Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mol­ecule, [Mo{P(C6H5)2(C6H4F)}(HNC5H10)(CO)4] or [Mo(C18H14FP)(C5H11N)(CO)4], has irregular octahedral geometry about the Mo atom. The mol­ecules form a complicated hydrogen-bonded network comprising C—H...O, C—H...F and C—H...π hydrogen bonds and π–π interactions. The C—H...π and π–π interactions form chains containing C—H...π/π–π dimers linked via C—H...π interactions and the chains are linked into a three-dimensional network via C—H...O and C—H...F hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003614/bm1444sup1.cif
Contains datablocks gcs12am, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003614/bm1444Isup2.hkl
Contains datablock I

CCDC reference: 166961

Comment top

The molybdenum(0) complex cis-[Mo(CO)4(HNC5H10)2] is a convenient precursor for a range of cis-[Mo(CO)4L2] (L = phosphine, phosphite etc) complexes. Structural studies on a wide range of such complexes have been reported. However, to date, the structure of only one other intermediate piperidine–phosphine complex, namely cis-[Mo((CO)4(HNC5H10)(PR3)], has been reported (Cotton et al., 1982a). A diffraction study of cis-tetracarbonyl[(4-fluorophenyl)diphenylphosphine-P](piperidine-N)- molybdenum(0), (I) (Fig. 1), reveals a similar structure to that of [Mo(CO)4(HNC5H10)(PPhMe2)] [(II); Cotton et al., 1982b], but with a significantly smaller P—Mo—N angle [86.28 (7)° for (I) versus 90.77 (7)° for (II); see Table 1]. The piperidine ligand of (I) exhibits the expected chair conformation, and the distances and angles of this ligand are similar to those found for (II).

The geometry about the P atom is distorted tetrahedral and similar to the analogous complex cis-[Mo(CO)4{P(C6H4F-4)3}2] [(III); Alyea et al., 1994]. The molecules of (I) are involved in a number of C—H···O intermolcular interactions from both the piperidine and the phenyl groups, forming a three-dimensional network (see Table 2). The ability of C—H to act as a hydrogen-bond donor to oxygen was established by Taylor & Kennard (1982). They showed that C—H···O interactions (i) are essentially electrostatic in nature, (ii) show C···O distances ranging from 3 to 4 Å and (iii) are likely to be linear. The phosphine ligands are involved in C—H···π and ππ hydrogen-bond interactions with contacts from the ring centres to H atoms of 3.5 and 3.1 Å, respectively. These C—H···π and ππ interactions combine to form chains along the c axis and these chains can be thought of as containing C—H···π/ππ dimers linked via C—H···π interactions. These C—H···π/ππ interactions between the phenyl rings of phenyl phosphines are well known and have been extensively investigated by Dance and co-workers (Dance & Scudder, 1995, 1996a,b; Lewis & Dance, 2000). The steric demands of the Mo coordination sphere promote formation of an unusual intramolecular N—H···π hydrogen bond between one of the phenyl rings and the N atom of the piperidine moeity. The fluoro substitutent of the 4-fluorophenyl ring is disorderd over two rings, with a 58% occupancy for the major position, which is involved in an intermolecular C—H···F interaction with the piperidine moeity (Table 2). A comparison of the Mo—P bond lengths for (I) and (II) (Cotton et al., 1982b), and the related complex (III) (Alyea et al., 1994), which contains parafluorophenyl groups, shows that the Mo—P bond in (I) is shorter than in (II); the values are 2.5670 (10) and 2.576 (2) Å, respectively, and are consistent with the Mo—P bond length of 2.5644 (4) Å in (III). Evidently, while the presence of an F atom in the para position of the phenyl ring has no effect upon the P—C distances and P—C—P angles, it does reduce the Mo—P distance significantly; this is consistent with the steric argument put forward by Alyea et al. (1994).

Related literature top

For related literature, see: Alyea et al. (1994); Cotton et al. (1982a, 1982b); Dance & Scudder (1995, 1996a, 1996b); Flack (1983); Lewis & Dance (2000); Taylor & Kennard (1982).

Experimental top

The title complex was obtained in small yield as a by-product of the reaction between cis-[Mo(CO)4(HNC5H10)2] and two equivalents of PPh2(C6H4F-4) in dichloromethane. Crystals were obtained by cooling the reaction mixture to 273 K and were separated manually from those of cis-[Mo(CO)4{PPh2(C6H4F-4)}2].

Refinement top

Analysis of the difference map and the displacement parameters of the (4-fluorophenyl)diphenylphosphine ligand revealed that the benzene ring with the para-fluoro substituent has two different orientations relative to the piperidine ligand. This has been modelled as a disorder of the F atom over the two rings, with an occupancy factor of 58.8 (7)% for the major component. Refinement of the Flack (1983) parameter showed the crystal to be racemically twinned, with 27 (3)% occupying the minor configuration within the crystal. [Please supply number of Friedel pairs used.] H atoms were added at idealized positions 0.93 Å from phenyl C atoms, 0.97 Å from methylene C atoms and 0.91 Å from N21; they were then refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. The minor disorder component is not shown for clarity.
(I) top
Crystal data top
[Mo(C18H14F)(C5H11N)(CO)4]F(000) = 1168
Mr = 573.39Dx = 1.454 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 13.601 (3) ÅCell parameters from 6006 reflections
b = 10.981 (3) Åθ = 2–24°
c = 17.973 (4) ŵ = 0.60 mm1
β = 102.598 (6)°T = 301 K
V = 2619.9 (11) Å3Block, pale yellow
Z = 40.32 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4597 independent reflections
Radiation source: fine-focus sealed tube4121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1616
Tmin = 0.831, Tmax = 0.899k = 1213
12823 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
4597 reflectionsΔρmax = 0.33 e Å3
327 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.27 (3)
Crystal data top
[Mo(C18H14F)(C5H11N)(CO)4]V = 2619.9 (11) Å3
Mr = 573.39Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.601 (3) ŵ = 0.60 mm1
b = 10.981 (3) ÅT = 301 K
c = 17.973 (4) Å0.32 × 0.19 × 0.18 mm
β = 102.598 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4121 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.899Rint = 0.048
12823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.33 e Å3
S = 1.00Δρmin = 0.21 e Å3
4597 reflectionsAbsolute structure: Flack (1983)
327 parametersAbsolute structure parameter: 0.27 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.482828 (19)0.18247 (3)0.220565 (14)0.04238 (9)
P10.36045 (7)0.26762 (8)0.29794 (5)0.0446 (2)
C11A0.2316 (3)0.2621 (3)0.2411 (2)0.0487 (9)
C12A0.1603 (2)0.1838 (6)0.25977 (19)0.0601 (8)
H12A0.17470.14290.30620.072*
C13A0.0679 (3)0.1659 (7)0.2099 (3)0.0784 (15)
H13A0.02070.11310.22270.094*
C14A0.0467 (4)0.2262 (5)0.1420 (3)0.0781 (15)0.412 (7)
F14A0.0423 (5)0.2111 (8)0.0934 (5)0.117 (4)0.412 (7)
C14D0.0467 (4)0.2262 (5)0.1420 (3)0.0781 (15)0.588 (7)
H14D0.01490.21290.10860.094*0.588 (7)
C15A0.1125 (4)0.3041 (5)0.1222 (3)0.0714 (12)
H15A0.09550.34620.07630.086*
C16A0.2049 (3)0.3217 (4)0.1699 (2)0.0596 (10)
H16A0.25100.37400.15510.072*
C11B0.3872 (3)0.4276 (3)0.3255 (2)0.0483 (9)
C12B0.4774 (3)0.4489 (4)0.3787 (2)0.0633 (11)
H12B0.51870.38380.39840.076*
C13B0.5055 (4)0.5663 (5)0.4021 (3)0.0782 (15)
H13B0.56610.58010.43670.094*
C14B0.4440 (5)0.6623 (5)0.3743 (3)0.0847 (16)0.412 (7)
H14B0.46210.74100.39110.102*0.412 (7)
C14E0.4440 (5)0.6623 (5)0.3743 (3)0.0847 (16)0.588 (7)
F14E0.4692 (5)0.7723 (5)0.4014 (4)0.118 (3)0.588 (7)
C15B0.3572 (4)0.6430 (4)0.3225 (3)0.0801 (15)
H15B0.31650.70890.30330.096*
C16B0.3280 (3)0.5266 (4)0.2976 (2)0.0602 (11)
H16B0.26810.51500.26180.072*
C11C0.3441 (3)0.2047 (4)0.38868 (19)0.0501 (10)
C12C0.2965 (4)0.2711 (4)0.4358 (2)0.0726 (12)
H12C0.27610.35060.42270.087*
C13C0.2787 (5)0.2203 (5)0.5026 (3)0.0829 (17)
H13C0.24590.26540.53370.100*
C14C0.3093 (4)0.1055 (6)0.5221 (3)0.0836 (17)
H14C0.29760.07240.56700.100*
C15C0.3568 (4)0.0374 (5)0.4774 (3)0.0949 (17)
H15C0.37690.04180.49150.114*
C16C0.3752 (4)0.0878 (5)0.4098 (3)0.0744 (13)
H16C0.40850.04210.37930.089*
C10.5372 (3)0.0343 (4)0.2864 (2)0.0529 (10)
O10.5756 (3)0.0456 (3)0.32094 (18)0.0788 (9)
C20.5693 (3)0.1307 (3)0.1515 (2)0.0535 (9)
O20.6223 (3)0.1050 (3)0.11212 (19)0.0812 (9)
C30.5951 (3)0.2785 (4)0.2782 (2)0.0515 (9)
O30.6625 (2)0.3375 (3)0.30974 (17)0.0731 (8)
C40.4545 (3)0.3324 (4)0.1538 (2)0.0569 (10)
O40.4483 (3)0.4191 (3)0.11827 (19)0.0900 (11)
N210.3457 (2)0.0726 (3)0.15121 (16)0.0487 (7)
H210.29030.11470.15710.058*
C220.3322 (4)0.0510 (4)0.1790 (2)0.0746 (13)
H22A0.33230.04710.23290.089*
H22B0.38890.10100.17310.089*
C230.2359 (4)0.1108 (5)0.1375 (3)0.0928 (17)
H23A0.23350.19350.15600.111*
H23B0.17890.06690.14860.111*
C240.2270 (4)0.1135 (5)0.0523 (2)0.0797 (14)
H24A0.27740.16790.04010.096*
H24B0.16100.14350.02730.096*
C250.2419 (4)0.0114 (5)0.0248 (2)0.0840 (15)
H25A0.18540.06210.03010.101*
H25B0.24330.00800.02890.101*
C260.3388 (4)0.0686 (4)0.0686 (2)0.0771 (14)
H26A0.39540.02260.05860.093*
H26B0.34360.15090.05010.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.04345 (15)0.04365 (14)0.04083 (14)0.00124 (19)0.01087 (10)0.00172 (17)
P10.0468 (5)0.0471 (5)0.0405 (5)0.0025 (4)0.0110 (4)0.0015 (4)
C11A0.042 (2)0.052 (2)0.051 (2)0.0035 (18)0.0098 (17)0.0059 (17)
C12A0.055 (2)0.070 (2)0.0581 (19)0.004 (4)0.0183 (16)0.005 (3)
C13A0.051 (2)0.098 (4)0.090 (3)0.014 (3)0.024 (2)0.020 (3)
C14A0.055 (3)0.094 (4)0.080 (3)0.009 (2)0.000 (2)0.018 (3)
F14A0.067 (4)0.126 (9)0.134 (6)0.007 (5)0.026 (4)0.024 (5)
C14D0.055 (3)0.094 (4)0.080 (3)0.009 (2)0.000 (2)0.018 (3)
C15A0.065 (3)0.076 (3)0.064 (3)0.011 (2)0.007 (2)0.001 (2)
C16A0.053 (2)0.065 (3)0.061 (3)0.003 (2)0.011 (2)0.011 (2)
C11B0.051 (2)0.052 (2)0.047 (2)0.0038 (18)0.0200 (18)0.0025 (17)
C12B0.070 (3)0.066 (3)0.054 (2)0.002 (2)0.015 (2)0.010 (2)
C13B0.078 (4)0.084 (4)0.071 (3)0.013 (3)0.014 (3)0.024 (3)
C14B0.101 (4)0.064 (4)0.103 (4)0.019 (3)0.052 (3)0.026 (3)
C14E0.101 (4)0.064 (4)0.103 (4)0.019 (3)0.052 (3)0.026 (3)
F14E0.146 (6)0.065 (3)0.156 (6)0.030 (4)0.059 (5)0.031 (4)
C15B0.082 (3)0.059 (3)0.106 (4)0.008 (2)0.035 (3)0.003 (2)
C16B0.055 (3)0.053 (2)0.075 (3)0.004 (2)0.019 (2)0.002 (2)
C11C0.051 (2)0.058 (3)0.0420 (17)0.0004 (19)0.0117 (15)0.0019 (18)
C12C0.104 (4)0.066 (3)0.054 (2)0.013 (3)0.030 (2)0.007 (2)
C13C0.109 (4)0.095 (4)0.052 (3)0.001 (3)0.035 (3)0.001 (3)
C14C0.081 (4)0.117 (5)0.058 (3)0.003 (3)0.028 (3)0.027 (3)
C15C0.096 (4)0.096 (4)0.100 (4)0.019 (3)0.037 (3)0.048 (3)
C16C0.082 (3)0.075 (3)0.074 (3)0.019 (3)0.036 (3)0.022 (2)
C10.055 (3)0.055 (2)0.051 (2)0.002 (2)0.018 (2)0.006 (2)
O10.094 (2)0.0621 (19)0.077 (2)0.0230 (19)0.0100 (18)0.0133 (17)
C20.061 (2)0.047 (2)0.055 (2)0.0079 (17)0.018 (2)0.0071 (17)
O20.093 (2)0.0738 (19)0.093 (2)0.0014 (18)0.056 (2)0.0147 (18)
C30.055 (3)0.057 (2)0.044 (2)0.002 (2)0.0127 (18)0.0017 (18)
O30.0556 (18)0.084 (2)0.074 (2)0.0145 (17)0.0021 (15)0.0158 (17)
C40.051 (2)0.063 (3)0.054 (2)0.008 (2)0.0045 (19)0.001 (2)
O40.094 (2)0.074 (2)0.090 (2)0.0173 (19)0.0064 (19)0.036 (2)
N210.0497 (19)0.0497 (18)0.0477 (17)0.0021 (14)0.0126 (14)0.0047 (14)
C220.093 (3)0.072 (3)0.054 (2)0.030 (3)0.006 (2)0.008 (2)
C230.108 (4)0.097 (4)0.065 (3)0.060 (3)0.001 (3)0.007 (3)
C240.090 (3)0.077 (3)0.070 (3)0.026 (3)0.014 (3)0.024 (3)
C250.095 (4)0.100 (4)0.050 (3)0.033 (3)0.002 (2)0.005 (2)
C260.099 (4)0.079 (3)0.048 (2)0.039 (3)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Mo1—C12.053 (5)N21—C221.472 (5)
Mo1—C21.971 (4)C22—C231.509 (6)
Mo1—C31.956 (4)C23—C241.508 (6)
Mo1—C42.024 (4)C24—C251.487 (7)
Mo1—N212.339 (3)C25—C261.516 (6)
Mo1—P12.5670 (10)N21—H210.91
P1—C11A1.827 (4)C12A—H12A0.93
P1—C11B1.840 (4)C12B—H12B0.93
P1—C11C1.829 (4)C12C—H12C0.93
C11A—C12A1.391 (6)C13A—H13A0.93
C11A—C16A1.411 (5)C13B—H13B0.93
C12A—C13A1.390 (5)C13C—H13C0.93
C13A—C14A1.362 (8)C14C—H14C0.93
C14A—F14A1.339 (8)C14E—H14B0.93
C14A—C15A1.341 (7)C15A—H15A0.93
C15A—C16A1.373 (6)C15B—H15B0.93
C11B—C16B1.381 (5)C15C—H15C0.93
C11B—C12B1.401 (5)C16A—H16A0.93
C12B—C13B1.384 (7)C16B—H16B0.93
C13B—C14B1.371 (8)C16C—H16C0.93
C14B—C15B1.351 (7)C22—H22A0.97
C15B—C16B1.384 (6)C22—H22B0.97
C11C—C16C1.380 (6)C23—H23A0.97
C11C—C12C1.380 (5)C23—H23B0.97
C12C—C13C1.392 (6)C24—H24A0.97
C13C—C14C1.349 (7)C24—H24B0.97
C14C—C15C1.360 (8)C25—H25A0.97
C15C—C16C1.407 (6)C25—H25B0.97
C1—O11.134 (5)C26—H26A0.97
C2—O21.150 (4)C26—H26B0.97
C3—O31.164 (4)C14A—H14D0.93
C4—O41.140 (5)C14B—H14B0.93
N21—C261.467 (5)
C1—Mo1—C286.87 (15)C25—C24—C23109.4 (4)
C1—Mo1—C388.88 (17)C24—C25—C26112.0 (4)
C1—Mo1—C4169.94 (17)N21—C26—C25113.3 (4)
C1—Mo1—N2192.50 (13)C26—N21—H21105.4
C1—Mo1—P199.85 (10)C22—N21—H21105.1
C2—Mo1—C389.15 (16)Mo1—N21—H21105.0
C2—Mo1—C485.63 (16)C13A—C12A—H12A119.4
C2—Mo1—N2191.80 (13)C11A—C12A—H12A119.9
C2—Mo1—P1173.15 (12)C13B—C12B—H12B119.6
C3—Mo1—C484.32 (16)C11B—C12B—H12B120.0
C3—Mo1—N21178.36 (15)C11C—C12C—H12C119.9
C3—Mo1—P192.29 (12)C13C—C12C—H12C119.8
C4—Mo1—N2194.42 (13)C12A—C13A—H13A120.5
C4—Mo1—P187.85 (12)C12B—C13B—H13B120.2
N21—Mo1—P186.60 (8)C14C—C13C—H13C120.0
C11A—P1—C11C101.42 (17)C12C—C13C—H13C120.0
C11A—P1—C11B106.96 (17)C13C—C14C—H14C119.4
C11C—P1—C11B100.14 (17)C15C—C14C—H14C119.5
C11A—P1—Mo1109.93 (11)C15B—C14E—H14B119.0
C11C—P1—Mo1124.41 (13)C16A—C15A—H15A119.9
C11B—P1—Mo1112.32 (11)C16B—C15B—H15B119.6
C12A—C11A—C16A116.8 (3)C14C—C15C—H15C120.0
C12A—C11A—P1121.3 (3)C16C—C15C—H15C120.5
C16A—C11A—P1121.1 (3)C15A—C16A—H16A119.5
C13A—C12A—C11A120.7 (5)C11A—C16A—H16A119.5
C14A—C13A—C12A119.6 (5)C11B—C16B—H16B119.9
F14A—C14A—C15A117.7 (6)C15B—C16B—H16B119.7
F14A—C14A—C13A120.6 (6)C11C—C16C—H16C119.7
C15A—C14A—C13A121.7 (4)C15C—C16C—H16C119.8
C14A—C15A—C16A119.8 (5)N21—C22—H22A109.2
C15A—C16A—C11A121.3 (4)C23—C22—H22A109.0
C16B—C11B—C12B118.1 (4)N21—C22—H22B108.8
C16B—C11B—P1126.0 (3)C23—C22—H22B109.1
C12B—C11B—P1115.8 (3)H22A—C22—H22B107.8
C13B—C12B—C11B120.4 (5)C22—C23—H23A108.9
C14B—C13B—C12B120.0 (5)C24—C23—H23A109.2
C15B—C14B—C13B120.2 (5)C22—C23—H23B109.4
C14B—C15B—C16B121.0 (5)C24—C23—H23B109.3
C11B—C16B—C15B120.4 (4)H23A—C23—H23B107.9
C16C—C11C—C12C118.7 (4)C25—C24—H24A109.6
C16C—C11C—P1120.5 (3)C23—C24—H24A109.9
C12C—C11C—P1120.8 (3)C25—C24—H24B110.0
C11C—C12C—C13C120.7 (4)C23—C24—H24B109.5
C14C—C13C—C12C119.8 (5)H24A—C24—H24B108.3
C13C—C14C—C15C121.3 (5)C24—C25—H25A108.9
C14C—C15C—C16C119.4 (5)C26—C25—H25A109.3
C11C—C16C—C15C120.1 (5)C24—C25—H25B109.3
O1—C1—Mo1173.6 (4)C26—C25—H25B109.1
O2—C2—Mo1177.0 (3)H25A—C25—H25B107.9
O3—C3—Mo1177.2 (3)N21—C26—H26A109.2
O4—C4—Mo1173.4 (4)C25—C26—H26A109.0
C26—N21—C22109.2 (3)N21—C26—H26B108.7
C26—N21—Mo1115.0 (2)C25—C26—H26B108.8
C22—N21—Mo1116.0 (2)H26A—C26—H26B107.8
N21—C22—C23113.1 (4)C15B—C14B—H14B119.9
C24—C23—C22112.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···C11a0.912.463.231 (4)142
N21—H21···C16a0.912.593.398 (5)148
C14C—H14C···O1i0.932.683.352 (6)130
C13C—H13C···O3i0.932.933.535 (6)124
C23—H23A···O2ii0.972.703.467 (6)137
C24—H24B···O4iii0.972.803.468 (6)127
C24—H24A···F14Aiv0.972.773.618 (9)146
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Mo(C18H14F)(C5H11N)(CO)4]
Mr573.39
Crystal system, space groupMonoclinic, C2
Temperature (K)301
a, b, c (Å)13.601 (3), 10.981 (3), 17.973 (4)
β (°) 102.598 (6)
V3)2619.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.32 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.831, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
12823, 4597, 4121
Rint0.048
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 1.00
No. of reflections4597
No. of parameters327
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21
Absolute structureFlack (1983)
Absolute structure parameter0.27 (3)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Mo1—C12.053 (5)P1—C11B1.840 (4)
Mo1—C21.971 (4)P1—C11C1.829 (4)
Mo1—C31.956 (4)C14A—F14A1.339 (8)
Mo1—C42.024 (4)C1—O11.134 (5)
Mo1—N212.339 (3)C2—O21.150 (4)
Mo1—P12.5670 (10)C3—O31.164 (4)
P1—C11A1.827 (4)C4—O41.140 (5)
C1—Mo1—C286.87 (15)C2—Mo1—P1173.15 (12)
C1—Mo1—C388.88 (17)C3—Mo1—C484.32 (16)
C1—Mo1—C4169.94 (17)C3—Mo1—N21178.36 (15)
C1—Mo1—N2192.50 (13)C3—Mo1—P192.29 (12)
C1—Mo1—P199.85 (10)C4—Mo1—N2194.42 (13)
C2—Mo1—C389.15 (16)C4—Mo1—P187.85 (12)
C2—Mo1—C485.63 (16)N21—Mo1—P186.60 (8)
C2—Mo1—N2191.80 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···C11a0.912.463.231 (4)142
N21—H21···C16a0.912.593.398 (5)148
C14C—H14C···O1i0.932.683.352 (6)130
C13C—H13C···O3i0.932.933.535 (6)124
C23—H23A···O2ii0.972.703.467 (6)137
C24—H24B···O4iii0.972.803.468 (6)127
C24—H24A···F14Aiv0.972.773.618 (9)146
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds