)
O2—C11—C10131.7 (2)O22—C31—C30131.61 (19)
C10—C11—C1296.36 (14)C30—C31—C3296.12 (14)
C11—C12—C16113.43 (18)C31—C32—C36112.84 (15)
C11—C12—C15113.42 (17)C31—C32—C35113.31 (16)
C16—C12—C15109.28 (19)C36—C32—C35109.50 (17)
C9—C12—C1186.32 (14)C29—C32—C3186.63 (13)
C16—C12—C9116.72 (16)C36—C32—C29116.09 (15)
C15—C12—C9116.15 (15)C35—C32—C29116.88 (14)
C10—C13—H131109.5C30—C33—H331109.5
C10—C13—H132109.5C30—C33—H332109.5
H131—C13—H132109.5H331—C33—H332109.5
C10—C13—H133109.5C30—C33—H333109.5
H131—C13—H133109.5H331—C33—H333109.5
H132—C13—H133109.5H332—C33—H333109.5
C10—C14—H141109.5C30—C34—H341109.5
C10—C14—H142109.5C30—C34—H342109.5
H141—C14—H142109.5H341—C34—H342109.5
C10—C14—H143109.5C30—C34—H343109.5
H141—C14—H143109.5H341—C34—H343109.5
H142—C14—H143109.5H342—C34—H343109.5
C12—C15—H151109.5C32—C35—H351109.5
C12—C15—H152109.5C32—C35—H352109.5
H151—C15—H152109.5H351—C35—H352109.5
C12—C15—H153109.5C32—C35—H353109.5
H151—C15—H153109.5H351—C35—H353109.5
H152—C15—H153109.5H352—C35—H353109.5
C12—C16—H161109.5C32—C36—H361109.5
C12—C16—H162109.5C32—C36—H362109.5
H161—C16—H162109.5H361—C36—H362109.5
C12—C16—H163109.5C32—C36—H363109.5
H161—C16—H163109.5H361—C36—H363109.5
H162—C16—H163109.5H362—C36—H363109.5
C1—S1—S2—S399.07 (6)C21—S21—S22—S2398.25 (6)
S1—S2—S3—S492.44 (3)S21—S22—S23—S2494.27 (3)
S2—S3—S4—C996.10 (6)S22—S23—S24—C2996.40 (6)
S2—S1—C1—C2174.87 (10)S22—S21—C21—C2472.78 (12)
S2—S1—C1—C472.75 (12)S22—S21—C21—C22173.93 (10)
S2—S1—C1—Cl158.09 (9)S22—S21—C21—Cl2158.64 (9)
C4—C1—C2—C30.09 (14)C24—C21—C22—C236.18 (12)
Cl1—C1—C2—C3117.19 (13)Cl21—C21—C22—C23124.41 (12)
S1—C1—C2—C3119.00 (13)S21—C21—C22—C23112.04 (12)
C4—C1—C2—C6115.4 (2)C24—C21—C22—C25106.81 (18)
Cl1—C1—C2—C6127.32 (18)Cl21—C21—C22—C2511.4 (2)
S1—C1—C2—C63.5 (2)S21—C21—C22—C25134.97 (16)
C4—C1—C2—C5113.35 (19)C24—C21—C22—C26121.35 (16)
Cl1—C1—C2—C53.9 (2)Cl21—C21—C22—C26120.42 (15)
S1—C1—C2—C5127.73 (18)S21—C21—C22—C263.13 (19)
C6—C2—C3—O162.6 (4)C25—C22—C23—O2173.5 (3)
C5—C2—C3—O162.5 (4)C26—C22—C23—O2152.1 (3)
C1—C2—C3—O1179.6 (3)C21—C22—C23—O21171.1 (2)
C6—C2—C3—C4117.70 (18)C25—C22—C23—C24108.95 (17)
C5—C2—C3—C4117.19 (17)C26—C22—C23—C24125.50 (16)
C1—C2—C3—C40.10 (14)C21—C22—C23—C246.50 (13)
O1—C3—C4—C761.8 (4)O21—C23—C24—C2772.9 (3)
C2—C3—C4—C7117.9 (2)C22—C23—C24—C27109.53 (17)
O1—C3—C4—C863.7 (4)O21—C23—C24—C2852.2 (3)
C2—C3—C4—C8116.61 (18)C22—C23—C24—C28125.35 (17)
O1—C3—C4—C1179.6 (3)O21—C23—C24—C21171.1 (2)
C2—C3—C4—C10.10 (14)C22—C23—C24—C216.51 (13)
C2—C1—C4—C30.09 (14)C22—C21—C24—C236.21 (12)
Cl1—C1—C4—C3117.34 (14)Cl21—C21—C24—C23124.98 (12)
S1—C1—C4—C3114.51 (14)S21—C21—C24—C23106.56 (13)
C2—C1—C4—C7114.6 (2)C22—C21—C24—C27106.34 (18)
Cl1—C1—C4—C72.8 (2)Cl21—C21—C24—C2712.4 (2)
S1—C1—C4—C7130.95 (19)S21—C21—C24—C27140.90 (17)
C2—C1—C4—C8111.3 (2)C22—C21—C24—C28119.61 (19)
Cl1—C1—C4—C8131.25 (19)Cl21—C21—C24—C28121.61 (18)
S1—C1—C4—C83.1 (2)S21—C21—C24—C286.8 (2)
S3—S4—C9—C12175.16 (11)S23—S24—C29—C32173.96 (10)
S3—S4—C9—C1071.66 (13)S23—S24—C29—C3071.72 (13)
S3—S4—C9—Cl258.26 (9)S23—S24—C29—Cl2259.09 (9)
C12—C9—C10—C111.88 (13)C32—C29—C30—C312.59 (12)
Cl2—C9—C10—C11114.73 (13)Cl22—C29—C30—C31120.10 (13)
S4—C9—C10—C11117.65 (13)S24—C29—C30—C31111.96 (13)
C12—C9—C10—C14117.10 (18)C32—C29—C30—C34111.0 (2)
Cl2—C9—C10—C140.5 (2)Cl22—C29—C30—C346.5 (2)
S4—C9—C10—C14127.13 (16)S24—C29—C30—C34134.48 (18)
C12—C9—C10—C13109.89 (18)C32—C29—C30—C33115.61 (19)
Cl2—C9—C10—C13133.50 (17)Cl22—C29—C30—C33126.88 (18)
S4—C9—C10—C135.9 (2)S24—C29—C30—C331.1 (2)
C14—C10—C11—O259.9 (3)C34—C30—C31—O2267.7 (3)
C13—C10—C11—O265.7 (3)C33—C30—C31—O2257.6 (3)
C9—C10—C11—O2177.8 (3)C29—C30—C31—O22175.4 (2)
C14—C10—C11—C12119.92 (18)C34—C30—C31—C32114.17 (18)
C13—C10—C11—C12114.56 (17)C33—C30—C31—C32120.51 (16)
C9—C10—C11—C121.98 (14)C29—C30—C31—C322.73 (13)
O2—C11—C12—C1660.2 (3)O22—C31—C32—C3667.7 (3)
C10—C11—C12—C16119.57 (18)C30—C31—C32—C36114.22 (17)
O2—C11—C12—C1565.2 (3)O22—C31—C32—C3557.5 (3)
C10—C11—C12—C15114.99 (17)C30—C31—C32—C35120.62 (16)
O2—C11—C12—C9177.8 (3)O22—C31—C32—C29175.4 (2)
C10—C11—C12—C91.98 (14)C30—C31—C32—C292.73 (13)
C10—C9—C12—C111.88 (13)C30—C29—C32—C312.60 (13)
Cl2—C9—C12—C11114.16 (13)Cl22—C29—C32—C31119.95 (12)
S4—C9—C12—C11122.31 (13)S24—C29—C32—C31116.56 (12)
C10—C9—C12—C16116.32 (19)C30—C29—C32—C36111.23 (16)
Cl2—C9—C12—C160.3 (2)Cl22—C29—C32—C366.1 (2)
S4—C9—C12—C16123.25 (18)S24—C29—C32—C36129.61 (15)
C10—C9—C12—C15112.46 (18)C30—C29—C32—C35117.09 (16)
Cl2—C9—C12—C15131.50 (16)Cl22—C29—C32—C35125.56 (15)
S4—C9—C12—C158.0 (2)S24—C29—C32—C352.06 (19)
(VIII) 1,6-bis(1-chloro-2,2,4,4-tetramethyl-3-oxocyclobutan-1-yl)hexasulfane top
Crystal data top
C16H24Cl2O2S6Dx = 1.436 Mg m3
Mr = 511.63Melting point = 402–404 K
Tetragonal, P41212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 4abw 2nwCell parameters from 40968 reflections
a = 7.1475 (1) Åθ = 2.0–27.5°
c = 46.3268 (8) ŵ = 0.81 mm1
V = 2366.69 (6) Å3T = 160 K
Z = 4Plate, colourless
F(000) = 10640.17 × 0.17 × 0.02 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2715 independent reflections
Radiation source: Nonius FR591 sealed tube generator1837 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.114
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scans with κ offsetsh = 98
Absorption correction: numerical
(Coppens et al., 1965)
k = 98
Tmin = 0.858, Tmax = 0.944l = 5959
25607 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0349P)2P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2715 reflectionsΔρmax = 0.32 e Å3
123 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), with 987 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.39 (13)
Crystal data top
C16H24Cl2O2S6Z = 4
Mr = 511.63Mo Kα radiation
Tetragonal, P41212µ = 0.81 mm1
a = 7.1475 (1) ÅT = 160 K
c = 46.3268 (8) Å0.17 × 0.17 × 0.02 mm
V = 2366.69 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2715 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
1837 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.944Rint = 0.114
25607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.32 e Å3
S = 1.06Δρmin = 0.26 e Å3
2715 reflectionsAbsolute structure: Flack (1983), with 987 Friedel pairs
123 parametersAbsolute structure parameter: 0.39 (13)
0 restraints
Special details top

Experimental. Solvent used: hexane/dichloromethane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.502 (1) Frames collected: 1470 Seconds exposure per frame: 15 Degrees rotation per frame: 0.6 Crystal-Detector distance (mm): 70.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44896 (12)0.66274 (11)0.030910 (17)0.0413 (2)
S10.41877 (11)1.01411 (11)0.062849 (17)0.0328 (2)
S20.47779 (11)1.12866 (11)0.023553 (18)0.0384 (2)
S30.25816 (12)1.05754 (13)0.002948 (19)0.0432 (3)
O10.8364 (3)0.6700 (3)0.11353 (5)0.0534 (7)
C10.5362 (4)0.7885 (4)0.06131 (6)0.0282 (7)
C20.7575 (4)0.7902 (5)0.06458 (7)0.0363 (8)
C30.7287 (5)0.7058 (4)0.09431 (7)0.0380 (8)
C40.5166 (4)0.6817 (4)0.09138 (6)0.0331 (8)
C50.8504 (5)0.9815 (5)0.06595 (7)0.0553 (11)
H510.79171.05620.08120.083*
H520.83541.04520.04740.083*
H530.98390.96620.07020.083*
C60.8623 (5)0.6584 (6)0.04433 (8)0.0722 (14)
H610.99350.64980.05040.108*
H620.85580.70670.02460.108*
H630.80500.53390.04510.108*
C70.4018 (5)0.7746 (5)0.11490 (7)0.0471 (9)
H710.26980.77690.10920.071*
H720.44620.90290.11780.071*
H730.41510.70390.13290.071*
C80.4656 (5)0.4755 (4)0.08875 (7)0.0501 (10)
H810.48410.41360.10740.075*
H820.54560.41630.07420.075*
H830.33430.46390.08290.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0553 (6)0.0305 (5)0.0381 (5)0.0022 (4)0.0099 (4)0.0089 (4)
S10.0366 (5)0.0270 (4)0.0348 (4)0.0036 (4)0.0006 (4)0.0023 (4)
S20.0416 (5)0.0326 (5)0.0408 (5)0.0020 (4)0.0060 (4)0.0063 (4)
S30.0484 (6)0.0391 (5)0.0421 (5)0.0084 (4)0.0122 (4)0.0026 (4)
O10.0576 (17)0.0516 (16)0.0509 (15)0.0030 (13)0.0228 (13)0.0064 (13)
C10.0337 (19)0.0221 (16)0.0289 (16)0.0002 (14)0.0008 (15)0.0040 (13)
C20.0263 (19)0.043 (2)0.0393 (19)0.0077 (16)0.0002 (16)0.0013 (17)
C30.044 (2)0.0243 (19)0.045 (2)0.0043 (16)0.0057 (18)0.0081 (16)
C40.037 (2)0.0294 (18)0.0326 (18)0.0004 (16)0.0012 (15)0.0008 (14)
C50.033 (2)0.076 (3)0.057 (2)0.010 (2)0.0059 (18)0.020 (2)
C60.046 (2)0.113 (4)0.057 (3)0.039 (3)0.003 (2)0.023 (3)
C70.053 (2)0.051 (2)0.037 (2)0.0050 (19)0.0081 (18)0.0031 (18)
C80.070 (3)0.0317 (19)0.049 (2)0.0071 (19)0.005 (2)0.0101 (17)
Geometric parameters (Å, º) top
Cl1—C11.783 (3)C4—C81.523 (4)
S1—C11.819 (3)C5—H510.9800
S1—S22.0402 (11)C5—H520.9800
S2—S32.0567 (12)C5—H530.9800
S3—S3i2.0461 (18)C6—H610.9800
O1—C31.205 (4)C6—H620.9800
C1—C21.589 (4)C6—H630.9800
C1—C41.595 (4)C7—H710.9800
C2—C31.518 (4)C7—H720.9800
C2—C51.521 (4)C7—H730.9800
C2—C61.526 (4)C8—H810.9800
C3—C41.531 (4)C8—H820.9800
C4—C71.517 (4)C8—H830.9800
C1—S1—S2103.03 (10)C2—C5—H51109.5
S1—S2—S3106.00 (5)C2—C5—H52109.5
S3i—S3—S2106.39 (5)H51—C5—H52109.5
C2—C1—C490.5 (2)C2—C5—H53109.5
C2—C1—Cl1115.3 (2)H51—C5—H53109.5
C4—C1—Cl1114.7 (2)H52—C5—H53109.5
C2—C1—S1116.6 (2)C2—C6—H61109.5
C4—C1—S1110.5 (2)C2—C6—H62109.5
Cl1—C1—S1108.44 (15)H61—C6—H62109.5
C3—C2—C5112.2 (3)C2—C6—H63109.5
C3—C2—C6112.3 (3)H61—C6—H63109.5
C5—C2—C6111.5 (3)H62—C6—H63109.5
C1—C2—C387.0 (2)C4—C7—H71109.5
C5—C2—C1116.5 (3)C4—C7—H72109.5
C6—C2—C1115.2 (3)H71—C7—H72109.5
O1—C3—C2132.0 (3)C4—C7—H73109.5
O1—C3—C4132.4 (3)H71—C7—H73109.5
C2—C3—C495.7 (3)H72—C7—H73109.5
C7—C4—C8110.6 (3)C4—C8—H81109.5
C7—C4—C3115.0 (3)C4—C8—H82109.5
C8—C4—C3110.7 (3)H81—C8—H82109.5
C7—C4—C1117.7 (3)C4—C8—H83109.5
C8—C4—C1114.5 (2)H81—C8—H83109.5
C1—C4—C386.4 (2)H82—C8—H83109.5
C1—S1—S2—S392.90 (11)C5—C2—C3—C4122.8 (3)
S1—S2—S3—S3i86.24 (6)C6—C2—C3—C4110.7 (3)
S2—S3—S3i—S2i83.73 (6)C1—C2—C3—C45.4 (2)
S2—S1—C1—C275.0 (2)O1—C3—C4—C755.7 (5)
S2—S1—C1—C4176.36 (18)C2—C3—C4—C7124.4 (3)
S2—S1—C1—Cl157.13 (16)O1—C3—C4—C870.5 (4)
C4—C1—C2—C35.2 (2)C2—C3—C4—C8109.4 (3)
Cl1—C1—C2—C3122.9 (2)O1—C3—C4—C1174.7 (4)
S1—C1—C2—C3108.1 (2)C2—C3—C4—C15.4 (2)
C4—C1—C2—C5118.6 (3)C2—C1—C4—C7121.5 (3)
Cl1—C1—C2—C5123.6 (3)Cl1—C1—C4—C7120.2 (3)
S1—C1—C2—C55.3 (4)S1—C1—C4—C72.8 (4)
C4—C1—C2—C6108.1 (3)C2—C1—C4—C8106.0 (3)
Cl1—C1—C2—C69.7 (4)Cl1—C1—C4—C812.3 (3)
S1—C1—C2—C6138.6 (3)S1—C1—C4—C8135.3 (3)
C5—C2—C3—O157.2 (5)C2—C1—C4—C35.1 (2)
C6—C2—C3—O169.3 (5)Cl1—C1—C4—C3123.4 (2)
C1—C2—C3—O1174.7 (4)S1—C1—C4—C3113.7 (2)
Symmetry code: (i) y1, x+1, z.

Experimental details

(III)(V)(VII)(VIII)
Crystal data
Chemical formulaC16H24Cl2O2S2C16H24Cl2O2S3C16H24Cl2O2S4C16H24Cl2O2S6
Mr383.39415.45447.51511.63
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cTriclinic, P1Tetragonal, P41212
Temperature (K)160160253160
a, b, c (Å)6.7379 (1), 26.7454 (4), 10.6473 (2)13.0673 (1), 25.7808 (2), 13.1619 (1)11.1372 (1), 13.0843 (1), 16.3379 (2)7.1475 (1), 7.1475 (1), 46.3268 (8)
α, β, γ (°)90, 105.4292 (6), 9090, 114.6674 (3), 9071.8478 (5), 89.8055 (5), 73.5431 (5)90, 90, 90
V3)1849.58 (5)4029.43 (5)2160.20 (4)2366.69 (6)
Z4844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.580.640.690.81
Crystal size (mm)0.32 × 0.12 × 0.100.38 × 0.30 × 0.220.25 × 0.25 × 0.100.17 × 0.17 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Multi-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Numerical
(Coppens et al., 1965)
Tmin, Tmax0.872, 0.9610.826, 0.8900.884, 0.9360.858, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
40268, 5400, 3839 93177, 11777, 9407 61153, 12599, 9118 25607, 2715, 1837
Rint0.0690.0500.0420.114
(sin θ/λ)max1)0.7040.7040.7040.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.06 0.033, 0.086, 1.04 0.041, 0.114, 1.05 0.043, 0.085, 1.06
No. of reflections539711772125962715
No. of parameters207431450123
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.350.72, 0.390.45, 0.560.32, 0.26
Absolute structure???Flack (1983), with 987 Friedel pairs
Absolute structure parameter???0.39 (13)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2002).

Selected geometric parameters (Å, º) for (III) top
Cl1—C11.7786 (17)C1—C21.595 (2)
Cl2—C91.7915 (17)C1—C41.590 (2)
S1—C11.8462 (16)C9—C101.601 (2)
S1—S22.0243 (6)C9—C121.589 (2)
S2—C91.8146 (17)
C1—S1—S2109.71 (6)C1—C4—C386.12 (12)
C9—S2—S1106.17 (6)C10—C9—C1290.52 (12)
C2—C1—C490.28 (12)C9—C10—C1185.79 (12)
C1—C2—C386.26 (12)C10—C11—C1295.69 (13)
C2—C3—C495.53 (13)C9—C12—C1186.33 (12)
C1—S1—S2—C997.90 (8)
Selected geometric parameters (Å, º) for (V) top
Cl1—C11.7957 (14)Cl21—C211.7934 (14)
Cl2—C91.7903 (14)Cl22—C291.8070 (14)
S1—C11.8168 (14)S21—C211.8181 (14)
S1—S22.0426 (5)S21—S222.0417 (5)
S2—S32.0502 (5)S22—S232.0513 (5)
S3—C91.8167 (14)S23—C291.8110 (14)
C1—C21.593 (2)C21—C221.591 (2)
C1—C41.592 (2)C21—C241.589 (2)
C9—C101.593 (2)C29—C301.594 (2)
C9—C121.5905 (19)C29—C321.585 (2)
C1—S1—S2101.82 (5)C21—S21—S22103.61 (5)
S1—S2—S3107.65 (2)S21—S22—S23107.99 (2)
C9—S3—S2103.63 (5)C29—S23—S22101.41 (5)
C2—C1—C490.69 (10)C22—C21—C2490.54 (11)
C1—C2—C386.49 (11)C21—C22—C2386.53 (11)
C2—C3—C495.95 (12)C22—C23—C2495.86 (12)
C1—C4—C386.51 (11)C21—C24—C2386.84 (11)
C10—C9—C1290.49 (10)C30—C29—C3290.79 (10)
C9—C10—C1185.97 (10)C29—C30—C3185.55 (10)
C10—C11—C1295.65 (11)C30—C31—C3295.53 (11)
C9—C12—C1185.92 (10)C29—C32—C3186.07 (10)
C1—S1—S2—S389.80 (5)C21—S21—S22—S2397.00 (5)
S1—S2—S3—C9100.76 (5)S21—S22—S23—C2990.52 (5)
Selected geometric parameters (Å, º) for (VII) top
Cl1—C11.7799 (16)Cl21—C211.7796 (16)
Cl2—C91.7885 (16)Cl22—C291.7863 (16)
S1—C11.8131 (16)S21—C211.8176 (16)
S1—S22.0341 (7)S21—S222.0361 (7)
S2—S32.0680 (7)S22—S232.0681 (7)
S3—S42.0332 (7)S23—S242.0336 (7)
S4—C91.8174 (16)S24—C291.8172 (16)
C1—C21.587 (2)C21—C221.588 (2)
C1—C41.588 (3)C21—C241.587 (2)
C9—C101.588 (2)C29—C301.589 (2)
C9—C121.588 (2)C29—C321.587 (2)
C1—S1—S2103.59 (6)C21—S21—S22103.93 (6)
S1—S2—S3105.29 (3)S21—S22—S23105.30 (3)
S4—S3—S2105.17 (3)S24—S23—S22105.29 (3)
C9—S4—S3103.61 (6)C29—S24—S23103.69 (6)
C2—C1—C490.73 (13)C22—C21—C2490.73 (13)
C1—C2—C386.31 (14)C21—C22—C2386.14 (13)
C2—C3—C496.49 (14)C22—C23—C2496.00 (13)
C1—C4—C386.48 (14)C21—C24—C2386.43 (13)
C10—C9—C1290.97 (13)C30—C29—C3290.69 (13)
C9—C10—C1186.27 (14)C29—C30—C3186.44 (13)
C10—C11—C1296.36 (14)C30—C31—C3296.12 (14)
C9—C12—C1186.32 (14)C29—C32—C3186.63 (13)
C1—S1—S2—S399.07 (6)C21—S21—S22—S2398.25 (6)
S1—S2—S3—S492.44 (3)S21—S22—S23—S2494.27 (3)
S2—S3—S4—C996.10 (6)S22—S23—S24—C2996.40 (6)
Selected geometric parameters (Å, º) for (VIII) top
Cl1—C11.783 (3)S3—S3i2.0461 (18)
S1—C11.819 (3)C1—C21.589 (4)
S1—S22.0402 (11)C1—C41.595 (4)
S2—S32.0567 (12)
C1—S1—S2103.03 (10)C1—C2—C387.0 (2)
S1—S2—S3106.00 (5)C2—C3—C495.7 (3)
S3i—S3—S2106.39 (5)C1—C4—C386.4 (2)
C2—C1—C490.5 (2)
C1—S1—S2—S392.90 (11)S2—S3—S3i—S2i83.73 (6)
S1—S2—S3—S3i86.24 (6)
Symmetry code: (i) y1, x+1, z.
Angles (°) between the planes on each side of the diagonals of the cyclobutanyl rings. top
O=C···C axisMe2C···CMe2 axisposition of Cl atom
compound (III)
ring 1a13.9 (2)14.8 (2)ax
ring 213.41 (17)14.27 (17)ax
compound (V)
molecule A, ring 16.15 (17)6.54 (17)ax
molecule A, ring 214.51 (16)15.45 (17)eq
molecule B, ring 14.91 (17)5.20 (17)ax
molecule B, ring 214.81 (14)15.80 (15)ax
compound (VII)
molecule A, ring 10.1 (2)0.1 (2)-
molecule A, ring 22.64 (19)2.8 (2)ax
molecule B, ring 18.69 (19)9.26 (19)eq
molecule B, ring 23.7 (2)3.9 (2)eq
compound (VIII)
ring 17.2 (3)7.7 (3)eq
Notes: (a) Ring 1 is defined by atoms C1 to C4, while ring 2 contains C9 to C12. For (V) and (VII), add 20 to the atom numbers to obtain the corresponding atoms in molecule B.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds