Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of three 4-amino derivatives of 7-nitro-2,1,3-benzoxa­diazole with increasing substituent ring size, viz. 7-nitro-4-(pyrrolidin-1-yl)-2,1,3-benzoxa­diazole, C10H10N4O3, 7-nitro-4-(piperidin-1-yl)-2,1,3-benzoxa­diazole, C11H12N4O3, and 4-(azepan-1-yl)-7-nitro-2,1,3-benzoxa­diazole, C12H14N4O3, have been determined in order to understand their photophysical behaviour. All three were found to crystallize in centrosymmetric space groups. There is considerable electron delocalization compared with the parent compound, although the five-membered oxa­diazole ring apparently does not participate in this. The length of the C-N bond between the amino N atom and the 7-nitro­benzoxa­diazole system is found to be shorter than in similar compounds, as is the C-Nnitro bond. In each structure, the nitro group lies in the plane of the benzoxa­diazole unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000173/bm1482sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000173/bm1482Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000173/bm1482IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000173/bm1482IIIsup4.hkl
Contains datablock III

CCDC references: 183012; 183013; 183014

Comment top

Although 4-amino derivatives of 7-nitro-2,1,3-benzoxadiazole (NBD) are considered to be highly efficient fluorophores and have wide applications (Chattopadhyay, 1990), so far only a few crystal structures of these have been reported (Saha & Samanta, 1999a). As benzoxadiazole is considered a complex heterocyclic moiety, the standard input data for initial parameterization for sophisticated theoretical calculations are yet not available. Crystal structure determinations also provide information about whether a crystal exhibits nonlinear optical (NLO) activity: a non-centrosymmetric crystal is a precondition for second-order NLO activity.

It has been shown (Suzuki et al., 1988) that 4-chloro-7-nitrobenzoxadiazole (NBD-chloride) is NLO active. Although the Cl is thought to be part of the π-system and has some electron-donating capacity, the double bonds in the six-membered ring of the benzoxadiazole moiety are localized, i.e. no resonance is detected. It was therefore of interest to determine the structure when this benzoxadiazole unit is attached to a strongly electron-donating group, such as amine, so we report here the crystal structures of three new 4-amino NBD derivatives, 4-nitro-7-(pyrrolidin-1-yl)-2,1,3-benzoxadiazole, (I), 4-nitro-7-(piperidin-1-yl)-2,1,3-benzoxadiazole, (II), and 4-(azepan-1-yl)-7-nitro-2,1,3-benzoxadiazole, (III). \sch

In addition, to follow the details of the structural changes in the intramolecular charge-transfer (ICT) state that accompanies and governs the excited state ICT process, knowledge of ground state crystal structure is important. The present studies were also carried out in order to obtain information on the electron flow and its direction, the change in the order of the C4—N4 bond that connects the amine moiety to the benzoxadiazole subunit in the three derivatives, the pyramidality of the amine N atom, and the change of twist angle with change of substituent amine. It is known that the character of the C4—N4 bond and the configuration of amine N atom determine the photophysical properties of some donor-acceptor (D—A) molecules (Saha & Samanta, 1998). It is also known that the ground state twist angle can be a useful predictor of the excited state conformation (Saha & Samanta, 1999b).

The molecular structures of compounds (I)-(III) are shown in Figs. 1–3, respectively. Unlike the parent compound NBD-chloride, derivatives (I)-(III) are centrosymmetric and show considerable alteration of bond order in the six-membered ring of the benzoxadiazole unit. The C4—C5 bond [1.349 (9) Å] has appreciable double-bond character in NBD-chloride (Suzuki et al., 1988), whereas in the present systems, this bond has considerable single-bond character, with a mean bond length of 1.40 Å. Similarly, the C5—C6 bond in NBD-chloride is 1.435 (9) Å, whereas in (I)-(III) it has an average length of 1.38 Å, indicating that the alteration of bond order of these compounds is due to substitution with a stronger donor.

The C4—N4 bond, which is very important for photophysical behaviour, is found to be considerably shorter in each of (I), (II) and (III). In similar donor-acceptor molecules with ICT states, for example 3,5-dimethyl-4-dimethylaminobenzonitrile, the corresponding C4—N4 bond length is 1.414 (3) Å, and at 173 K it is also twisted by 59.3 (2)° (Heine et al., 1994). However, this is shorter than the corresponding bond in the salt 4-aminobenzonitrile hydrochloride [1.467 (2) Å], which is considered to be a pure single bond (Colapietro et al., 1981). In the case of 4-dimethylaminobenzonitrile (DMABN), the corresponding bond is 1.367 (3) Å, with a twist angle of 10.8 (2)° (Heine et al., 1994), where considerable double-bond character has been predicted on the basis of photophysical properties. For NBD derivatives, the mean C4—N4 length is 1.34 Å. Comparing this with all the data mentioned above, we can conclude that there is a considerable charge flow from donor to acceptor, making the bond appreciably shorter. The double bond character of C4—N4 can also be explained by a formal bond valence approach.

Another noteworthy point is that the C7—N5 bond is considerably shorter in the present NBD derivatives (mean 1.42 Å) compared with NBD-chloride [1.470 (8) Å; Suzuki et al., 1988]. This indicates that the nitro group acts as the acceptor, a conclusion which is supported by the observation that the nitro group is almost coplanar with the benzoxadiazole unit. The adjacent five-membered ring of the benzoxadiazole does not contribute to electron flow, which is evident from the fact that its geometry does not change much on substitution with an amino group. Hence, the dipole moment is directed from the amino to the nitro group, removing the complexity and controversy about the involvement of the benzoxadiazole unit.

Comparing the derivatives studied, it can be seen that (I) has the shortest C4—N4 bond. This is due to the maximum overlap of the amine lone pair with the benzoxadiazole moiety, resulting from the favorable nitrogen conformation retarding rotation around the bond. This observation supports the dynamic NMR data that (I) has a higher barrier to rotation than previously reported compounds (Saha & Samanta, 1998).

The cyclic amino moiety in (II) is found to be in the stable chair conformation. The three angles around the amine N atom indicate the pyramidality at the N atom: in these derivatives, the environment of the amino N atom is almost planar. Furthermore, it can be seen from the data that (III) is more planar than the others. This is due to the lower barrier to inversion for larger rings (Oki, 1985), and also supports the photophysical observations that (III) has the maximum nonradiative rate constant value (Saha & Samanta, 1998).

There is a small increase in the twist angle between the amine and NBD moieties on going from (I) to (III). The maximum twist angle detected for (III) is 10.9 (5)° [τ(C8—N4—C4—C5)], which indicates that the excited state is unlikely to be twisted, contrary to the speculation that a twisted intramolecular charge transfer (TICT) state is involved (Forgues et al., 1993). This supports our earlier findings (Saha & Samanta, 1998).

In summary, from the structure determinations on these three NBD derivatives, we have been able to extract valuable data about the effect of amino substitutions, and some of these data supplement photophysical observations.

Experimental top

Compounds (I)-(III) were prepared according to the general procedure of Saha & Samanta (1998). In a typical synthesis, to a solution of NBD-chloride (1 mmol) in ethyl acetate (3 ml) cooled in an icebath was added dropwise a solution of the amine (1.2 mmol) in ethyl acetate (2 ml). After stirring for 30 min in the ice bath, the mixture was stirred for a further 2 h at room temperature. The product, which appeared as a red precipitate in all cases, was filtered off and purified by column chromatography, using a silica gel column and different proportions of hexane and ethyl acetate as eluent. The purified compounds were recrystallized from absolute ethanol by slow evaporation.

Refinement top

For all three compounds, H atoms were placed geometrically and refined using a riding model with Ueq(H) = 1.2Ueq(C). C—H distances were fixed at 0.97 Å for methylene H and 0.93 Å for aromatic H.

Computing details top

For all compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX6.0 (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. One of the H atoms bound to C9 is wholly obscured by it.
[Figure 2] Fig. 2. A view of the molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. One H atom on each of C9 and C11 is wholly obscured by the parent atom.
[Figure 3] Fig. 3. A view of the molecular structure of (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) 4-nitro-7-(pyrrolidin-1-yl)-2,1,3-benzoxadiazole top
Crystal data top
C10H10N4O3F(000) = 488
Mr = 234.22Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0305 (12) ÅCell parameters from 25 reflections
b = 7.686 (2) Åθ = 11.3–12.6°
c = 18.951 (4) ŵ = 0.12 mm1
β = 93.69 (2)°T = 293 K
V = 1022.0 (4) Å3Plate, red
Z = 40.70 × 0.40 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 08
ω scansk = 09
1792 measured reflectionsl = 2222
1792 independent reflections3 standard reflections every 90 min
973 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.1481P]
where P = (Fo2 + 2Fc2)/3
1792 reflections(Δ/σ)max = 0.012
154 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H10N4O3V = 1022.0 (4) Å3
Mr = 234.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0305 (12) ŵ = 0.12 mm1
b = 7.686 (2) ÅT = 293 K
c = 18.951 (4) Å0.70 × 0.40 × 0.20 mm
β = 93.69 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
1792 measured reflections3 standard reflections every 90 min
1792 independent reflections intensity decay: none
973 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.11Δρmax = 0.17 e Å3
1792 reflectionsΔρmin = 0.17 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2690 (3)0.8573 (3)0.09335 (10)0.0741 (6)
O30.4294 (3)0.5178 (3)0.09702 (11)0.0857 (7)
O40.2182 (3)0.6025 (3)0.16753 (11)0.0862 (7)
N10.1009 (4)0.7768 (3)0.11805 (12)0.0653 (7)
N30.2838 (3)0.8727 (3)0.02154 (11)0.0606 (6)
N40.1732 (3)0.8478 (3)0.12620 (10)0.0490 (6)
N50.2778 (4)0.5912 (3)0.10808 (13)0.0635 (6)
C10.0126 (4)0.7436 (3)0.06054 (12)0.0477 (6)
C30.1267 (3)0.8039 (3)0.00047 (12)0.0450 (6)
C40.0666 (3)0.7902 (3)0.07072 (12)0.0438 (6)
C50.1128 (4)0.7131 (4)0.07570 (13)0.0523 (7)
H50.16120.70240.12000.063*
C60.2204 (4)0.6522 (3)0.01718 (14)0.0541 (7)
H60.33750.60100.02430.065*
C70.1646 (4)0.6630 (3)0.05071 (13)0.0506 (7)
C80.1109 (4)0.8452 (4)0.19888 (13)0.0644 (8)
H8A0.10660.72730.21690.077*
H8B0.01390.89800.20110.077*
C90.2615 (5)0.9508 (5)0.23955 (15)0.0859 (11)
H9A0.22671.07290.23990.103*
H9B0.27980.91000.28790.103*
C100.4362 (5)0.9238 (5)0.20103 (15)0.0814 (10)
H10A0.49900.81620.21580.098*
H10B0.52471.01940.20970.098*
C110.3690 (4)0.9159 (4)0.12478 (13)0.0541 (7)
H11A0.36951.03050.10330.065*
H11B0.44830.83860.09880.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0781 (14)0.0960 (16)0.0503 (11)0.0215 (12)0.0204 (10)0.0017 (11)
O30.0661 (14)0.0942 (18)0.0944 (17)0.0215 (13)0.0123 (12)0.0102 (13)
O40.1051 (18)0.0964 (18)0.0551 (13)0.0156 (14)0.0114 (12)0.0004 (12)
N10.0751 (16)0.0708 (17)0.0505 (13)0.0076 (13)0.0079 (12)0.0022 (12)
N30.0655 (15)0.0697 (16)0.0481 (13)0.0102 (12)0.0150 (10)0.0024 (11)
N40.0518 (13)0.0536 (13)0.0421 (11)0.0012 (10)0.0062 (9)0.0009 (10)
N50.0699 (17)0.0553 (15)0.0630 (16)0.0027 (13)0.0123 (13)0.0009 (12)
C10.0585 (16)0.0430 (15)0.0422 (13)0.0086 (12)0.0081 (12)0.0051 (11)
C30.0475 (14)0.0433 (15)0.0446 (13)0.0006 (12)0.0068 (11)0.0017 (11)
C40.0472 (14)0.0406 (14)0.0442 (14)0.0045 (11)0.0065 (11)0.0035 (11)
C50.0517 (15)0.0585 (17)0.0476 (14)0.0004 (13)0.0096 (11)0.0014 (12)
C60.0449 (15)0.0533 (17)0.0646 (17)0.0004 (12)0.0067 (13)0.0018 (13)
C70.0505 (15)0.0456 (15)0.0549 (16)0.0046 (12)0.0042 (12)0.0002 (12)
C80.078 (2)0.072 (2)0.0436 (15)0.0106 (16)0.0129 (14)0.0018 (14)
C90.101 (3)0.107 (3)0.0489 (17)0.027 (2)0.0033 (17)0.0054 (18)
C100.080 (2)0.101 (3)0.0614 (19)0.017 (2)0.0090 (16)0.0035 (18)
C110.0514 (15)0.0572 (17)0.0534 (15)0.0040 (13)0.0003 (12)0.0000 (13)
Geometric parameters (Å, º) top
O2—N31.363 (3)C5—H50.9300
O2—N11.388 (3)C6—C71.371 (4)
O3—N51.236 (3)C6—H60.9300
O4—N51.230 (3)C8—C91.506 (4)
N1—C11.314 (4)C8—H8A0.9700
N3—C31.310 (3)C8—H8B0.9700
N4—C41.328 (4)C9—C101.484 (5)
N4—C81.472 (3)C9—H9A0.9700
N4—C111.474 (3)C9—H9B0.9700
N5—C71.417 (4)C10—C111.492 (4)
C1—C71.414 (4)C10—H10A0.9700
C1—C31.427 (4)C10—H10B0.9700
C3—C41.443 (3)C11—H11A0.9700
C4—C51.402 (3)C11—H11B0.9700
C5—C61.383 (4)
N3—O2—N1112.6 (2)C1—C7—N5121.7 (3)
C1—N1—O2104.1 (2)N4—C8—C9103.3 (2)
C3—N3—O2104.9 (3)N4—C8—H8A111.1
C4—N4—C8123.3 (2)C9—C8—H8A111.1
C4—N4—C11125.8 (2)N4—C8—H8B111.1
C8—N4—C11110.9 (3)C9—C8—H8B111.1
O4—N5—O3122.4 (3)H8A—C8—H8B109.1
O4—N5—C7117.9 (3)C10—C9—C8104.5 (3)
O3—N5—C7119.7 (3)C10—C9—H9A110.9
N1—C1—C7131.4 (3)C8—C9—H9A110.9
N1—C1—C3109.1 (2)C10—C9—H9B110.9
C7—C1—C3119.5 (2)C8—C9—H9B110.9
N3—C3—C1109.2 (2)H9A—C9—H9B108.9
N3—C3—C4128.1 (3)C9—C10—C11105.1 (3)
C1—C3—C4122.6 (2)C9—C10—H10A110.7
N4—C4—C5123.5 (2)C11—C10—H10A110.7
N4—C4—C3122.1 (2)C9—C10—H10B110.7
C5—C4—C3114.4 (3)C11—C10—H10B110.7
C6—C5—C4122.5 (3)H10A—C10—H10B108.8
C6—C5—H5118.8N4—C11—C10103.6 (3)
C4—C5—H5118.8N4—C11—H11A111.0
C7—C6—C5123.9 (3)C10—C11—H11A111.0
C7—C6—H6118.1N4—C11—H11B111.0
C5—C6—H6118.1C10—C11—H11B111.0
C6—C7—C1117.2 (3)H11A—C11—H11B109.0
C6—C7—N5121.1 (3)
N3—O2—N1—C10.2 (3)C3—C4—C5—C61.3 (4)
N1—O2—N3—C30.3 (3)C4—C5—C6—C70.9 (4)
O2—N1—C1—C7179.8 (3)C5—C6—C7—C10.9 (4)
O2—N1—C1—C30.0 (3)C5—C6—C7—N5177.2 (2)
O2—N3—C3—C10.3 (3)N1—C1—C7—C6178.1 (3)
O2—N3—C3—C4178.3 (2)C3—C1—C7—C62.1 (3)
N1—C1—C3—N30.2 (3)N1—C1—C7—N53.9 (4)
C7—C1—C3—N3179.7 (2)C3—C1—C7—N5176.0 (2)
N1—C1—C3—C4178.5 (2)O4—N5—C7—C6178.7 (2)
C7—C1—C3—C41.7 (4)O3—N5—C7—C60.1 (4)
C8—N4—C4—C53.2 (4)O4—N5—C7—C10.7 (4)
C11—N4—C4—C5174.4 (2)O3—N5—C7—C1178.1 (2)
C8—N4—C4—C3176.2 (2)C4—N4—C8—C9170.2 (3)
C11—N4—C4—C36.2 (4)C11—N4—C8—C911.8 (3)
N3—C3—C4—N41.1 (4)N4—C8—C9—C1029.3 (3)
C1—C3—C4—N4179.5 (2)C8—C9—C10—C1136.5 (4)
N3—C3—C4—C5178.4 (3)C4—N4—C11—C10167.7 (3)
C1—C3—C4—C50.0 (3)C8—N4—C11—C1010.1 (3)
N4—C4—C5—C6179.3 (2)C9—C10—C11—N428.6 (3)
(II) 4-nitro-7-(piperidin-1-yl)-2,1,3-benzoxadiazole top
Crystal data top
C11H12N4O3F(000) = 520
Mr = 248.25Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7644 (19) ÅCell parameters from 25 reflections
b = 21.277 (6) Åθ = 7.8–10.4°
c = 7.788 (6) ŵ = 0.11 mm1
β = 94.22 (5)°T = 293 K
V = 1117.8 (10) Å3Plate, red
Z = 40.40 × 0.29 × 0.16 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.137
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 08
ω scansk = 025
2122 measured reflectionsl = 99
1955 independent reflections3 standard reflections every 90 min
732 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max = 0.005
163 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H12N4O3V = 1117.8 (10) Å3
Mr = 248.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7644 (19) ŵ = 0.11 mm1
b = 21.277 (6) ÅT = 293 K
c = 7.788 (6) Å0.40 × 0.29 × 0.16 mm
β = 94.22 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.137
2122 measured reflections3 standard reflections every 90 min
1955 independent reflections intensity decay: none
732 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
1955 reflectionsΔρmin = 0.28 e Å3
163 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.2708 (6)0.1956 (2)0.5115 (5)0.0705 (13)
O30.8613 (7)0.41196 (19)0.2956 (6)0.0708 (13)
O41.1369 (7)0.3836 (2)0.4337 (6)0.0762 (14)
N11.2214 (7)0.2591 (2)0.4846 (7)0.0627 (15)
N31.1279 (7)0.1568 (2)0.4370 (6)0.0597 (14)
N40.7555 (7)0.1166 (2)0.2282 (6)0.0520 (13)
N50.9771 (8)0.3714 (2)0.3535 (6)0.0555 (13)
C11.0516 (8)0.2576 (3)0.3919 (7)0.0464 (14)
C30.9927 (7)0.1935 (3)0.3611 (6)0.0396 (13)
C40.8069 (8)0.1761 (3)0.2639 (7)0.0427 (13)
C50.6909 (8)0.2287 (3)0.2131 (7)0.0500 (15)
H50.56730.22180.15570.060*
C60.7508 (8)0.2900 (3)0.2441 (7)0.0512 (16)
H60.66640.32210.20350.061*
C70.9263 (8)0.3065 (3)0.3306 (6)0.0433 (13)
C80.5635 (8)0.1013 (3)0.1391 (8)0.0626 (18)
H8A0.58310.08650.02390.075*
H8B0.48200.13890.12920.075*
C90.4588 (8)0.0514 (3)0.2361 (8)0.0561 (16)
H9A0.42070.06880.34400.067*
H9B0.33890.03880.16890.067*
C100.5864 (8)0.0050 (3)0.2723 (7)0.0534 (15)
H10A0.60730.02630.16500.064*
H10B0.51930.03390.34470.064*
C110.7837 (8)0.0128 (3)0.3607 (7)0.0536 (15)
H11A0.86710.02420.37390.064*
H11B0.76450.02920.47450.064*
C120.8844 (7)0.0617 (3)0.2572 (7)0.0496 (15)
H12A1.00800.07440.31850.060*
H12B0.91470.04410.14740.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.053 (3)0.079 (3)0.075 (3)0.004 (2)0.022 (2)0.008 (3)
O30.082 (3)0.056 (3)0.075 (3)0.008 (2)0.006 (3)0.002 (2)
O40.071 (3)0.072 (3)0.084 (3)0.022 (2)0.010 (3)0.010 (3)
N10.053 (3)0.072 (4)0.061 (3)0.006 (3)0.004 (3)0.007 (3)
N30.043 (3)0.070 (3)0.064 (3)0.001 (3)0.015 (2)0.014 (3)
N40.042 (3)0.056 (3)0.056 (3)0.002 (2)0.007 (2)0.000 (3)
N50.064 (4)0.055 (3)0.048 (3)0.002 (3)0.008 (3)0.001 (3)
C10.038 (3)0.062 (4)0.039 (3)0.005 (3)0.000 (3)0.005 (3)
C30.030 (3)0.053 (3)0.035 (3)0.006 (3)0.002 (2)0.004 (3)
C40.037 (3)0.056 (4)0.035 (3)0.003 (3)0.003 (2)0.004 (3)
C50.045 (3)0.059 (4)0.045 (3)0.001 (3)0.006 (3)0.004 (3)
C60.053 (4)0.061 (4)0.039 (3)0.003 (3)0.002 (3)0.008 (3)
C70.042 (3)0.051 (3)0.037 (3)0.007 (3)0.004 (3)0.004 (3)
C80.043 (3)0.063 (4)0.079 (5)0.002 (3)0.014 (3)0.003 (4)
C90.041 (3)0.069 (4)0.058 (4)0.005 (3)0.001 (3)0.012 (3)
C100.049 (3)0.065 (4)0.047 (4)0.001 (3)0.005 (3)0.005 (3)
C110.054 (4)0.058 (4)0.048 (3)0.004 (3)0.002 (3)0.002 (3)
C120.039 (3)0.054 (4)0.056 (4)0.000 (3)0.001 (3)0.007 (3)
Geometric parameters (Å, º) top
O2—N31.368 (6)C6—C71.367 (7)
O2—N11.402 (6)C6—H60.9300
O3—N51.229 (6)C8—C91.510 (8)
O4—N51.235 (6)C8—H8A0.9700
N1—C11.311 (6)C8—H8B0.9700
N3—C31.310 (6)C9—C101.493 (7)
N4—C41.337 (6)C9—H9A0.9700
N4—C81.463 (6)C9—H9B0.9700
N4—C121.465 (6)C10—C111.503 (7)
N5—C71.431 (7)C10—H10A0.9700
C1—C71.402 (7)C10—H10B0.9700
C1—C31.437 (7)C11—C121.510 (7)
C3—C41.466 (7)C11—H11A0.9700
C4—C51.406 (7)C11—H11B0.9700
C5—C61.382 (7)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
N3—O2—N1111.4 (4)C9—C8—H8A109.5
C1—N1—O2104.4 (5)N4—C8—H8B109.5
C3—N3—O2106.2 (5)C9—C8—H8B109.5
C4—N4—C8121.2 (5)H8A—C8—H8B108.1
C4—N4—C12125.5 (4)C10—C9—C8112.0 (5)
C8—N4—C12113.2 (4)C10—C9—H9A109.2
O3—N5—O4123.3 (5)C8—C9—H9A109.2
O3—N5—C7119.4 (5)C10—C9—H9B109.2
O4—N5—C7117.3 (5)C8—C9—H9B109.2
N1—C1—C7130.8 (5)H9A—C9—H9B107.9
N1—C1—C3109.6 (5)C9—C10—C11111.5 (5)
C7—C1—C3119.6 (5)C9—C10—H10A109.3
N3—C3—C1108.3 (5)C11—C10—H10A109.3
N3—C3—C4128.8 (5)C9—C10—H10B109.3
C1—C3—C4122.8 (5)C11—C10—H10B109.3
N4—C4—C5124.3 (5)H10A—C10—H10B108.0
N4—C4—C3123.1 (5)C10—C11—C12110.4 (5)
C5—C4—C3112.6 (5)C10—C11—H11A109.6
C6—C5—C4123.5 (5)C12—C11—H11A109.6
C6—C5—H5118.3C10—C11—H11B109.6
C4—C5—H5118.3C12—C11—H11B109.6
C7—C6—C5124.1 (5)H11A—C11—H11B108.1
C7—C6—H6118.0N4—C12—C11110.2 (4)
C5—C6—H6118.0N4—C12—H12A109.6
C6—C7—C1117.3 (5)C11—C12—H12A109.6
C6—C7—N5120.0 (5)N4—C12—H12B109.6
C1—C7—N5122.6 (5)C11—C12—H12B109.6
N4—C8—C9110.6 (5)H12A—C12—H12B108.1
N4—C8—H8A109.5
N3—O2—N1—C11.1 (6)C4—C5—C6—C71.7 (9)
N1—O2—N3—C31.3 (6)C5—C6—C7—C10.3 (8)
O2—N1—C1—C7177.4 (5)C5—C6—C7—N5178.8 (5)
O2—N1—C1—C30.4 (6)N1—C1—C7—C6176.4 (6)
O2—N3—C3—C11.0 (6)C3—C1—C7—C60.4 (7)
O2—N3—C3—C4179.3 (5)N1—C1—C7—N54.5 (9)
N1—C1—C3—N30.4 (6)C3—C1—C7—N5178.7 (5)
C7—C1—C3—N3177.0 (5)O3—N5—C7—C60.4 (8)
N1—C1—C3—C4178.8 (5)O4—N5—C7—C6179.5 (5)
C7—C1—C3—C41.4 (8)O3—N5—C7—C1179.5 (5)
C8—N4—C4—C53.5 (9)O4—N5—C7—C11.4 (8)
C12—N4—C4—C5170.6 (5)C4—N4—C8—C9129.1 (5)
C8—N4—C4—C3176.5 (5)C12—N4—C8—C956.1 (6)
C12—N4—C4—C39.3 (9)N4—C8—C9—C1052.9 (6)
N3—C3—C4—N45.1 (9)C8—C9—C10—C1153.1 (6)
C1—C3—C4—N4176.9 (5)C9—C10—C11—C1254.5 (6)
N3—C3—C4—C5175.0 (5)C4—N4—C12—C11127.3 (6)
C1—C3—C4—C53.0 (8)C8—N4—C12—C1158.1 (6)
N4—C4—C5—C6176.8 (5)C10—C11—C12—N456.2 (6)
C3—C4—C5—C63.1 (8)
(III) 4-(azepan-1-yl)-7-nitro-2,1,3-benzoxadiazole top
Crystal data top
C12H14N4O3F(000) = 552
Mr = 262.27Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4909 (16) ÅCell parameters from 25 reflections
b = 10.8002 (14) Åθ = 9.3–10.6°
c = 15.1001 (19) ŵ = 0.11 mm1
β = 98.958 (14)°T = 293 K
V = 1206.7 (3) Å3Plate, red
Z = 40.32 × 0.21 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 08
ω scansk = 012
2115 measured reflectionsl = 1717
2115 independent reflections3 standard reflections every 90 min
1043 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0918P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2115 reflectionsΔρmax = 0.22 e Å3
173 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C12H14N4O3V = 1206.7 (3) Å3
Mr = 262.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4909 (16) ŵ = 0.11 mm1
b = 10.8002 (14) ÅT = 293 K
c = 15.1001 (19) Å0.32 × 0.21 × 0.10 mm
β = 98.958 (14)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
2115 measured reflections3 standard reflections every 90 min
2115 independent reflections intensity decay: none
1043 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2115 reflectionsΔρmin = 0.20 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.8728 (4)0.1494 (2)0.06047 (15)0.0596 (7)
O30.4812 (4)0.0492 (2)0.27555 (16)0.0706 (8)
O40.6308 (4)0.1977 (2)0.20052 (18)0.0749 (9)
N10.7892 (4)0.1647 (2)0.02781 (18)0.0523 (8)
N30.8594 (4)0.0311 (2)0.09053 (17)0.0503 (8)
N40.7419 (4)0.2345 (2)0.08964 (17)0.0465 (7)
N50.5748 (4)0.0910 (3)0.20698 (18)0.0533 (8)
C10.7237 (4)0.0540 (3)0.0513 (2)0.0398 (7)
C30.7682 (4)0.0303 (3)0.02302 (19)0.0382 (7)
C40.7099 (4)0.1577 (3)0.0190 (2)0.0426 (8)
C50.6087 (5)0.1927 (3)0.0638 (2)0.0493 (9)
H50.56800.27390.07100.059*
C60.5672 (4)0.1114 (3)0.1349 (2)0.0483 (8)
H60.49890.14080.18750.058*
C70.6217 (4)0.0107 (3)0.13214 (19)0.0446 (8)
C80.6450 (5)0.3529 (3)0.0889 (3)0.0588 (10)
H8A0.62380.37130.14930.071*
H8B0.52830.34470.05130.071*
C90.7461 (6)0.4605 (3)0.0551 (3)0.0702 (12)
H9A0.79170.43450.00130.084*
H9B0.66160.52770.03850.084*
C100.9029 (6)0.5090 (3)0.1219 (3)0.0740 (12)
H10A0.96600.57150.09260.089*
H10B0.85480.54900.17060.089*
C111.0379 (5)0.4115 (3)0.1611 (3)0.0688 (11)
H11A1.14000.45230.19680.083*
H11B1.08250.36880.11240.083*
C120.9609 (5)0.3161 (3)0.2194 (3)0.0620 (10)
H12A1.05820.28710.26460.074*
H12B0.87340.35720.25030.074*
C130.8711 (5)0.2050 (3)0.1709 (2)0.0560 (9)
H13A0.96400.15110.15430.067*
H13B0.80790.15940.21200.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0781 (17)0.0429 (13)0.0536 (14)0.0124 (12)0.0033 (13)0.0003 (11)
O30.0793 (19)0.0814 (19)0.0446 (14)0.0087 (15)0.0110 (14)0.0003 (13)
O40.096 (2)0.0536 (16)0.0683 (18)0.0026 (15)0.0074 (15)0.0182 (13)
N10.0625 (19)0.0471 (17)0.0459 (16)0.0037 (14)0.0039 (14)0.0012 (13)
N30.0648 (19)0.0384 (15)0.0454 (15)0.0111 (14)0.0014 (14)0.0014 (12)
N40.0513 (16)0.0389 (15)0.0475 (15)0.0031 (12)0.0022 (13)0.0007 (12)
N50.0519 (18)0.062 (2)0.0448 (17)0.0109 (15)0.0033 (14)0.0028 (14)
C10.0383 (17)0.0390 (17)0.0432 (17)0.0035 (14)0.0101 (14)0.0004 (14)
C30.0399 (17)0.0365 (16)0.0383 (16)0.0024 (14)0.0062 (14)0.0044 (13)
C40.0427 (18)0.0406 (17)0.0449 (17)0.0007 (14)0.0085 (14)0.0017 (15)
C50.054 (2)0.0419 (18)0.049 (2)0.0092 (16)0.0005 (16)0.0076 (15)
C60.048 (2)0.0496 (19)0.0441 (18)0.0006 (16)0.0020 (15)0.0089 (15)
C70.0399 (18)0.0536 (19)0.0390 (17)0.0024 (15)0.0025 (14)0.0027 (15)
C80.052 (2)0.0454 (19)0.076 (2)0.0111 (17)0.0037 (19)0.0055 (18)
C90.078 (3)0.044 (2)0.085 (3)0.011 (2)0.004 (2)0.0040 (19)
C100.073 (3)0.047 (2)0.106 (3)0.006 (2)0.024 (2)0.014 (2)
C110.058 (2)0.058 (2)0.090 (3)0.007 (2)0.008 (2)0.018 (2)
C120.067 (2)0.058 (2)0.060 (2)0.0007 (19)0.0033 (19)0.0159 (18)
C130.067 (2)0.053 (2)0.0459 (19)0.0031 (18)0.0000 (18)0.0011 (16)
Geometric parameters (Å, º) top
O2—N31.365 (3)C8—C91.518 (5)
O2—N11.392 (4)C8—H8A0.9700
O3—N51.242 (3)C8—H8B0.9700
O4—N51.226 (4)C9—C101.518 (6)
N1—C11.320 (4)C9—H9A0.9700
N3—C31.314 (4)C9—H9B0.9700
N4—C41.344 (4)C10—C111.515 (5)
N4—C81.469 (4)C10—H10A0.9700
N4—C131.475 (4)C10—H10B0.9700
N5—C71.424 (4)C11—C121.526 (5)
C1—C71.415 (4)C11—H11A0.9700
C1—C31.443 (4)C11—H11B0.9700
C3—C41.442 (4)C12—C131.508 (5)
C4—C51.409 (4)C12—H12A0.9700
C5—C61.384 (4)C12—H12B0.9700
C5—H50.9300C13—H13A0.9700
C6—C71.379 (4)C13—H13B0.9700
C6—H60.9300
N3—O2—N1112.6 (2)H8A—C8—H8B107.7
C1—N1—O2104.0 (2)C10—C9—C8114.5 (3)
C3—N3—O2105.7 (2)C10—C9—H9A108.6
C4—N4—C8120.3 (3)C8—C9—H9A108.6
C4—N4—C13122.7 (3)C10—C9—H9B108.6
C8—N4—C13117.0 (3)C8—C9—H9B108.6
O4—N5—O3123.4 (3)H9A—C9—H9B107.6
O4—N5—C7118.1 (3)C11—C10—C9114.9 (3)
O3—N5—C7118.5 (3)C11—C10—H10A108.6
N1—C1—C7131.2 (3)C9—C10—H10A108.6
N1—C1—C3109.3 (3)C11—C10—H10B108.6
C7—C1—C3119.4 (3)C9—C10—H10B108.6
N3—C3—C4129.1 (3)H10A—C10—H10B107.5
N3—C3—C1108.3 (3)C10—C11—C12113.9 (3)
C4—C3—C1122.5 (3)C10—C11—H11A108.8
N4—C4—C5122.9 (3)C12—C11—H11A108.8
N4—C4—C3122.7 (3)C10—C11—H11B108.8
C5—C4—C3114.3 (3)C12—C11—H11B108.8
C6—C5—C4122.9 (3)H11A—C11—H11B107.7
C6—C5—H5118.6C13—C12—C11116.0 (3)
C4—C5—H5118.6C13—C12—H12A108.3
C7—C6—C5123.6 (3)C11—C12—H12A108.3
C7—C6—H6118.2C13—C12—H12B108.3
C5—C6—H6118.2C11—C12—H12B108.3
C6—C7—C1117.4 (3)H12A—C12—H12B107.4
C6—C7—N5121.5 (3)N4—C13—C12114.6 (3)
C1—C7—N5121.1 (3)N4—C13—H13A108.6
N4—C8—C9113.4 (3)C12—C13—H13A108.6
N4—C8—H8A108.9N4—C13—H13B108.6
C9—C8—H8A108.9C12—C13—H13B108.6
N4—C8—H8B108.9H13A—C13—H13B107.6
C9—C8—H8B108.9
N3—O2—N1—C10.2 (4)C4—C5—C6—C70.6 (5)
N1—O2—N3—C30.1 (4)C5—C6—C7—C10.7 (5)
O2—N1—C1—C7178.6 (3)C5—C6—C7—N5179.7 (3)
O2—N1—C1—C30.3 (3)N1—C1—C7—C6177.8 (3)
O2—N3—C3—C4177.5 (3)C3—C1—C7—C61.0 (4)
O2—N3—C3—C10.1 (3)N1—C1—C7—N51.1 (5)
N1—C1—C3—N30.3 (4)C3—C1—C7—N5179.9 (3)
C7—C1—C3—N3178.8 (3)O4—N5—C7—C6178.5 (3)
N1—C1—C3—C4177.9 (3)O3—N5—C7—C60.7 (5)
C7—C1—C3—C41.1 (4)O4—N5—C7—C12.6 (5)
C8—N4—C4—C510.9 (5)O3—N5—C7—C1178.2 (3)
C13—N4—C4—C5169.9 (3)C4—N4—C8—C993.0 (4)
C8—N4—C4—C3165.7 (3)C13—N4—C8—C987.8 (4)
C13—N4—C4—C313.4 (5)N4—C8—C9—C1076.2 (4)
N3—C3—C4—N41.1 (5)C8—C9—C10—C1152.7 (5)
C1—C3—C4—N4176.0 (3)C9—C10—C11—C1265.6 (5)
N3—C3—C4—C5178.0 (3)C10—C11—C12—C1387.6 (4)
C1—C3—C4—C50.9 (4)C4—N4—C13—C12150.0 (3)
N4—C4—C5—C6176.3 (3)C8—N4—C13—C1230.8 (4)
C3—C4—C5—C60.6 (5)C11—C12—C13—N447.6 (5)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC10H10N4O3C11H12N4O3C12H14N4O3
Mr234.22248.25262.27
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)7.0305 (12), 7.686 (2), 18.951 (4)6.7644 (19), 21.277 (6), 7.788 (6)7.4909 (16), 10.8002 (14), 15.1001 (19)
β (°) 93.69 (2) 94.22 (5) 98.958 (14)
V3)1022.0 (4)1117.8 (10)1206.7 (3)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.120.110.11
Crystal size (mm)0.70 × 0.40 × 0.200.40 × 0.29 × 0.160.32 × 0.21 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1792, 1792, 973 2122, 1955, 732 2115, 2115, 1043
Rint0.0000.1370.000
(sin θ/λ)max1)0.5940.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.130, 1.11 0.069, 0.224, 1.05 0.051, 0.174, 1.03
No. of reflections179219552115
No. of parameters154163173
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.170.25, 0.280.22, 0.20

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal3.5 (Hall et al., 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX6.0 (McArdle, 1995), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
N4—C41.328 (4)N5—C71.417 (4)
C4—N4—C8123.3 (2)C8—N4—C11110.9 (3)
C4—N4—C11125.8 (2)
C8—N4—C4—C53.2 (4)O3—N5—C7—C60.1 (4)
Selected geometric parameters (Å, º) for (II) top
N4—C41.337 (6)N5—C71.431 (7)
C4—N4—C8121.2 (5)C8—N4—C12113.2 (4)
C4—N4—C12125.5 (4)
C8—N4—C4—C53.5 (9)O3—N5—C7—C60.4 (8)
Selected geometric parameters (Å, º) for (III) top
N4—C41.344 (4)N5—C71.424 (4)
C4—N4—C8120.3 (3)C8—N4—C13117.0 (3)
C4—N4—C13122.7 (3)
C8—N4—C4—C510.9 (5)O3—N5—C7—C60.7 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds