Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structure of the title compound (systematic name: {(4-chlorophenyl)[2-(2-pyridyl­methyl­idene-κN)­hy­dra­zono-κN2]methanolato-κO}­di­oxo­vana­dium(V)), [VO2(C13H9ClN3O)], the asymmetric unit contains three independent but geometrically similar mol­ecules. The metal centre has a distorted trigonal bipyramidal N2O3 coordination sphere. The planar monoanionic N,N,O-donor ligand occupies one equatorial and two axial positions, the remaining two equatorial positions being occupied by the two oxo groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017418/bm1436sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017418/bm1436Isup2.hkl
Contains datablock I

CCDC reference: 159974

Comment top

It is well known that vanadate acts as a potent inhibitor of phosphate-metabolizing enzymes (Rehder, 1991). During phosphate hydrolysis, it has been proposed that enzyme-bound pentavalent vanadium mimics the trigonal bipyramidal phosphorus(V) intermediate (Lindquist et al., 1973; Mokry & Carrano, 1993). A pentacoordinated metal centre in cis-dioxovanadium(V) complexes with tridentate Schiff base ligands may have either square pyramidal or trigonal bipyramidal coordination geometry. Square pyramidal species typically dimerize by sharing oxo groups and the metal centre becomes pseudo-octahedral (Li et al., 1988; Meichang et al., 1988; Mokry & Carrano, 1993; Duncan et al., 1997). It has been shown that by using bulky substituents on the ligand, dimerization can be prevented and trigonal bipyramidal geometry can be stabilized (Mokry & Carrano, 1993). In our earlier work, we have found that the reaction of bis(acetylacetonato)oxovanadium(IV) with the N,N,O-donor ligand N-(anisoyl)-N'-(picolinylidene)hydrazine produces a dimeric pervanadyl complex in which the metal centres are hexacoordinated (Pal & Pal, 2001). However, the title mononuclear distorted trigonal bipyramidal complex, [VO2(pach)], (I), was isolated from the same vanadium starting material and N-(4-chlorobenzoyl)-N'-(picolinylidene)hydrazine (Hpach) under identical reaction conditions. \scheme

The title complex crystallizes with three independent molecules in the asymmetric unit. The structure of one of these molecules is shown in Fig. 1. The bond distances and angles for each of the three molecules are essentially identical. The N2O3 coordination sphere around the metal centre in (I) is formed by the monoanionic planar pyridine-N, imine-N and amide-O donor pach- ligand and the two oxo groups. The N—N [1.374 (5)–1.386 (5) Å], N—C [1.295 (6)–1.310 (6) Å] and C—O [1.291 (5)–1.302 (5) Å] distances in the N—NC(—O-)— fragments of the ligands in all three molecules are consistent with the enolate form of the amide functionality (Rath et al., 1997; Sangeetha & Pal, 2000). The ligand forms two five-membered chelate rings. The chelate bite angles are very similar, all falling within the range 72.91 (16)–73.14 (16)°. In all three molecules, the V—O(oxo) distances [1.594 (4)–1.609 (3) Å] are typical for terminal oxo group to vanadium(V) bonds (Sangeetha & Pal, 2000). The VN(pyridine) [2.124 (4)–2.140 (4) Å], VN(imine) [2.105 (4)–2.114 (4) Å] and VO(amide) [1.963 (3)–1.972 (3) Å] bond lengths are unexceptional with respect to known vanadium(V) to pyridine-N, imine-N, and deprotonated amide-O linkages (Kojima et al., 1983; Rath et al., 1997).

The coordination geometry around the metal centre in each of the three molecules can be best described as distorted trigonal bipyramidal. The deviations of both oxo groups from the plane formed by the coordinated pyridine-N, imine-N and amide-O donor atoms are too large to allow any plausible NNOO square plane; the maximum and the minimum deviations are 1.68 and 0.86 Å, respectively. On the other hand, the maximum and the minimum deviations from the mean plane formed by the metal centre, the imine-N and the two oxo groups are only 0.054 and 0.015 Å, respectively. Thus, the molecular structure of [VO2(pach)] approximates much more closely to trigonal bipyramidal than to square pyramidal. The tridentate ligand occupies one equatorial and two axial sites, the remaining two equatorial sites being occupied by the two oxo groups.

Related literature top

For related literature, see: Duncan et al. (1997); Kojima et al. (1983); Li et al. (1988); Lindquist et al. (1973); Meichang et al. (1988); Mokry & Carrano (1993); Pal & Pal (2001); Rath et al. (1997); Rehder (1991); Sangeetha & Pal (2000).

Experimental top

A solution of Hpach (198 mg, 0.75 mmol) in acetonitrile (20 ml) was added to a solution of [VO(acac)2] (200 mg, 0.75 mmol) in acetonitrile (20 ml) and the mixture was heated on a water bath for 15 min. The resulting dark-brown solution was concentrated by slow evaporation at room temperature. The crystalline solid which separated out was collected by filtration, washed with acetonitrile and finally dried under vacuum over anhydrous CaCl2. Yield: 116 mg (45%). Analysis calculated for C13H9ClN3O3V: C 45.71, H 2.65, N 12.30%; found: C 45.67, H 2.55, N 12.14%. Selected IR bands (cm-1): 1595 (s), 1493 (s), 1449 (s), 1391 (s), 1343 (m), 1296 (w), 1263 (w), 1219 (w), 1173 (m), 1146 (m), 1071 (s), 1013 (w), 949 (s), 916 (m), 845 (m), 775 (w), 745 (s), 677 (w), 648 (w). Electronic spectral data in CH2Cl2 [nm (dm3 mol-1 cm-1)]: 402 (19500), 292 (13600), 237 (14500). A single-crystal suitable for structure determination was chosen from this material.

Refinement top

H atoms were placed geometrically and refined using a riding model, with C—H constrained to 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX6a (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. All non-H atoms are represented by 40% probability displacement ellipsoids.
[N-(4-chlorobenzoyl)-N'-(picolinylidene)hydrazinato]dioxovanadium(V) top
Crystal data top
[VO2(C13H9ClN3O)]F(000) = 2064
Mr = 341.62Dx = 1.658 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.1139 (9) Åθ = 9.5–12.4°
b = 39.501 (5) ŵ = 0.93 mm1
c = 14.7094 (13) ÅT = 298 K
β = 96.636 (9)°Block, brown
V = 4105.7 (8) Å30.40 × 0.36 × 0.32 mm
Z = 12
Data collection top
Enraf-Nonius MACH3 four-circle
diffractometer
3565 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
Profile data from ω scansh = 08
Absorption correction: empirical (using intensity measurements) based on ψ scan
(DATCOR; Reibenspies, 1989)
k = 046
Tmin = 0.884, Tmax = 0.990l = 1717
7956 measured reflections3 standard reflections every 90 min
7219 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126See text
S = 1.01Calculated w = 1/[σ2(Fo2) + (0.0418P)2 + 1.770P]
where P = (Fo2 + 2Fc2)/3
7219 reflections(Δ/σ)max < 0.001
568 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[VO2(C13H9ClN3O)]V = 4105.7 (8) Å3
Mr = 341.62Z = 12
Monoclinic, P21/nMo Kα radiation
a = 7.1139 (9) ŵ = 0.93 mm1
b = 39.501 (5) ÅT = 298 K
c = 14.7094 (13) Å0.40 × 0.36 × 0.32 mm
β = 96.636 (9)°
Data collection top
Enraf-Nonius MACH3 four-circle
diffractometer
3565 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) based on ψ scan
(DATCOR; Reibenspies, 1989)
Rint = 0.018
Tmin = 0.884, Tmax = 0.9903 standard reflections every 90 min
7956 measured reflections intensity decay: none
7219 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.126See text
S = 1.01Δρmax = 0.30 e Å3
7219 reflectionsΔρmin = 0.39 e Å3
568 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V1.23430 (14)0.07160 (2)0.13772 (6)0.0469 (3)
Cl1.3010 (2)0.03093 (4)0.38527 (9)0.0607 (4)
O11.2521 (6)0.05515 (8)0.0105 (2)0.0568 (11)
O21.0500 (6)0.09539 (9)0.1452 (2)0.0604 (11)
O31.4179 (6)0.09509 (9)0.1395 (2)0.0622 (11)
N11.2082 (6)0.05769 (10)0.2792 (3)0.0456 (11)
N21.2406 (6)0.01812 (10)0.1431 (3)0.0410 (11)
N31.2565 (6)0.00056 (10)0.0619 (3)0.0442 (11)
C11.1826 (9)0.07954 (14)0.3483 (4)0.0602 (17)
H11.17580.10250.33550.072*
C21.1658 (8)0.06931 (14)0.4377 (3)0.0572 (16)
H21.14600.08520.48440.069*
C31.1782 (8)0.03597 (14)0.4582 (4)0.0529 (15)
H31.16730.02880.51880.063*
C41.2071 (8)0.01293 (14)0.3874 (3)0.0499 (15)
H41.21830.01000.39970.060*
C51.2191 (7)0.02415 (12)0.2992 (3)0.0401 (13)
C61.2418 (7)0.00300 (13)0.2193 (3)0.0434 (13)
H61.25650.02030.22310.052*
C71.2599 (7)0.02261 (13)0.0035 (3)0.0431 (13)
C81.2719 (7)0.01030 (13)0.0991 (3)0.0415 (13)
C91.2801 (8)0.03186 (14)0.1725 (3)0.0525 (15)
H91.28040.05510.16250.063*
C101.2881 (8)0.01976 (14)0.2610 (4)0.0530 (15)
H101.29320.03460.31030.064*
C111.2882 (7)0.01466 (14)0.2746 (3)0.0419 (13)
C121.2846 (8)0.03675 (13)0.2034 (3)0.0515 (15)
H121.28810.06000.21400.062*
C131.2757 (8)0.02428 (13)0.1156 (3)0.0535 (16)
H131.27220.03930.06670.064*
VA0.81376 (14)0.09490 (2)0.34054 (6)0.0445 (3)
ClA0.6745 (2)0.19456 (4)0.85228 (9)0.0631 (4)
O1A0.7987 (5)0.11082 (8)0.4660 (2)0.0513 (10)
O2A1.0029 (5)0.07223 (9)0.3508 (2)0.0585 (10)
O3A0.6355 (5)0.07040 (9)0.3214 (2)0.0621 (11)
N1A0.8262 (7)0.10921 (11)0.2022 (3)0.0484 (12)
N2A0.7866 (6)0.14794 (10)0.3341 (3)0.0377 (10)
N3A0.7694 (6)0.16551 (10)0.4144 (3)0.0412 (11)
C1A0.8591 (10)0.08806 (16)0.1356 (4)0.0729 (19)
H1A0.88620.06560.15060.087*
C2A0.8548 (11)0.09779 (16)0.0457 (4)0.080 (2)
H2A0.88020.08220.00130.096*
C3A0.8128 (10)0.13058 (17)0.0228 (4)0.075 (2)
H3A0.80510.13770.03780.090*
C4A0.7822 (9)0.15287 (16)0.0909 (4)0.0647 (18)
H4A0.75390.17540.07690.078*
C5A0.7935 (8)0.14182 (13)0.1798 (3)0.0430 (13)
C6A0.7739 (7)0.16330 (13)0.2578 (4)0.0458 (14)
H6A0.75360.18650.25250.055*
C7A0.7806 (7)0.14286 (13)0.4798 (3)0.0416 (13)
C8A0.7595 (7)0.15483 (13)0.5736 (3)0.0393 (13)
C9A0.7664 (7)0.18934 (13)0.5922 (3)0.0420 (13)
H9A0.78950.20450.54630.050*
C10A0.7397 (7)0.20145 (14)0.6772 (4)0.0458 (14)
H10A0.74210.22460.68870.055*
C11A0.7094 (7)0.17883 (15)0.7451 (3)0.0462 (14)
C12A0.7063 (8)0.14427 (14)0.7291 (4)0.0539 (16)
H12A0.68620.12920.77560.065*
C13A0.7332 (8)0.13260 (14)0.6436 (4)0.0542 (16)
H13A0.73380.10940.63260.065*
VB0.20484 (14)0.23928 (2)0.67727 (6)0.0471 (3)
ClB0.3006 (2)0.13832 (4)0.16422 (10)0.0686 (5)
O1B0.2122 (5)0.22242 (8)0.5522 (2)0.0519 (10)
O2B0.0305 (6)0.26545 (9)0.6650 (2)0.0606 (11)
O3B0.3982 (5)0.26027 (9)0.6983 (3)0.0619 (11)
N1B0.1669 (6)0.22577 (11)0.8148 (3)0.0466 (11)
N2B0.2236 (6)0.18599 (10)0.6857 (3)0.0401 (10)
N3B0.2466 (6)0.16821 (10)0.6073 (3)0.0436 (11)
C1B0.1246 (9)0.24721 (14)0.8792 (4)0.0619 (17)
H1B0.10640.26990.86370.074*
C2B0.1066 (9)0.23750 (17)0.9667 (4)0.0692 (19)
H2B0.07220.25321.00900.083*
C3B0.1396 (10)0.20469 (17)0.9915 (4)0.0703 (19)
H3B0.13210.19781.05150.084*
C4B0.1847 (8)0.18139 (16)0.9259 (4)0.0610 (17)
H4B0.20870.15880.94100.073*
C5B0.1925 (8)0.19284 (13)0.8386 (4)0.0446 (13)
C6B0.2272 (8)0.17103 (13)0.7629 (4)0.0485 (15)
H6B0.25030.14800.77000.058*
C7B0.2374 (7)0.19017 (14)0.5408 (3)0.0416 (13)
C8B0.2549 (7)0.17786 (13)0.4477 (3)0.0405 (13)
C9B0.3071 (7)0.14455 (13)0.4343 (3)0.0472 (14)
H9B0.33480.13030.48440.057*
C10B0.3184 (7)0.13240 (14)0.3473 (4)0.0467 (14)
H10B0.34980.10990.33830.056*
C11B0.2824 (8)0.15406 (15)0.2737 (4)0.0512 (15)
C12B0.2338 (8)0.18751 (15)0.2845 (4)0.0537 (15)
H12B0.21120.20180.23420.064*
C13B0.2195 (8)0.19927 (14)0.3721 (4)0.0542 (15)
H13B0.18580.22170.38070.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.0656 (7)0.0286 (5)0.0453 (5)0.0023 (5)0.0023 (5)0.0010 (4)
Cl0.0734 (11)0.0643 (10)0.0459 (8)0.0065 (9)0.0131 (7)0.0087 (7)
O10.098 (3)0.033 (2)0.038 (2)0.004 (2)0.000 (2)0.0005 (16)
O20.077 (3)0.047 (2)0.057 (2)0.013 (2)0.008 (2)0.0032 (18)
O30.076 (3)0.049 (3)0.060 (2)0.018 (2)0.000 (2)0.0050 (19)
N10.063 (3)0.031 (2)0.041 (3)0.002 (2)0.001 (2)0.001 (2)
N20.053 (3)0.030 (3)0.040 (2)0.003 (2)0.004 (2)0.003 (2)
N30.064 (3)0.033 (3)0.035 (2)0.001 (2)0.005 (2)0.003 (2)
C10.090 (5)0.034 (3)0.054 (4)0.003 (3)0.003 (3)0.003 (3)
C20.082 (5)0.049 (4)0.038 (3)0.003 (3)0.004 (3)0.012 (3)
C30.064 (4)0.057 (4)0.037 (3)0.002 (3)0.004 (3)0.001 (3)
C40.062 (4)0.043 (3)0.044 (3)0.008 (3)0.003 (3)0.003 (3)
C50.041 (3)0.035 (3)0.044 (3)0.000 (3)0.004 (3)0.001 (2)
C60.055 (4)0.029 (3)0.046 (3)0.001 (3)0.005 (3)0.002 (2)
C70.049 (4)0.032 (3)0.047 (3)0.004 (3)0.000 (3)0.006 (2)
C80.047 (3)0.037 (3)0.040 (3)0.000 (3)0.001 (3)0.001 (2)
C90.078 (4)0.034 (3)0.044 (3)0.000 (3)0.006 (3)0.000 (3)
C100.065 (4)0.047 (4)0.047 (3)0.002 (3)0.008 (3)0.007 (3)
C110.039 (3)0.047 (3)0.041 (3)0.002 (3)0.011 (3)0.004 (3)
C120.071 (4)0.033 (3)0.050 (3)0.002 (3)0.006 (3)0.005 (3)
C130.083 (5)0.034 (3)0.042 (3)0.002 (3)0.002 (3)0.007 (2)
VA0.0572 (7)0.0305 (5)0.0464 (5)0.0026 (5)0.0090 (5)0.0009 (4)
ClA0.0676 (11)0.0754 (11)0.0459 (8)0.0055 (9)0.0051 (8)0.0096 (7)
O1A0.079 (3)0.031 (2)0.046 (2)0.010 (2)0.013 (2)0.0010 (16)
O2A0.066 (3)0.057 (2)0.052 (2)0.021 (2)0.005 (2)0.0008 (19)
O3A0.069 (3)0.045 (2)0.073 (3)0.010 (2)0.015 (2)0.003 (2)
N1A0.066 (3)0.037 (3)0.044 (3)0.002 (2)0.015 (2)0.003 (2)
N2A0.041 (3)0.033 (3)0.040 (2)0.001 (2)0.009 (2)0.003 (2)
N3A0.050 (3)0.029 (3)0.045 (3)0.001 (2)0.011 (2)0.001 (2)
C1A0.110 (6)0.050 (4)0.062 (4)0.010 (4)0.024 (4)0.008 (3)
C2A0.133 (7)0.059 (5)0.052 (4)0.024 (4)0.024 (4)0.017 (3)
C3A0.115 (6)0.068 (5)0.041 (4)0.008 (4)0.002 (4)0.007 (3)
C4A0.084 (5)0.064 (4)0.047 (4)0.005 (4)0.010 (3)0.014 (3)
C5A0.048 (4)0.034 (3)0.047 (3)0.004 (3)0.004 (3)0.002 (3)
C6A0.052 (4)0.033 (3)0.054 (3)0.006 (3)0.011 (3)0.008 (3)
C7A0.040 (3)0.037 (3)0.048 (3)0.001 (3)0.007 (3)0.005 (3)
C8A0.039 (3)0.033 (3)0.046 (3)0.002 (3)0.008 (3)0.006 (2)
C9A0.043 (3)0.041 (3)0.042 (3)0.004 (3)0.004 (3)0.004 (3)
C10A0.045 (4)0.038 (3)0.054 (3)0.000 (3)0.006 (3)0.003 (3)
C11A0.039 (4)0.056 (4)0.044 (3)0.003 (3)0.005 (3)0.004 (3)
C12A0.067 (4)0.047 (4)0.048 (4)0.005 (3)0.008 (3)0.008 (3)
C13A0.073 (5)0.032 (3)0.059 (4)0.009 (3)0.013 (3)0.006 (3)
VB0.0552 (7)0.0291 (6)0.0582 (6)0.0028 (5)0.0122 (5)0.0022 (4)
ClB0.0686 (11)0.0832 (12)0.0538 (9)0.0040 (9)0.0065 (8)0.0119 (8)
O1B0.075 (3)0.030 (2)0.053 (2)0.001 (2)0.021 (2)0.0050 (17)
O2B0.072 (3)0.038 (2)0.073 (3)0.012 (2)0.015 (2)0.0055 (19)
O3B0.062 (3)0.044 (2)0.081 (3)0.016 (2)0.017 (2)0.012 (2)
N1B0.052 (3)0.038 (3)0.050 (3)0.005 (2)0.007 (2)0.004 (2)
N2B0.042 (3)0.029 (3)0.050 (3)0.002 (2)0.009 (2)0.002 (2)
N3B0.050 (3)0.034 (3)0.048 (3)0.002 (2)0.011 (2)0.004 (2)
C1B0.084 (5)0.037 (3)0.067 (4)0.010 (3)0.019 (4)0.013 (3)
C2B0.085 (5)0.067 (5)0.060 (4)0.019 (4)0.022 (4)0.023 (3)
C3B0.097 (5)0.073 (5)0.041 (3)0.014 (4)0.004 (3)0.005 (3)
C4B0.075 (5)0.055 (4)0.053 (4)0.003 (3)0.007 (3)0.004 (3)
C5B0.048 (4)0.036 (3)0.049 (3)0.003 (3)0.003 (3)0.001 (3)
C6B0.058 (4)0.034 (3)0.054 (4)0.004 (3)0.008 (3)0.002 (3)
C7B0.037 (3)0.039 (3)0.049 (3)0.001 (3)0.005 (3)0.001 (3)
C8B0.034 (3)0.038 (3)0.049 (3)0.001 (3)0.003 (3)0.004 (3)
C9B0.049 (4)0.047 (4)0.048 (3)0.000 (3)0.012 (3)0.003 (3)
C10B0.044 (3)0.041 (3)0.056 (4)0.004 (3)0.008 (3)0.002 (3)
C11B0.042 (4)0.062 (4)0.050 (4)0.001 (3)0.009 (3)0.003 (3)
C12B0.053 (4)0.060 (4)0.048 (3)0.005 (3)0.004 (3)0.006 (3)
C13B0.061 (4)0.039 (4)0.062 (4)0.003 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
V—N12.140 (4)C1A—C2A1.374 (8)
V—N22.114 (4)C2A—C3A1.363 (8)
V—O11.972 (3)C3A—C4A1.370 (8)
V—O21.607 (4)C4A—C5A1.372 (7)
V—O31.605 (4)C5A—C6A1.447 (7)
Cl—C111.742 (5)C7A—C8A1.482 (7)
O1—C71.302 (5)C8A—C13A1.382 (7)
N1—C11.330 (6)C8A—C9A1.390 (6)
N1—C51.361 (6)C9A—C10A1.373 (6)
N2—C61.271 (6)C10A—C11A1.376 (7)
N2—N31.374 (5)C11A—C12A1.385 (7)
N3—C71.295 (6)C12A—C13A1.374 (7)
C1—C21.366 (7)VB—N1B2.139 (4)
C2—C31.356 (7)VB—N2B2.112 (4)
C3—C41.380 (7)VB—O1B1.963 (3)
C4—C51.364 (6)VB—O2B1.608 (4)
C5—C61.436 (6)VB—O3B1.605 (4)
C7—C81.481 (6)ClB—C11B1.745 (5)
C8—C91.370 (7)O1B—C7B1.300 (6)
C8—C131.387 (6)N1B—C1B1.331 (6)
C9—C101.382 (7)N1B—C5B1.354 (6)
C10—C111.375 (7)N2B—C6B1.278 (6)
C11—C121.361 (7)N2B—N3B1.376 (5)
C12—C131.377 (6)N3B—C7B1.303 (6)
VA—N1A2.124 (4)C1B—C2B1.364 (7)
VA—N2A2.105 (4)C2B—C3B1.359 (8)
VA—O1A1.965 (3)C3B—C4B1.398 (8)
VA—O2A1.609 (3)C4B—C5B1.368 (7)
VA—O3A1.594 (4)C5B—C6B1.452 (7)
ClA—C11A1.739 (5)C7B—C8B1.472 (7)
O1A—C7A1.291 (5)C8B—C9B1.388 (7)
N1A—C1A1.328 (7)C8B—C13B1.397 (7)
N1A—C5A1.344 (6)C9B—C10B1.377 (7)
N2A—C6A1.271 (6)C10B—C11B1.380 (7)
N2A—N3A1.386 (5)C11B—C12B1.380 (7)
N3A—C7A1.310 (6)C12B—C13B1.385 (7)
N1—V—N272.98 (15)C2A—C3A—C4A118.6 (6)
N1—V—O1145.87 (16)C3A—C4A—C5A119.7 (6)
N1—V—O296.01 (18)N1A—C5A—C4A121.9 (5)
N1—V—O396.42 (18)N1A—C5A—C6A113.4 (5)
N2—V—O172.95 (15)C4A—C5A—C6A124.7 (5)
N2—V—O2127.05 (19)N2A—C6A—C5A114.7 (5)
N2—V—O3123.80 (19)O1A—C7A—N3A123.6 (5)
O1—V—O2102.73 (17)O1A—C7A—C8A118.8 (5)
O1—V—O3104.08 (17)N3A—C7A—C8A117.5 (5)
O2—V—O3108.6 (2)C13A—C8A—C9A118.8 (5)
C7—O1—V118.2 (3)C13A—C8A—C7A121.8 (5)
C1—N1—C5118.2 (4)C9A—C8A—C7A119.4 (5)
C1—N1—V124.5 (4)C10A—C9A—C8A121.0 (5)
C5—N1—V117.3 (3)C9A—C10A—C11A119.0 (5)
C6—N2—N3121.4 (4)C10A—C11A—C12A121.2 (5)
C6—N2—V120.3 (4)C10A—C11A—ClA118.5 (4)
N3—N2—V118.2 (3)C12A—C11A—ClA120.3 (4)
C7—N3—N2107.4 (4)C13A—C12A—C11A119.0 (5)
N1—C1—C2122.1 (5)C12A—C13A—C8A120.9 (5)
C3—C2—C1120.0 (5)N1B—VB—N2B73.14 (16)
C2—C3—C4118.7 (5)N1B—VB—O1B145.25 (16)
C5—C4—C3119.4 (5)N1B—VB—O2B94.94 (18)
N1—C5—C4121.5 (5)N1B—VB—O3B98.36 (18)
N1—C5—C6113.2 (4)N2B—VB—O1B73.04 (15)
C4—C5—C6125.3 (5)N2B—VB—O2B133.62 (18)
N2—C6—C5115.9 (5)N2B—VB—O3B117.16 (19)
N3—C7—O1123.4 (4)O1B—VB—O2B102.54 (18)
N3—C7—C8118.6 (5)O1B—VB—O3B103.94 (18)
O1—C7—C8118.1 (5)O2B—VB—O3B108.8 (2)
C9—C8—C13118.4 (5)C7B—O1B—VB118.2 (3)
C9—C8—C7122.4 (5)C1B—N1B—C5B117.5 (5)
C13—C8—C7119.2 (5)C1B—N1B—VB125.3 (4)
C8—C9—C10121.3 (5)C5B—N1B—VB117.2 (3)
C11—C10—C9118.6 (5)C6B—N2B—N3B121.1 (5)
C12—C11—C10121.5 (5)C6B—N2B—VB120.5 (4)
C12—C11—Cl118.5 (4)N3B—N2B—VB118.2 (3)
C10—C11—Cl120.0 (4)C7B—N3B—N2B106.7 (4)
C11—C12—C13119.2 (5)N1B—C1B—C2B123.1 (6)
C12—C13—C8121.0 (5)C3B—C2B—C1B119.3 (6)
N1A—VA—N2A72.91 (16)C2B—C3B—C4B119.3 (6)
N1A—VA—O1A145.89 (16)C5B—C4B—C3B117.9 (6)
N1A—VA—O2A96.34 (18)N1B—C5B—C4B122.8 (5)
N1A—VA—O3A96.46 (18)N1B—C5B—C6B113.6 (5)
N2A—VA—O1A73.06 (15)C4B—C5B—C6B123.6 (5)
N2A—VA—O2A129.02 (19)N2B—C6B—C5B114.8 (5)
N2A—VA—O3A121.95 (19)O1B—C7B—N3B123.5 (5)
O1A—VA—O2A103.08 (16)O1B—C7B—C8B118.1 (5)
O1A—VA—O3A103.41 (18)N3B—C7B—C8B118.4 (5)
O2A—VA—O3A108.6 (2)C9B—C8B—C13B119.2 (5)
C7A—O1A—VA118.6 (3)C9B—C8B—C7B119.9 (5)
C1A—N1A—C5A117.6 (5)C13B—C8B—C7B120.9 (5)
C1A—N1A—VA124.7 (4)C10B—C9B—C8B120.5 (5)
C5A—N1A—VA117.7 (3)C9B—C10B—C11B119.2 (5)
C6A—N2A—N3A120.6 (4)C12B—C11B—C10B122.0 (5)
C6A—N2A—VA120.8 (4)C12B—C11B—ClB119.6 (4)
N3A—N2A—VA118.5 (3)C10B—C11B—ClB118.5 (5)
C7A—N3A—N2A106.2 (4)C11B—C12B—C13B118.3 (5)
N1A—C1A—C2A123.2 (6)C12B—C13B—C8B120.8 (5)
C3A—C2A—C1A118.9 (6)

Experimental details

Crystal data
Chemical formula[VO2(C13H9ClN3O)]
Mr341.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1139 (9), 39.501 (5), 14.7094 (13)
β (°) 96.636 (9)
V3)4105.7 (8)
Z12
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.40 × 0.36 × 0.32
Data collection
DiffractometerEnraf-Nonius MACH3 four-circle
diffractometer
Absorption correctionEmpirical (using intensity measurements) based on ψ scan
(DATCOR; Reibenspies, 1989)
Tmin, Tmax0.884, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7956, 7219, 3565
Rint0.018
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.01
No. of reflections7219
No. of parameters568
H-atom treatmentSee text
Δρmax, Δρmin (e Å3)0.30, 0.39

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal3.4 (Hall et al., 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX6a (McArdle, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
V—N12.140 (4)VA—O2A1.609 (3)
V—N22.114 (4)VA—O3A1.594 (4)
V—O11.972 (3)VB—N1B2.139 (4)
V—O21.607 (4)VB—N2B2.112 (4)
V—O31.605 (4)VB—O1B1.963 (3)
VA—N1A2.124 (4)VB—O2B1.608 (4)
VA—N2A2.105 (4)VB—O3B1.605 (4)
VA—O1A1.965 (3)
N1—V—N272.98 (15)N2A—VA—O2A129.02 (19)
N1—V—O1145.87 (16)N2A—VA—O3A121.95 (19)
N1—V—O296.01 (18)O1A—VA—O2A103.08 (16)
N1—V—O396.42 (18)O1A—VA—O3A103.41 (18)
N2—V—O172.95 (15)O2A—VA—O3A108.6 (2)
N2—V—O2127.05 (19)N1B—VB—N2B73.14 (16)
N2—V—O3123.80 (19)N1B—VB—O1B145.25 (16)
O1—V—O2102.73 (17)N1B—VB—O2B94.94 (18)
O1—V—O3104.08 (17)N1B—VB—O3B98.36 (18)
O2—V—O3108.6 (2)N2B—VB—O1B73.04 (15)
N1A—VA—N2A72.91 (16)N2B—VB—O2B133.62 (18)
N1A—VA—O1A145.89 (16)N2B—VB—O3B117.16 (19)
N1A—VA—O2A96.34 (18)O1B—VB—O2B102.54 (18)
N1A—VA—O3A96.46 (18)O1B—VB—O3B103.94 (18)
N2A—VA—O1A73.06 (15)O2B—VB—O3B108.8 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds