Download citation
Download citation
link to html
The title compound, [Fe2Cl4O(C7H12N2)4], contains vertex-sharing distorted tetrahedral [FeOCl3] and octahedral [FeOCl(HpztBu)4]+ moieties (HpztBu is 5-tert-­butyl­pyrazole), linked by a bent oxo bridging ligand. The two FeIII centres are also bridged by intramolecular hydrogen bonds between the pyrazole N—H groups and the O2− and Cl ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004948/bm1491sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004948/bm1491Isup2.hkl
Contains datablock I

CCDC reference: 187908

Comment top

We have recently reported that complexation of CuCl2 by HpztBu in basic MeOH affords a heptacopper aggregate with a double-cubane core structure, which is templated by N—H···Cl hydrogen bonding between the pyrazole ligands and non-coordinated Cl- anions (Liu et al., 2002). As an extension of this work, we were keen to determine the products of similar reactions using other transition metal halide precursors. We report here the title compound, (I), which we isolated in moderate yield from an otherwise identical procedure using FeCl3 as starting material. Our isolation of (I) contrasts with a report of a very similar reaction using unsubstituted pyrazole as ligand, which instead afforded a unique octanuclear aggregate containing bridging oxo and pyrazolide groups (Raptis et al., 1999). Unsymmetrical diiron complexes containing the [FeOX3]- moiety (X- is Cl- or Br-) have been described previously (Gómez-Romero et al., 1989, 1990; Wang et al., 1996; James et al., 1997; Ondrejkovičová et al., 1998a,b), most relevantly in [Fe2OCl4tz4] (tz is thiazole; James et al., 1997). \sch

The asymmetric unit of (I) contains one molecule of the complex lying on a general position, with the two Fe centres linked by a bent oxo bridge having an Fe1—O3—Fe2 angle that is within the usual range for compounds containing [FeOCl3]- centres (tabulated in Ondrejkovičová et al., 1998b). The failure of atom Fe1 to achieve perfect C3v symmetry is seen in small variations in the Fe1—Cl bond lengths: the differences between individual Fe1—Cl distances are in the range 0.0042 (7)–0.0088 (7) Å. These differences may be related to the hydrogen bonds accepted by these three Cl- donors (see below), since there is a perfect correlation between each Fe1—Cl bond length (Table 1) and the strength of the hydrogen bond accepted by that Cl atom, as expressed by its N—H···Cl angle (Table 2). However, this suggestion remains to be confirmed, since [Fe2OCl4tz4] (James et al., 1997) and other compounds containing the [FeOCl3]- moiety that do not possess hydrogen bonding to the Cl- ligands (Ondrejkovičová et al., 1998b) also show unequal Fe—Cl bond lengths.

The local geometry at Fe2 is approximately C4v, but with a distribution of Fe2—N bond distances; while Fe2—N17 and Fe2—N35 are metrically equivalent, Fe2—N8 is shorter than the average of these two bonds by 0.012 (2) Å, and Fe2—N26 is longer by 0.019 (2) Å. A similar spread of Fe—N distances is also exhibited by [Fe2OCl4tz4] (James et al., 1997). The Fe2—Cl7 bond is longer than the Fe1—Cl bonds by an average of 0.1755 (10) Å, which should reflect both the higher coordination number at Fe2 and the strong trans influence of the bridging oxo ligand.

While all the pyrazole rings are coordinated as the 5-substituted tautomer, the N35—C43 ligand is rotated by ca 180° about the Fe2—N35 bond relative to the other three HpztBu ligands. This is related to the intramolecular hydrogen bonding within the compound (see below).

The four pyrazole ligands in (I) form intramolecular N—H···X (X is O or Cl) hydrogen bonds to different acceptors in the molecule. Three of these NH groups interact with atom O3, and/or a Cl- ligand bound to Fe1. Both atoms H9 and H18 form bifurcated hydrogen bonds to atom O3 and atoms Cl4 and Cl5, respectively. While the N9—H9···Cl4 interaction is quite short and close to linear, the N18—H18···Cl5 contact is much longer and is substantially bent, to the extent that this should be considered a very weak interaction. In contrast, atom H27 forms a near-linear hydrogen bond to atom Cl6 only. The irregularity of the hydrogen bonds formed by these three pyrazole groups reflects the poor complementarity between hydrogen bond-donors bound to a near-C4v-symmetric metal centre, with N—Fe2—N angles of ca 90°, and hydrogen-bond acceptors at a C3v-symmetric centre, related by ca 109.5°. The fourth pyrazole N—H atom, H36, forms a hydrogen bond to Cl7. There are no noteworthy intermolecular contacts within the crystal lattice.

Experimental top

To a solution of FeCl3 (0.32 g, 2.0 mmol) in MeOH (30 ml) was added an MeOH (30 ml) solution of 3{5}-tertbutylpyrazole (0.49 g, 4.0 mmol) and NaOH (0.080 g, 2.0 mmol). The mixture was stirred at room temperature for 2 h and then evaporated to dryness. The residue was dissolved in a minimum volume of CH2Cl2, and the filtered extracts were layered with pentane to give dark-brown crystals of (I) (yield 0.28 g, 37%). Analysis found: C 43.9, H 6.2, N 14.8%; calculated for C28H48Cl4Fe2N8O: C 43.9, H 6.3, N 14.6%.

Refinement top

All H atoms were placed in calculated positions, and refined using a riding model. The constraints employed were as follows: Csp2—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), Cmethyl—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with 50% probability displacement ellipsoids, showing the atom-numbering scheme employed. All C-bound H atoms have been omitted for clarity.
Tetrakis(5-tert-butylpyrazole-1κN2)tetrachloro-1κCl,2κ3Cl-µ-oxo- 1:2κ2O-diiron(III) top
Crystal data top
[Fe2Cl4O(C7H12N2)4]Z = 2
Mr = 766.24F(000) = 800
Triclinic, P1Dx = 1.304 Mg m3
a = 10.3075 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9284 (1) ÅCell parameters from 44449 reflections
c = 17.3424 (2) Åθ = 2.7–27.5°
α = 87.5556 (4)°µ = 1.05 mm1
β = 88.8661 (4)°T = 150 K
γ = 89.3366 (5)°Prism, brown
V = 1951.25 (3) Å30.43 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
8944 independent reflections
Radiation source: fine-focus sealed tube8129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ or ω scans?h = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.661, Tmax = 0.818l = 2222
44449 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.042P)2 + 1.185P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8944 reflectionsΔρmax = 0.68 e Å3
401 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (11)
Crystal data top
[Fe2Cl4O(C7H12N2)4]γ = 89.3366 (5)°
Mr = 766.24V = 1951.25 (3) Å3
Triclinic, P1Z = 2
a = 10.3075 (1) ÅMo Kα radiation
b = 10.9284 (1) ŵ = 1.05 mm1
c = 17.3424 (2) ÅT = 150 K
α = 87.5556 (4)°0.43 × 0.30 × 0.20 mm
β = 88.8661 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
8944 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
8129 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.818Rint = 0.054
44449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.68 e Å3
8944 reflectionsΔρmin = 0.46 e Å3
401 parameters
Special details top

Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi = 0 degree settings 1 degree omega exposures for chi = 90 degree settings

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

No disorder was detected during refinement. All non-H atoms were refined anisotropically, while H atoms were placed in calculated positions and refined using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.41378 (2)0.27268 (2)0.785051 (14)0.02569 (8)
Fe20.18626 (2)0.51040 (2)0.733357 (13)0.02143 (8)
O30.30286 (11)0.38557 (10)0.74966 (7)0.0270 (2)
Cl40.48973 (5)0.17574 (5)0.68300 (3)0.04227 (12)
Cl50.30469 (5)0.14164 (4)0.86208 (3)0.04562 (13)
Cl60.56810 (5)0.36669 (5)0.84687 (3)0.04381 (13)
Cl70.02717 (4)0.66874 (4)0.71027 (2)0.02889 (10)
N80.21379 (14)0.49550 (14)0.61217 (8)0.0279 (3)
N90.29234 (14)0.40677 (14)0.58331 (8)0.0282 (3)
H90.34200.35790.61190.034*
C100.28539 (18)0.40240 (19)0.50580 (10)0.0341 (4)
C110.1984 (2)0.4930 (2)0.48349 (11)0.0447 (5)
H110.17200.51390.43240.054*
C120.15653 (19)0.5482 (2)0.55084 (11)0.0383 (4)
H120.09580.61410.55270.046*
C130.36163 (19)0.3101 (2)0.46002 (11)0.0404 (5)
C140.3394 (3)0.3363 (3)0.37413 (13)0.0658 (8)
H14A0.24680.32910.36350.099*
H14B0.38900.27710.34410.099*
H14C0.36810.41940.35960.099*
C150.5070 (2)0.3187 (2)0.47622 (13)0.0434 (5)
H15A0.53730.40130.46150.065*
H15B0.55510.25870.44610.065*
H15C0.52140.30170.53130.065*
C160.3149 (3)0.1803 (2)0.48311 (16)0.0598 (7)
H16A0.33320.16200.53760.090*
H16B0.36050.12090.45130.090*
H16C0.22130.17540.47510.090*
N170.03181 (13)0.38172 (12)0.73012 (8)0.0251 (3)
N180.06060 (14)0.26120 (13)0.72268 (9)0.0283 (3)
H180.13920.22980.72750.034*
C190.04439 (17)0.19512 (16)0.70704 (10)0.0295 (4)
C200.14720 (18)0.27707 (17)0.70420 (11)0.0330 (4)
H200.23530.25960.69440.040*
C210.09530 (17)0.39078 (16)0.71873 (11)0.0301 (4)
H210.14410.46490.72030.036*
C220.0360 (2)0.05790 (18)0.69825 (13)0.0389 (4)
C230.0167 (3)0.0067 (2)0.77871 (16)0.0673 (8)
H23A0.08760.01670.81370.101*
H23B0.06620.01810.79960.101*
H23C0.01640.09570.77370.101*
C240.0785 (3)0.0257 (2)0.64687 (19)0.0664 (8)
H24A0.07880.06250.63860.100*
H24B0.15910.04760.67160.100*
H24C0.07170.07100.59710.100*
C250.1617 (3)0.0123 (2)0.6678 (2)0.0736 (9)
H25A0.17800.05200.61710.110*
H25B0.23290.03170.70360.110*
H25C0.15590.07660.66280.110*
N260.33073 (14)0.65078 (13)0.74043 (8)0.0262 (3)
N270.42701 (13)0.63822 (13)0.79259 (8)0.0262 (3)
H270.45170.56740.81390.031*
C280.48066 (16)0.74608 (15)0.80819 (10)0.0276 (3)
C290.41610 (18)0.83397 (16)0.76322 (12)0.0340 (4)
H290.43080.91970.76060.041*
C300.32477 (18)0.77038 (16)0.72253 (11)0.0317 (4)
H300.26610.80760.68680.038*
C310.58927 (17)0.75550 (17)0.86476 (11)0.0324 (4)
C320.6104 (2)0.8911 (2)0.88003 (15)0.0524 (6)
H32A0.63170.93580.83130.079*
H32B0.68200.89830.91590.079*
H32C0.53100.92590.90270.079*
C330.5529 (2)0.6864 (2)0.94078 (11)0.0404 (4)
H33A0.47000.71820.96060.061*
H33B0.62060.69800.97860.061*
H33C0.54490.59900.93170.061*
C340.71368 (19)0.6991 (2)0.83047 (13)0.0434 (5)
H34A0.69800.61360.81880.065*
H34B0.78360.70250.86780.065*
H34C0.73880.74530.78290.065*
N350.16108 (14)0.53483 (13)0.85458 (8)0.0265 (3)
N360.11578 (14)0.64142 (13)0.88234 (8)0.0275 (3)
H360.07750.69920.85380.033*
C370.13576 (16)0.64931 (15)0.95849 (10)0.0264 (3)
C380.19761 (19)0.54193 (17)0.98154 (11)0.0340 (4)
H380.22520.51871.03210.041*
C390.21147 (18)0.47424 (16)0.91543 (10)0.0313 (4)
H390.25140.39560.91400.038*
C400.09855 (17)0.76062 (17)1.00299 (11)0.0312 (4)
C410.0331 (2)0.81112 (19)0.97703 (12)0.0405 (4)
H41A0.02640.84110.92310.061*
H41B0.05980.87861.00950.061*
H41C0.09770.74600.98190.061*
C420.0885 (2)0.7232 (2)1.08944 (12)0.0438 (5)
H42A0.02430.65821.09740.066*
H42B0.06170.79431.11870.066*
H42C0.17320.69321.10730.066*
C430.2043 (2)0.85660 (19)0.99072 (16)0.0505 (6)
H43A0.28740.82201.00810.076*
H43B0.18200.92841.02040.076*
H43C0.21130.88090.93580.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02496 (13)0.02369 (13)0.02849 (14)0.00402 (9)0.00314 (9)0.00194 (9)
Fe20.02206 (12)0.02076 (12)0.02166 (13)0.00110 (8)0.00237 (9)0.00254 (8)
O30.0281 (6)0.0246 (6)0.0284 (6)0.0039 (5)0.0031 (5)0.0029 (5)
Cl40.0490 (3)0.0405 (3)0.0376 (3)0.0117 (2)0.0028 (2)0.0101 (2)
Cl50.0500 (3)0.0337 (2)0.0517 (3)0.0015 (2)0.0109 (2)0.0092 (2)
Cl60.0369 (2)0.0400 (3)0.0558 (3)0.00361 (19)0.0202 (2)0.0083 (2)
Cl70.0280 (2)0.02482 (19)0.0340 (2)0.00477 (15)0.00568 (16)0.00191 (15)
N80.0270 (7)0.0329 (7)0.0241 (7)0.0001 (6)0.0015 (6)0.0027 (6)
N90.0276 (7)0.0343 (7)0.0229 (7)0.0005 (6)0.0000 (6)0.0037 (6)
C100.0286 (9)0.0506 (11)0.0236 (8)0.0056 (8)0.0006 (7)0.0069 (8)
C110.0406 (11)0.0700 (15)0.0233 (9)0.0060 (10)0.0054 (8)0.0008 (9)
C120.0359 (10)0.0513 (11)0.0274 (9)0.0064 (8)0.0043 (7)0.0014 (8)
C130.0345 (10)0.0594 (13)0.0283 (9)0.0030 (9)0.0030 (8)0.0140 (9)
C140.0582 (15)0.111 (2)0.0292 (11)0.0204 (15)0.0001 (10)0.0197 (13)
C150.0350 (10)0.0552 (12)0.0405 (11)0.0006 (9)0.0045 (8)0.0079 (9)
C160.0563 (14)0.0624 (15)0.0631 (16)0.0161 (12)0.0117 (12)0.0314 (13)
N170.0262 (7)0.0222 (6)0.0272 (7)0.0007 (5)0.0010 (5)0.0032 (5)
N180.0242 (7)0.0239 (7)0.0372 (8)0.0003 (5)0.0011 (6)0.0061 (6)
C190.0292 (8)0.0294 (8)0.0300 (9)0.0054 (7)0.0013 (7)0.0039 (7)
C200.0270 (8)0.0351 (9)0.0373 (10)0.0042 (7)0.0043 (7)0.0031 (7)
C210.0257 (8)0.0300 (8)0.0345 (9)0.0016 (6)0.0022 (7)0.0003 (7)
C220.0398 (10)0.0299 (9)0.0478 (12)0.0060 (8)0.0018 (9)0.0108 (8)
C230.113 (2)0.0330 (11)0.0562 (15)0.0079 (13)0.0130 (15)0.0004 (10)
C240.0692 (17)0.0361 (12)0.094 (2)0.0014 (11)0.0262 (15)0.0133 (12)
C250.0610 (16)0.0416 (13)0.121 (3)0.0110 (12)0.0189 (17)0.0214 (15)
N260.0258 (7)0.0259 (7)0.0271 (7)0.0011 (5)0.0051 (5)0.0006 (5)
N270.0257 (7)0.0256 (7)0.0274 (7)0.0005 (5)0.0057 (5)0.0002 (5)
C280.0255 (8)0.0290 (8)0.0285 (8)0.0035 (6)0.0009 (6)0.0054 (7)
C290.0331 (9)0.0243 (8)0.0447 (11)0.0033 (7)0.0048 (8)0.0007 (7)
C300.0317 (9)0.0267 (8)0.0366 (10)0.0008 (7)0.0055 (7)0.0033 (7)
C310.0283 (9)0.0370 (9)0.0327 (9)0.0031 (7)0.0045 (7)0.0091 (7)
C320.0530 (13)0.0443 (12)0.0619 (15)0.0104 (10)0.0190 (11)0.0157 (11)
C330.0359 (10)0.0555 (12)0.0304 (10)0.0031 (9)0.0047 (8)0.0069 (9)
C340.0267 (9)0.0639 (14)0.0408 (11)0.0037 (9)0.0028 (8)0.0128 (10)
N350.0299 (7)0.0242 (7)0.0255 (7)0.0019 (5)0.0006 (6)0.0048 (5)
N360.0319 (7)0.0241 (7)0.0265 (7)0.0047 (5)0.0004 (6)0.0043 (5)
C370.0264 (8)0.0284 (8)0.0248 (8)0.0012 (6)0.0007 (6)0.0054 (6)
C380.0441 (10)0.0334 (9)0.0245 (8)0.0057 (8)0.0014 (7)0.0018 (7)
C390.0410 (10)0.0268 (8)0.0259 (8)0.0044 (7)0.0005 (7)0.0010 (7)
C400.0304 (9)0.0321 (9)0.0317 (9)0.0033 (7)0.0009 (7)0.0110 (7)
C410.0424 (11)0.0416 (10)0.0378 (10)0.0112 (8)0.0038 (8)0.0084 (8)
C420.0483 (12)0.0536 (12)0.0301 (10)0.0109 (9)0.0015 (8)0.0100 (9)
C430.0473 (12)0.0326 (10)0.0726 (16)0.0064 (9)0.0113 (11)0.0186 (10)
Geometric parameters (Å, º) top
Fe1—O31.7710 (11)C24—H24B0.9800
Fe1—Cl52.2168 (5)C24—H24C0.9800
Fe1—Cl62.2214 (5)C25—H25A0.9800
Fe1—Cl42.2256 (5)C25—H25B0.9800
Fe2—O31.8243 (11)C25—H25C0.9800
Fe2—N82.1280 (14)N26—C301.331 (2)
Fe2—N172.1395 (14)N26—N271.3579 (19)
Fe2—N262.1592 (14)N27—C281.348 (2)
Fe2—N352.1407 (14)N27—H270.8800
Fe2—Cl72.3968 (4)C28—C291.384 (3)
N8—C121.333 (2)C28—C311.510 (2)
N8—N91.361 (2)C29—C301.397 (3)
N9—C101.350 (2)C29—H290.9500
N9—H90.8800C30—H300.9500
C10—C111.377 (3)C31—C331.533 (3)
C10—C131.513 (3)C31—C321.536 (3)
C11—C121.396 (3)C31—C341.536 (3)
C11—H110.9500C32—H32A0.9800
C12—H120.9500C32—H32B0.9800
C13—C141.526 (3)C32—H32C0.9800
C13—C151.535 (3)C33—H33A0.9800
C13—C161.538 (3)C33—H33B0.9800
C14—H14A0.9800C33—H33C0.9800
C14—H14B0.9800C34—H34A0.9800
C14—H14C0.9800C34—H34B0.9800
C15—H15A0.9800C34—H34C0.9800
C15—H15B0.9800N35—C391.333 (2)
C15—H15C0.9800N35—N361.3539 (19)
C16—H16A0.9800N36—C371.347 (2)
C16—H16B0.9800N36—H360.8800
C16—H16C0.9800C37—C381.377 (2)
N17—C211.331 (2)C37—C401.510 (2)
N17—N181.3577 (19)C38—C391.395 (3)
N18—C191.346 (2)C38—H380.9500
N18—H180.8800C39—H390.9500
C19—C201.380 (3)C40—C431.527 (3)
C19—C221.515 (3)C40—C411.528 (3)
C20—C211.393 (2)C40—C421.539 (3)
C20—H200.9500C41—H41A0.9800
C21—H210.9500C41—H41B0.9800
C22—C251.507 (3)C41—H41C0.9800
C22—C241.512 (3)C42—H42A0.9800
C22—C231.552 (3)C42—H42B0.9800
C23—H23A0.9800C42—H42C0.9800
C23—H23B0.9800C43—H43A0.9800
C23—H23C0.9800C43—H43B0.9800
C24—H24A0.9800C43—H43C0.9800
O3—Fe1—Cl5107.90 (4)C22—C24—H24B109.5
O3—Fe1—Cl6107.98 (4)H24A—C24—H24B109.5
Cl5—Fe1—Cl6112.14 (2)C22—C24—H24C109.5
O3—Fe1—Cl4106.59 (4)H24A—C24—H24C109.5
Cl5—Fe1—Cl4109.15 (2)H24B—C24—H24C109.5
Cl6—Fe1—Cl4112.80 (2)C22—C25—H25A109.5
O3—Fe2—N889.50 (6)C22—C25—H25B109.5
O3—Fe2—N1790.43 (5)H25A—C25—H25B109.5
N8—Fe2—N1788.92 (6)C22—C25—H25C109.5
O3—Fe2—N3592.12 (5)H25A—C25—H25C109.5
N8—Fe2—N35177.14 (6)H25B—C25—H25C109.5
N17—Fe2—N3593.43 (5)C30—N26—N27104.78 (14)
O3—Fe2—N2693.61 (5)C30—N26—Fe2130.69 (12)
N8—Fe2—N2693.52 (6)N27—N26—Fe2120.34 (10)
N17—Fe2—N26175.29 (5)C28—N27—N26112.60 (14)
N35—Fe2—N2684.02 (5)C28—N27—H27123.7
O3—Fe2—Cl7177.77 (4)N26—N27—H27123.7
N8—Fe2—Cl789.81 (4)N27—C28—C29105.87 (15)
N17—Fe2—Cl787.44 (4)N27—C28—C31122.34 (16)
N35—Fe2—Cl788.66 (4)C29—C28—C31131.79 (16)
N26—Fe2—Cl788.54 (4)C28—C29—C30105.67 (15)
Fe1—O3—Fe2168.50 (8)C28—C29—H29127.2
C12—N8—N9105.06 (15)C30—C29—H29127.2
C12—N8—Fe2133.48 (13)N26—C30—C29111.08 (16)
N9—N8—Fe2120.92 (11)N26—C30—H30124.5
C10—N9—N8112.29 (15)C29—C30—H30124.5
C10—N9—H9123.9C28—C31—C33109.75 (15)
N8—N9—H9123.9C28—C31—C32108.84 (16)
N9—C10—C11105.76 (17)C33—C31—C32109.38 (17)
N9—C10—C13122.54 (18)C28—C31—C34109.27 (15)
C11—C10—C13131.69 (18)C33—C31—C34109.48 (17)
C10—C11—C12106.42 (17)C32—C31—C34110.11 (17)
C10—C11—H11126.8C31—C32—H32A109.5
C12—C11—H11126.8C31—C32—H32B109.5
N8—C12—C11110.47 (18)H32A—C32—H32B109.5
N8—C12—H12124.8C31—C32—H32C109.5
C11—C12—H12124.8H32A—C32—H32C109.5
C10—C13—C14109.07 (19)H32B—C32—H32C109.5
C10—C13—C15110.39 (16)C31—C33—H33A109.5
C14—C13—C15109.40 (18)C31—C33—H33B109.5
C10—C13—C16109.36 (17)H33A—C33—H33B109.5
C14—C13—C16109.5 (2)C31—C33—H33C109.5
C15—C13—C16109.1 (2)H33A—C33—H33C109.5
C13—C14—H14A109.5H33B—C33—H33C109.5
C13—C14—H14B109.5C31—C34—H34A109.5
H14A—C14—H14B109.5C31—C34—H34B109.5
C13—C14—H14C109.5H34A—C34—H34B109.5
H14A—C14—H14C109.5C31—C34—H34C109.5
H14B—C14—H14C109.5H34A—C34—H34C109.5
C13—C15—H15A109.5H34B—C34—H34C109.5
C13—C15—H15B109.5C39—N35—N36104.80 (14)
H15A—C15—H15B109.5C39—N35—Fe2131.21 (12)
C13—C15—H15C109.5N36—N35—Fe2121.81 (11)
H15A—C15—H15C109.5C37—N36—N35112.56 (14)
H15B—C15—H15C109.5C37—N36—H36123.7
C13—C16—H16A109.5N35—N36—H36123.7
C13—C16—H16B109.5N36—C37—C38105.94 (15)
H16A—C16—H16B109.5N36—C37—C40123.14 (15)
C13—C16—H16C109.5C38—C37—C40130.87 (16)
H16A—C16—H16C109.5C37—C38—C39105.86 (16)
H16B—C16—H16C109.5C37—C38—H38127.1
C21—N17—N18104.77 (14)C39—C38—H38127.1
C21—N17—Fe2134.52 (12)N35—C39—C38110.84 (16)
N18—N17—Fe2119.29 (10)N35—C39—H39124.6
C19—N18—N17112.49 (14)C38—C39—H39124.6
C19—N18—H18123.8C37—C40—C43108.89 (15)
N17—N18—H18123.8C37—C40—C41110.30 (15)
N18—C19—C20105.90 (15)C43—C40—C41111.18 (17)
N18—C19—C22121.75 (16)C37—C40—C42108.83 (16)
C20—C19—C22132.32 (17)C43—C40—C42108.97 (18)
C19—C20—C21105.85 (16)C41—C40—C42108.63 (16)
C19—C20—H20127.1C40—C41—H41A109.5
C21—C20—H20127.1C40—C41—H41B109.5
N17—C21—C20110.98 (16)H41A—C41—H41B109.5
N17—C21—H21124.5C40—C41—H41C109.5
C20—C21—H21124.5H41A—C41—H41C109.5
C25—C22—C24111.8 (2)H41B—C41—H41C109.5
C25—C22—C19109.94 (18)C40—C42—H42A109.5
C24—C22—C19110.43 (17)C40—C42—H42B109.5
C25—C22—C23107.0 (2)H42A—C42—H42B109.5
C24—C22—C23108.3 (2)C40—C42—H42C109.5
C19—C22—C23109.27 (17)H42A—C42—H42C109.5
C22—C23—H23A109.5H42B—C42—H42C109.5
C22—C23—H23B109.5C40—C43—H43A109.5
H23A—C23—H23B109.5C40—C43—H43B109.5
C22—C23—H23C109.5H43A—C43—H43B109.5
H23A—C23—H23C109.5C40—C43—H43C109.5
H23B—C23—H23C109.5H43A—C43—H43C109.5
C22—C24—H24A109.5H43B—C43—H43C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O30.882.452.8885 (19)112
N9—H9···Cl40.882.763.6265 (16)170
N18—H18···O30.882.462.9122 (18)113
N18—H18···Cl50.883.033.7117 (16)135
N27—H27···Cl60.882.543.3945 (15)165
N36—H36···Cl70.882.593.1392 (15)122

Experimental details

Crystal data
Chemical formula[Fe2Cl4O(C7H12N2)4]
Mr766.24
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.3075 (1), 10.9284 (1), 17.3424 (2)
α, β, γ (°)87.5556 (4), 88.8661 (4), 89.3366 (5)
V3)1951.25 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.43 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.661, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
44449, 8944, 8129
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.03
No. of reflections8944
No. of parameters401
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.46

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.

Selected geometric parameters (Å, º) top
Fe1—O31.7710 (11)Fe2—N82.1280 (14)
Fe1—Cl52.2168 (5)Fe2—N172.1395 (14)
Fe1—Cl62.2214 (5)Fe2—N262.1592 (14)
Fe1—Cl42.2256 (5)Fe2—N352.1407 (14)
Fe2—O31.8243 (11)Fe2—Cl72.3968 (4)
O3—Fe1—Cl5107.90 (4)N17—Fe2—N3593.43 (5)
O3—Fe1—Cl6107.98 (4)O3—Fe2—N2693.61 (5)
Cl5—Fe1—Cl6112.14 (2)N8—Fe2—N2693.52 (6)
O3—Fe1—Cl4106.59 (4)N17—Fe2—N26175.29 (5)
Cl5—Fe1—Cl4109.15 (2)N35—Fe2—N2684.02 (5)
Cl6—Fe1—Cl4112.80 (2)O3—Fe2—Cl7177.77 (4)
O3—Fe2—N889.50 (6)N8—Fe2—Cl789.81 (4)
O3—Fe2—N1790.43 (5)N17—Fe2—Cl787.44 (4)
N8—Fe2—N1788.92 (6)N35—Fe2—Cl788.66 (4)
O3—Fe2—N3592.12 (5)N26—Fe2—Cl788.54 (4)
N8—Fe2—N35177.14 (6)Fe1—O3—Fe2168.50 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O30.882.452.8885 (19)112
N9—H9···Cl40.882.763.6265 (16)170
N18—H18···O30.882.462.9122 (18)113
N18—H18···Cl50.883.033.7117 (16)135
N27—H27···Cl60.882.543.3945 (15)165
N36—H36···Cl70.882.593.1392 (15)122
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds