Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The conformation of the cationic part of the title compound, [{(C6H5)2POH0.5}2CH2]I3 or dppmO2H+·I3 (dppm is di­phenyl­phosphino­methane), is determined by hydrogen bonds between cations of monoprotonated [(C6H5)2P(=O)]2CH2 (dppmO2). Symmetric P=O...H...O=P bridging, with H atoms lying on centres of inversion, leads to chain-like polymeric cations, (dppmO2H+)x, made up of H...OP(C6H5)2—CH2—(C6H5)2PO... moieties. These are, in turn, cross-connected by non-classical C—H...I contacts between the (dppmO2H+)x methyl­ene-group H atoms and the terminal I atoms of the triiodide anions, which display crystallographic inversion symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005930/bm1492sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005930/bm1492Isup2.hkl
Contains datablock I

CCDC reference: 188612

Comment top

Extending our study of supramolecular structures of (iodoseleno)phosphonium salts (Seppälä et al., 1999; du Mont et al., 2001a,b) to bidentate ligands, we reacted [(C6H5)2P(Se)]2CH2 (dppmSe2) with two equivalents of diiodine in dichloromethane (Boraei & du Mont, 2000). Attempted crystallization of the iodine adduct was accompanied by hydrolytic reactions, due to the access of moist air to the mother liquor, affording a small fraction of the title new compound, (I). \sch

The salt-like compound (I) consists of helical polymeric cations, (dppmO2H+)x, made up from ···H···OP(C6H5)2-CH2-(C6H5)2PO··· moieties and triidiode anions, which interconnect these chains through C—H···I—I—I interactions (CH···I 2.89 and 2.83 Å) with the H atoms of the (dppmO2H+)x methylene groups. These rather short non-classical hydrogen-bond contacts are in the range of those observed in 2,5-bis[4,5-bis(methylthio)-1,3-dithiol-2-ylidene]-1,3,4,6-tetrathiapentalene triiodide (CH···I 2.832 Å; Mori et al., 1994) and in 1-azoniapropellane triiodide (CH···I 2.897 Å; Bakshi et al., 1996).

The PO bond lengthening arising from coordination with bridging H+ is, at 0.07 Å, less than in true hydroxyphosphonium cations, R3POH+ (Ruthe et al., 2000), but is similar to that in the bis-AlCl3 complex [dppmO2(AlCl3)2] (Sangokoya et al., 1989).

The PO···H···OP bridges and I—I—I groups in (I) are centrosymmetric, with the central H and I atoms lying on centres of inversion. The PO···H···OP bonding within the polymeric cation, (dppmO2H+)x, is closely related to that of known molecular centrosymmetric bis(phosphineoxide)hydrogen(I) cations in [(Me3PO)2H]+·AuI2- (Godfrey et al., 1996) and in [(iPr3PO)2H]+·I3- (Ruthe et al., 2000). As in the latter triiodide salt, O···O distances in (I) (2.384(?)Å) are slightly shorter than in the comparable noncentrosymmetric compound [TPO3H]I3 (2.432(?)Å), where H+ is chelated by two R2R'PO donor functions derived from the tridentate chelate ligand bis(o-diphenylphosphinophenyl)(phenyl)phosphane (Bigoli et al., 1992).

The packing of solid (I) can be described as corrugated layers of helical (dppmO2H+)x cations, whose methylene groups are centres of further bifurcating hydrogen-bond systems (–H···I—I—I···H—C—H···I—I—I···H–) cross-linking these cationic layers, leading to a complex three-dimensional network. The conformation of the helical (dppmO2H+)x cations is apparently determined by the geometric requirements of, firstly, linear O—H—O bridges [different from the chelate (dppmO2)3Na+; Hewertson et al. (1979)], secondly, wide P—O—H angles, and thirdly, preferred torsion angles, like those of the ligands dppm [by considering the P electron lone pairs as pseudoligands (Schmidbaur et al., 1988)], dppmO2 (Antipin et al., 1980), dppmS2 (Carmalt et al., 1996) and dppmSe2 (Carroll & Titus, 1977; Ahrens & Jones, 1997).

Experimental top

A dichloromethane solution of dppmSe2 and diiodine in a 1:2 molar ratio was stirred at room temperature for 3 h. Orange single crystals of (I) were obtained after exposing a small portion of the reaction mixture in an NMR tube to moist air for one week at room temperature with slow evaporation of the solvent. The formulation of the product was satisfactorily established by 31P NMR spectra and by mass spectrometry (FAB, o-nitrobenzylamine matrix). 31P NMR (δ, p.p.m., CH2Cl2/C6D6 solution): 42.6; mass spectrometry: m/z (%) = 417 {30, [Ph2P(O)CH2P(OH)Ph2]+}, appeared when a partially hydrolysed sample from dppmSe2I4 (Boraei et al., 2000) was studied by FAB-MS.

Refinement top

All H atoms except H1 and H2 were refined using a riding model starting from calculated positions, with Uiso(H) = 1.2 Uiso(C) and effective C—H distances of 0.99 Å for methylene protons and 0.95 Å for aromatic H atoms. H atoms H1 and H2 were found and refined satisfactorily on special positions (inversion centres) with no indication of disorder, although X-ray methods alone cannot determine the H-atom positions with absolute certainty. The maximum residual electron density was 0.94 Å from I3 and may indicate a minor twinning component.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atom radii are arbitrary. H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A packing diagram for (I). H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonds are indicated by dashed lines. Ring C atoms, except ipso-C atoms, have been omitted.
Polymeric methylenebis(diphenylphosphine oxide) hydrogen triiodide top
Crystal data top
C25H22O2P2·H+·I3Z = 2
Mr = 798.07F(000) = 756
Triclinic, P1Dx = 1.914 Mg m3
a = 10.1284 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8155 (10) ÅCell parameters from 10022 reflections
c = 12.5299 (10) Åθ = 3–30°
α = 110.852 (2)°µ = 3.52 mm1
β = 93.855 (2)°T = 143 K
γ = 96.043 (2)°Rectangular prism, orange
V = 1384.61 (19) Å30.37 × 0.20 × 0.15 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
8330 independent reflections
Radiation source: normal-focus sealed tube6921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.192 pixels mm-1θmax = 30.6°, θmin = 1.8°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1616
Tmin = 0.384, Tmax = 0.590l = 1717
16933 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.054P)2 + 0.832P]
where P = (Fo2 + 2Fc2)/3
8330 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 2.65 e Å3
204 restraintsΔρmin = 1.07 e Å3
Crystal data top
C25H22O2P2·H+·I3γ = 96.043 (2)°
Mr = 798.07V = 1384.61 (19) Å3
Triclinic, P1Z = 2
a = 10.1284 (8) ÅMo Kα radiation
b = 11.8155 (10) ŵ = 3.52 mm1
c = 12.5299 (10) ÅT = 143 K
α = 110.852 (2)°0.37 × 0.20 × 0.15 mm
β = 93.855 (2)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
8330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6921 reflections with I > 2σ(I)
Tmin = 0.384, Tmax = 0.590Rint = 0.033
16933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035204 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 2.65 e Å3
8330 reflectionsΔρmin = 1.07 e Å3
294 parameters
Special details top

Refinement. Residual electron density at positions arithmetically related to those of the I atoms may indicate a minor twinning component.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.00000.00000.50000.02830 (7)
I20.13856 (2)0.22713 (2)0.497385 (18)0.03487 (6)
I30.50336 (2)0.49212 (2)0.72927 (2)0.03748 (7)
I40.50000.50000.50000.03006 (7)
P10.40501 (8)0.07929 (7)0.18627 (6)0.02225 (14)
P20.15790 (7)0.17539 (6)0.11313 (6)0.02170 (13)
O10.0836 (2)0.04687 (19)0.08028 (19)0.0290 (4)
H10.00000.00000.00000.019 (11)*
O20.4617 (3)0.0778 (2)0.0767 (2)0.0370 (5)
H20.50000.00000.00000.025 (12)*
C10.2931 (3)0.1927 (2)0.2197 (2)0.0219 (5)
H1A0.25460.19440.29080.026*
H1B0.34660.27360.23730.026*
C20.5321 (3)0.1316 (3)0.3055 (3)0.0253 (5)
C30.5080 (3)0.1184 (3)0.4090 (3)0.0316 (6)
H30.42400.07940.41650.038*
C40.6079 (4)0.1627 (4)0.5013 (3)0.0414 (8)
H40.59170.15490.57240.050*
C50.7302 (4)0.2178 (3)0.4901 (4)0.0428 (8)
H50.79830.24740.55330.051*
C60.7544 (4)0.2303 (4)0.3871 (4)0.0455 (9)
H60.83940.26750.37960.055*
C70.6555 (3)0.1889 (3)0.2950 (3)0.0372 (7)
H70.67160.19930.22510.045*
C80.3230 (3)0.0671 (3)0.1764 (2)0.0234 (5)
C90.3870 (3)0.1687 (3)0.1230 (3)0.0294 (6)
H90.46670.15970.08910.035*
C100.3324 (4)0.2829 (3)0.1202 (3)0.0355 (7)
H100.37610.35200.08520.043*
C110.2160 (4)0.2972 (3)0.1673 (3)0.0367 (7)
H110.17920.37600.16380.044*
C120.1521 (4)0.1965 (3)0.2201 (3)0.0354 (7)
H120.07130.20650.25220.042*
C130.2067 (3)0.0813 (3)0.2259 (3)0.0294 (6)
H130.16450.01200.26370.035*
C140.2130 (3)0.1988 (3)0.0108 (2)0.0252 (5)
C150.2505 (4)0.3176 (3)0.0071 (3)0.0333 (7)
H150.24910.38580.06170.040*
C160.2899 (4)0.3352 (4)0.1050 (3)0.0409 (8)
H160.31660.41560.10270.049*
C170.2902 (4)0.2359 (4)0.2055 (3)0.0359 (7)
H170.31770.24840.27190.043*
C180.2510 (3)0.1185 (3)0.2101 (3)0.0328 (6)
H180.24930.05100.28000.039*
C190.2136 (3)0.0991 (3)0.1118 (3)0.0294 (6)
H190.18890.01840.11420.035*
C200.0561 (3)0.2913 (3)0.1765 (3)0.0244 (5)
C210.0986 (3)0.3900 (3)0.2791 (3)0.0291 (6)
H210.18390.39730.31930.035*
C220.0138 (3)0.4780 (3)0.3219 (3)0.0352 (7)
H220.04230.54650.39070.042*
C230.1110 (4)0.4657 (3)0.2644 (3)0.0379 (7)
H230.16870.52490.29470.045*
C240.1526 (4)0.3674 (3)0.1629 (3)0.0398 (8)
H240.23890.35950.12410.048*
C250.0697 (3)0.2811 (3)0.1177 (3)0.0331 (7)
H250.09780.21500.04700.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03104 (14)0.03545 (14)0.02040 (12)0.01320 (11)0.00553 (9)0.00975 (10)
I20.04303 (12)0.03533 (11)0.02737 (11)0.00909 (9)0.01168 (8)0.01046 (8)
I30.03486 (12)0.03891 (12)0.04313 (13)0.00386 (9)0.00189 (9)0.02333 (10)
I40.02682 (13)0.02807 (13)0.03957 (16)0.00299 (10)0.00316 (11)0.01786 (12)
P10.0275 (3)0.0205 (3)0.0213 (3)0.0066 (3)0.0077 (3)0.0089 (3)
P20.0248 (3)0.0201 (3)0.0202 (3)0.0023 (3)0.0020 (2)0.0076 (3)
O10.0339 (11)0.0223 (9)0.0281 (11)0.0028 (8)0.0027 (8)0.0089 (8)
O20.0551 (15)0.0314 (11)0.0303 (12)0.0133 (11)0.0221 (11)0.0132 (10)
C10.0241 (12)0.0212 (12)0.0211 (12)0.0035 (10)0.0020 (10)0.0083 (10)
C20.0235 (13)0.0229 (12)0.0320 (14)0.0076 (10)0.0062 (11)0.0111 (11)
C30.0302 (15)0.0345 (15)0.0317 (16)0.0026 (12)0.0020 (12)0.0147 (13)
C40.0444 (19)0.0406 (18)0.0402 (19)0.0016 (15)0.0092 (15)0.0197 (16)
C50.0357 (17)0.0338 (16)0.056 (2)0.0005 (14)0.0148 (16)0.0173 (16)
C60.0275 (16)0.0422 (19)0.068 (3)0.0019 (14)0.0042 (16)0.0255 (19)
C70.0287 (15)0.0390 (17)0.050 (2)0.0045 (13)0.0086 (14)0.0234 (16)
C80.0295 (13)0.0204 (12)0.0195 (12)0.0049 (10)0.0008 (10)0.0063 (10)
C90.0305 (15)0.0249 (13)0.0317 (15)0.0080 (11)0.0001 (12)0.0084 (12)
C100.0430 (18)0.0214 (13)0.0423 (18)0.0108 (13)0.0025 (14)0.0105 (13)
C110.048 (2)0.0221 (13)0.0412 (18)0.0016 (13)0.0008 (15)0.0149 (13)
C120.0446 (19)0.0297 (15)0.0357 (17)0.0035 (13)0.0117 (14)0.0157 (13)
C130.0404 (16)0.0254 (13)0.0244 (14)0.0082 (12)0.0100 (12)0.0095 (11)
C140.0287 (14)0.0268 (13)0.0218 (13)0.0047 (11)0.0021 (10)0.0109 (11)
C150.0461 (19)0.0270 (14)0.0283 (15)0.0036 (13)0.0057 (13)0.0120 (12)
C160.055 (2)0.0380 (17)0.0372 (18)0.0037 (16)0.0101 (16)0.0220 (15)
C170.0398 (17)0.052 (2)0.0253 (14)0.0088 (15)0.0058 (12)0.0239 (14)
C180.0296 (15)0.0453 (18)0.0221 (13)0.0092 (13)0.0034 (11)0.0096 (13)
C190.0297 (14)0.0303 (14)0.0279 (14)0.0030 (12)0.0038 (11)0.0105 (12)
C200.0250 (13)0.0245 (12)0.0261 (13)0.0053 (10)0.0047 (10)0.0112 (11)
C210.0274 (14)0.0273 (14)0.0307 (15)0.0046 (11)0.0013 (11)0.0084 (12)
C220.0332 (16)0.0291 (15)0.0385 (17)0.0076 (13)0.0053 (13)0.0054 (13)
C230.0344 (17)0.0340 (16)0.0433 (19)0.0144 (14)0.0054 (14)0.0090 (14)
C240.0337 (17)0.0421 (19)0.0385 (18)0.0099 (14)0.0047 (14)0.0087 (15)
C250.0324 (15)0.0370 (16)0.0283 (15)0.0088 (13)0.0009 (12)0.0096 (13)
Geometric parameters (Å, º) top
I1—I22.9066 (3)C10—C111.375 (5)
I3—I42.9052 (3)C10—H100.9500
P1—O21.518 (2)C11—C121.390 (5)
P1—C21.785 (3)C11—H110.9500
P1—C81.797 (3)C12—C131.390 (4)
P1—C11.801 (3)C12—H120.9500
P2—O11.521 (2)C13—H130.9500
P2—C141.786 (3)C14—C191.390 (4)
P2—C11.789 (3)C14—C151.399 (4)
P2—C201.789 (3)C15—C161.391 (5)
O1—H11.194 (2)C15—H150.9500
O2—H21.190 (2)C16—C171.383 (5)
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.381 (5)
C2—C31.395 (4)C17—H170.9500
C2—C71.395 (4)C18—C191.399 (4)
C3—C41.391 (5)C18—H180.9500
C3—H30.9500C19—H190.9500
C4—C51.378 (6)C20—C211.396 (4)
C4—H40.9500C20—C251.400 (4)
C5—C61.385 (6)C21—C221.400 (4)
C5—H50.9500C21—H210.9500
C6—C71.383 (6)C22—C231.378 (5)
C6—H60.9500C22—H220.9500
C7—H70.9500C23—C241.385 (5)
C8—C131.389 (4)C23—H230.9500
C8—C91.399 (4)C24—C251.378 (5)
C9—C101.391 (4)C24—H240.9500
C9—H90.9500C25—H250.9500
I2i—I1—I2180C11—C10—H10119.5
I3ii—I4—I3180C9—C10—H10119.5
O2—P1—C2111.33 (15)C10—C11—C12120.1 (3)
O2—P1—C8113.60 (14)C10—C11—H11120.0
C2—P1—C8108.01 (13)C12—C11—H11120.0
O2—P1—C1106.93 (13)C11—C12—C13119.8 (3)
C2—P1—C1105.14 (13)C11—C12—H12120.1
C8—P1—C1111.53 (13)C13—C12—H12120.1
O1—P2—C14110.52 (13)C8—C13—C12120.1 (3)
O1—P2—C1107.08 (13)C8—C13—H13119.9
C14—P2—C1112.64 (13)C12—C13—H13119.9
O1—P2—C20112.58 (14)C19—C14—C15120.2 (3)
C14—P2—C20107.07 (14)C19—C14—P2119.8 (2)
C1—P2—C20106.98 (13)C15—C14—P2119.9 (2)
P2—O1—H1123.93 (17)C16—C15—C14119.5 (3)
P1—O2—H2133.03 (19)C16—C15—H15120.2
P2—C1—P1117.57 (15)C14—C15—H15120.2
P2—C1—H1A107.9C17—C16—C15120.1 (3)
P1—C1—H1A107.9C17—C16—H16119.9
P2—C1—H1B107.9C15—C16—H16119.9
P1—C1—H1B107.9C18—C17—C16120.5 (3)
H1A—C1—H1B107.2C18—C17—H17119.7
C3—C2—C7120.0 (3)C16—C17—H17119.7
C3—C2—P1120.8 (2)C17—C18—C19120.0 (3)
C7—C2—P1119.1 (3)C17—C18—H18120.0
C4—C3—C2119.5 (3)C19—C18—H18120.0
C4—C3—H3120.3C14—C19—C18119.5 (3)
C2—C3—H3120.3C14—C19—H19120.2
C5—C4—C3120.3 (4)C18—C19—H19120.2
C5—C4—H4119.9C21—C20—C25120.2 (3)
C3—C4—H4119.9C21—C20—P2122.7 (2)
C4—C5—C6120.3 (3)C25—C20—P2117.2 (2)
C4—C5—H5119.9C20—C21—C22119.1 (3)
C6—C5—H5119.9C20—C21—H21120.4
C7—C6—C5120.3 (3)C22—C21—H21120.4
C7—C6—H6119.8C23—C22—C21120.2 (3)
C5—C6—H6119.8C23—C22—H22119.9
C6—C7—C2119.6 (4)C21—C22—H22119.9
C6—C7—H7120.2C22—C23—C24120.4 (3)
C2—C7—H7120.2C22—C23—H23119.8
C13—C8—C9120.0 (3)C24—C23—H23119.8
C13—C8—P1123.0 (2)C25—C24—C23120.5 (3)
C9—C8—P1116.8 (2)C25—C24—H24119.8
C10—C9—C8119.1 (3)C23—C24—H24119.8
C10—C9—H9120.5C24—C25—C20119.6 (3)
C8—C9—H9120.5C24—C25—H25120.2
C11—C10—C9120.9 (3)C20—C25—H25120.2
O1—P2—C1—P153.25 (19)C9—C8—C13—C121.5 (5)
C14—P2—C1—P168.5 (2)P1—C8—C13—C12176.7 (3)
C20—P2—C1—P1174.17 (16)C11—C12—C13—C81.6 (5)
O2—P1—C1—P257.3 (2)O1—P2—C14—C1914.9 (3)
C2—P1—C1—P2175.76 (16)C1—P2—C14—C19104.9 (3)
C8—P1—C1—P267.43 (19)C20—P2—C14—C19137.8 (3)
O2—P1—C2—C3167.7 (2)O1—P2—C14—C15162.7 (3)
C8—P1—C2—C342.3 (3)C1—P2—C14—C1577.6 (3)
C1—P1—C2—C376.9 (3)C20—P2—C14—C1539.7 (3)
O2—P1—C2—C713.8 (3)C19—C14—C15—C160.7 (5)
C8—P1—C2—C7139.2 (3)P2—C14—C15—C16178.3 (3)
C1—P1—C2—C7101.6 (3)C14—C15—C16—C170.8 (6)
C7—C2—C3—C40.0 (5)C15—C16—C17—C180.3 (6)
P1—C2—C3—C4178.5 (3)C16—C17—C18—C191.6 (5)
C2—C3—C4—C50.8 (6)C15—C14—C19—C180.5 (5)
C3—C4—C5—C60.4 (6)P2—C14—C19—C18177.0 (2)
C4—C5—C6—C70.8 (6)C17—C18—C19—C141.7 (5)
C5—C6—C7—C21.6 (6)O1—P2—C20—C21130.8 (3)
C3—C2—C7—C61.2 (5)C14—P2—C20—C21107.5 (3)
P1—C2—C7—C6179.7 (3)C1—P2—C20—C2113.4 (3)
O2—P1—C8—C13141.4 (3)O1—P2—C20—C2550.3 (3)
C2—P1—C8—C1394.6 (3)C14—P2—C20—C2571.4 (3)
C1—P1—C8—C1320.5 (3)C1—P2—C20—C25167.6 (2)
O2—P1—C8—C943.2 (3)C25—C20—C21—C220.0 (5)
C2—P1—C8—C980.8 (3)P2—C20—C21—C22178.9 (3)
C1—P1—C8—C9164.2 (2)C20—C21—C22—C231.3 (5)
C13—C8—C9—C100.1 (5)C21—C22—C23—C241.2 (6)
P1—C8—C9—C10175.7 (3)C22—C23—C24—C250.3 (6)
C8—C9—C10—C111.0 (5)C23—C24—C25—C201.6 (6)
C9—C10—C11—C120.9 (6)C21—C20—C25—C241.4 (5)
C10—C11—C12—C130.5 (6)P2—C20—C25—C24179.6 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2iii1.191.192.380 (4)180
O1—H1···O1iv1.191.192.388 (4)180
C1—H1A···I20.992.833.818 (3)173
C1—H1B···I3ii0.992.893.878 (3)176
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC25H22O2P2·H+·I3
Mr798.07
Crystal system, space groupTriclinic, P1
Temperature (K)143
a, b, c (Å)10.1284 (8), 11.8155 (10), 12.5299 (10)
α, β, γ (°)110.852 (2), 93.855 (2), 96.043 (2)
V3)1384.61 (19)
Z2
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.37 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.384, 0.590
No. of measured, independent and
observed [I > 2σ(I)] reflections
16933, 8330, 6921
Rint0.033
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.03
No. of reflections8330
No. of parameters294
No. of restraints204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.65, 1.07

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
I1—I22.9066 (3)P1—C11.801 (3)
I3—I42.9052 (3)P2—O11.521 (2)
P1—O21.518 (2)P2—C141.786 (3)
P1—C21.785 (3)P2—C11.789 (3)
P1—C81.797 (3)P2—C201.789 (3)
O2—P1—C2111.33 (15)C14—P2—C1112.64 (13)
O2—P1—C8113.60 (14)O1—P2—C20112.58 (14)
C2—P1—C8108.01 (13)C14—P2—C20107.07 (14)
O2—P1—C1106.93 (13)C1—P2—C20106.98 (13)
C2—P1—C1105.14 (13)P2—O1—H1123.93 (17)
C8—P1—C1111.53 (13)P1—O2—H2133.03 (19)
O1—P2—C14110.52 (13)P2—C1—P1117.57 (15)
O1—P2—C1107.08 (13)
O1—P2—C1—P153.25 (19)O2—P1—C1—P257.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i1.191.192.380 (4)180
O1—H1···O1ii1.191.192.388 (4)180
C1—H1A···I20.992.833.818 (3)173
C1—H1B···I3iii0.992.893.878 (3)176
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds