Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of hexa-μ-propionato-1:2κ6O:O′;1:3κ6O:O′-di­quinoline-2κN,3κN-calcium(II)­dizinc(II), [Ca­Zn2(C3H5O2)6(C9H7N)2], and hexa-μ-pivalato-1:2κ6O:O′;1:3κ6O:O′-di­quinoline-2κN,3κN-calcium(II)­dicobalt(II), [Ca­Co2(C5H9O2)6(C9H7N)2], are described. Both contain a linear array of one CaII ion and two MII (M = Zn, Co) ions connected by two sets of three carboxyl­ate ligands in synsyn bridging modes. The distorted tetrahedral geometry around the MII ion is completed by a quinoline N atom. The central CaII ion occupies a crystallographic inversion centre and is octahedrally coordinated by six carboxyl O atoms in each structure. The ZnII...CaII and CoII...CaII distances are 3.8504 (9) and 3.7929 (5) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009999/bm1424sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009999/bm1424Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009999/bm1424IIsup3.hkl
Contains datablock II

CCDC references: 152594; 152595

Comment top

For some time, a type of novel linear trinuclear assembly of general formula [MIIM'II2(O2CR)6L2] (M = M' = Mn, Fe, Co, Zn; M' = Zn, M = Mn, Co, Ni, Zn, Cd, Mg, Ca, Sr, Ba; L is a heterocyclic base) has been the subject of considerable attention in the literature (Catterick et al., 1974; Catterick & Hursthouse, 1976; Clegg et al., 1985, 1986, 1988, 1989). The first example characterized by single-crystal X-ray diffraction was the cobalt complex [Co3(O2CPh)6(C9H7N)2] reported by Catterick et al. (1974). In each case, the three divalent metals ions are arranged in a linear array within a centrosymmetric molecule. The ligands L are bound terminally to the outer metal ions, and the carboxylates form bridges between the central and outer metal ions. Several Schiff base derivatives, such as [MnII3(O2CCH3)4(L1)2(CH3OH)2] and [MII3(O2CCH3)(L2)2(DMF)2] [M = Fe, Co; L1 = 1,3-dihydroxy-2-methyl-2-(5-chlorosalicylideamino)propane, L2 = N,N'-bis(salicylidene)-2,2'-dimethylpropylenediamine], have also been synthesized and characterized (Li et al., 1988; Gerli et al., 1991; Tangoulis et al., 1996). These complexes not only provide a wealth of data about steric interactions and spectroscopic and magnetic properties, but also can serve as structural models for biological systems and solid materials.

The title complexes, (I) and (II) (Figs. 1 and 2, respectively), each consists of a centrosymmetric linear trinuclear molecule, with the central CaII ion on a crystallographic inversion center. Two MII (M = Zn, Co) ions are each coordinated by three carboxyl O atoms and a quinoline molecule to form a distorted tetrahedron, whose most distorted angles are O22—Zn—N at 95.84 (13)° and O12—Co—N1 at 94.42 (12)°. Each terminal MII ion is connected to the central CaII ion by three propionate bridges in a syn–syn mode. The CaII ion occupies a slightly distorted octahedron of O atoms, with Ca—O bond lengths in the range 2.287 (3)–2.323 (3) Å for (I) and 2.261 (3)–2.279 (3) Å for (II), and from all O—Ca—O angles within 4.5° of ideal octahedral values for both (I) and (II). The two structures are therefore similar to those observed for [MZn2(O2CCHCHCH3)6(C10H9N)2] (M = Ca, Sr) and [BaZn2(O2CCMe3)6(C9H7N)2] (Clegg et al., 1988, 1989), but are different from that of [MgZn2(O2CCHCHCH3)6(C9H7N)2] (Clegg et al., 1988), where the central MgII is linked to each ZnII ion and by three crotonate bridges: two of these are syn–syn bidentate and the third is monodentate and bridging through only one O atom. The Zn—O [1.924 (3)–1.951 (3) Å], Zn—N [2.086 (2) Å] and Zn···Ca [3.8504 (9) Å] distances in (I) are in good agreement with the corresponding values in [CaZn2(O2CCHCHCH3)6(C10H9N)2] (Clegg et al., 1988) and slightly longer than the Co—O [1.904 (3)–1.914 (3) Å], Co—N [2.065 (3) Å and Co—Ca [3.7929 (5) Å] distances in (II) as a consequence of the smaller radius of cobalt. The present Zn···Ca and Co···Ca distances are considerably longer than the Zn···Mg distance of 3.518 (3) Å found in MgZn2 crotonate (Clegg et al., 1988), but significantly shorter than the related separations in SrZn2 crotonate [4.050 (5) Å; Clegg et al., 1988] and BaZn2 pivalate [4.18 (1) Å; Clegg et al., 1989].

Experimental top

For the preparation of (I), a mixture of Zn(NO3)2·6H2O, Ca(NO3)2·6H2O, propionic acid and quinoline (molar ratio 2:1:6:2) in EtOH was refluxed for 10 h. The resulting solution was allowed to stand in air and colourless crystals were deposited after one week. For the preparation of (II), a mixture of Co(NO3)2·6H2O, Ca(NO3)2·6H2O, pivalic acid and quinoline (molar ratio 2:1:6:2) in ethanol was refluxed for 12 h. The resulting solution was allowed to stand in air and purple prismatic crystals were deposited after three days.

Refinement top

In (I), the C21 ethyl group is wholly split into two parts, each having a site-occupancy factor of 1/2, as is the C33 methyl group. H atoms belonging to the disordered C atoms were not included in the refinement model.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (I); SMART (Siemens, 1996) for (II). Cell refinement: CAD-4 Software for (I); SMART and SAINT (Siemens, 1994) for (II). Data reduction: MolEN (Fair, 1990) for (I); XPREP (1994) for (II). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990) for (I); SHELXTL (Siemens, 1994) for (II). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993) for (I); SHELXTL for (II). Molecular graphics: SHELXTL (Siemens, 1994) for (I); SHELXTL for (II). For both compounds, software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. Only one component of the disordered C atoms of the propionate groups is shown for clarity. [Symmetry code: (A) −1 − x, 1 − y, 1 − z.]
[Figure 2] Fig. 2. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. [Symmetry code: (A) 1/2 − x, 1/2 − y, 1 − z.]
(I) top
Crystal data top
[CaZn2(C3H5O2)6(C9H7N)2]F(000) = 900
Mr = 867.55Dx = 1.392 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.614 (2) ÅCell parameters from 25 reflections
b = 19.363 (4) Åθ = 2.0–25.0°
c = 12.473 (3) ŵ = 1.34 mm1
β = 95.59 (3)°T = 293 K
V = 2070.4 (7) Å3Triangular prism, colorless
Z = 20.15 × 0.10 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3007 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
w scansh = 010
Absorption correction: empirical (using intensity measurements)
ϕ scans (Fair, 1990)
k = 023
Tmin = 0.735, Tmax = 0.875l = 1414
3633 measured reflections3 standard reflections every 120 min
3633 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.104P)2 + 0.576P]
where P = (Fo2 + 2Fc2)/3
3633 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.64 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
[CaZn2(C3H5O2)6(C9H7N)2]V = 2070.4 (7) Å3
Mr = 867.55Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.614 (2) ŵ = 1.34 mm1
b = 19.363 (4) ÅT = 293 K
c = 12.473 (3) Å0.15 × 0.10 × 0.10 mm
β = 95.59 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3633 independent reflections
Absorption correction: empirical (using intensity measurements)
ϕ scans (Fair, 1990)
3007 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.875Rint = 0.000
3633 measured reflections3 standard reflections every 120 min
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.15Δρmax = 0.64 e Å3
3633 reflectionsΔρmin = 0.33 e Å3
238 parameters
Special details top

Experimental. none

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn0.38984 (5)0.38958 (2)0.75272 (3)0.0461 (2)
Ca0.50000.50000.50000.0421 (3)
O110.3384 (4)0.54016 (17)0.6467 (2)0.0713 (9)
O120.2845 (4)0.47508 (15)0.7904 (2)0.0637 (8)
O210.3621 (5)0.39771 (17)0.4998 (3)0.0767 (10)
O220.3158 (5)0.33211 (18)0.6426 (2)0.0832 (11)
O310.6418 (4)0.4493 (2)0.6244 (3)0.0800 (10)
O320.6130 (4)0.38731 (18)0.7680 (3)0.0694 (9)
N0.3063 (4)0.32705 (16)0.8818 (2)0.0502 (8)
C110.2756 (5)0.5307 (2)0.7375 (3)0.0544 (10)
C120.1815 (8)0.5877 (3)0.7923 (5)0.097 (2)
H12A0.24870.62760.79650.117*
H12B0.10020.60030.74730.117*
C130.1063 (10)0.5727 (4)0.9032 (6)0.131 (3)
H13A0.04820.61240.93020.197*
H13B0.03710.53400.90050.197*
H13C0.18530.56210.94990.197*
C210.3087 (7)0.3469 (3)0.5444 (3)0.0760 (16)
C220.2821 (14)0.2835 (6)0.4709 (9)0.078 (3)*0.50
C230.127 (2)0.2523 (13)0.4947 (19)0.171 (9)*0.50
C22A0.1881 (13)0.3042 (5)0.4809 (9)0.070 (2)*0.50
C23A0.203 (2)0.2299 (7)0.5095 (13)0.109 (5)*0.50
C310.6963 (5)0.4200 (2)0.6981 (4)0.0565 (10)
C320.8689 (7)0.4237 (5)0.7058 (6)0.107 (2)
C330.952 (2)0.4576 (9)0.6095 (14)0.127 (5)*0.50
C33A0.935 (2)0.3804 (9)0.7896 (14)0.140 (6)*0.50
C410.2489 (6)0.2659 (2)0.8581 (4)0.0678 (13)
H41A0.24720.25420.78590.081*
C420.1912 (8)0.2182 (3)0.9359 (4)0.0886 (18)
H42A0.15150.17600.91580.106*
C430.1939 (8)0.2344 (3)1.0408 (4)0.0866 (18)
H43A0.15640.20301.09350.104*
C440.2529 (6)0.2983 (2)1.0708 (3)0.0603 (11)
C450.2600 (7)0.3176 (3)1.1790 (4)0.0820 (16)
H45A0.22090.28811.23400.098*
C460.3235 (8)0.3789 (3)1.2035 (4)0.0889 (18)
H46A0.33010.39081.27520.107*
C470.3792 (7)0.4244 (3)1.1217 (4)0.0803 (16)
H47A0.42130.46671.13930.096*
C480.3725 (6)0.4073 (2)1.0168 (3)0.0610 (11)
H48A0.40980.43820.96320.073*
C490.3106 (5)0.3444 (2)0.9881 (3)0.0481 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0684 (3)0.0363 (3)0.0331 (3)0.00394 (19)0.0020 (2)0.00242 (16)
Ca0.0562 (6)0.0370 (5)0.0319 (5)0.0036 (4)0.0022 (4)0.0060 (4)
O110.097 (2)0.0605 (19)0.0512 (18)0.0162 (17)0.0215 (16)0.0100 (15)
O120.091 (2)0.0450 (16)0.0518 (17)0.0092 (15)0.0097 (14)0.0068 (13)
O210.111 (3)0.063 (2)0.0559 (19)0.0370 (19)0.0087 (18)0.0084 (15)
O220.143 (3)0.071 (2)0.0371 (16)0.044 (2)0.0173 (18)0.0032 (15)
O310.077 (2)0.095 (3)0.070 (2)0.0065 (19)0.0180 (17)0.0270 (19)
O320.075 (2)0.075 (2)0.0580 (19)0.0005 (16)0.0060 (16)0.0168 (16)
N0.076 (2)0.0386 (17)0.0350 (15)0.0095 (15)0.0018 (14)0.0041 (13)
C110.070 (3)0.044 (2)0.047 (2)0.0069 (19)0.0065 (18)0.0047 (18)
C120.128 (5)0.067 (3)0.088 (4)0.038 (3)0.036 (4)0.011 (3)
C130.164 (7)0.111 (6)0.103 (5)0.037 (5)0.065 (5)0.011 (4)
C210.126 (4)0.065 (3)0.038 (2)0.044 (3)0.012 (2)0.004 (2)
C310.062 (3)0.053 (2)0.055 (2)0.008 (2)0.011 (2)0.009 (2)
C320.061 (3)0.146 (7)0.117 (5)0.013 (4)0.025 (3)0.016 (5)
C410.114 (4)0.042 (2)0.046 (2)0.021 (2)0.000 (2)0.0029 (18)
C420.154 (5)0.048 (3)0.061 (3)0.036 (3)0.002 (3)0.003 (2)
C430.149 (5)0.051 (3)0.057 (3)0.032 (3)0.005 (3)0.018 (2)
C440.085 (3)0.053 (2)0.041 (2)0.008 (2)0.001 (2)0.0094 (18)
C450.125 (5)0.081 (4)0.037 (2)0.023 (3)0.002 (2)0.016 (2)
C460.140 (5)0.088 (4)0.039 (3)0.016 (4)0.013 (3)0.002 (2)
C470.125 (5)0.068 (3)0.047 (3)0.027 (3)0.006 (3)0.007 (2)
C480.091 (3)0.051 (2)0.041 (2)0.016 (2)0.005 (2)0.0049 (19)
C490.067 (2)0.042 (2)0.0351 (19)0.0024 (17)0.0035 (16)0.0037 (15)
Geometric parameters (Å, º) top
Zn—O121.924 (3)C11—C121.494 (6)
Zn—O221.924 (3)C12—C131.497 (8)
Zn—O321.951 (3)C21—C221.563 (12)
Zn—N2.086 (3)C21—C22A1.597 (11)
Ca—O112.323 (3)C22—C231.472 (16)
Ca—O212.310 (3)C22A—C23A1.492 (14)
Ca—O312.287 (3)C31—C321.501 (7)
Ca—O11i2.323 (3)C32—C331.490 (19)
Ca—O21i2.310 (3)C32—C33A1.498 (15)
Ca—O31i2.287 (3)C41—C421.396 (6)
O11—C111.220 (5)C42—C431.347 (7)
O12—C111.270 (5)C43—C441.403 (7)
O21—C211.199 (5)C44—C451.408 (6)
O22—C211.265 (5)C44—C491.417 (5)
O31—C311.213 (5)C45—C461.355 (8)
O32—C311.246 (5)C46—C471.397 (7)
N—C411.327 (5)C47—C481.357 (6)
N—C491.372 (5)
O12—Zn—O22119.41 (17)O21—C21—O22125.6 (4)
O12—Zn—O32116.19 (15)O21—C21—C22116.3 (5)
O22—Zn—O32117.04 (17)O22—C21—C22114.4 (6)
O12—Zn—N101.05 (13)O21—C21—C22A115.7 (5)
O22—Zn—N95.84 (13)O22—C21—C22A117.2 (5)
O32—Zn—N100.44 (14)C22—C21—C22A33.1 (5)
O11—Ca—O2191.10 (13)C23—C22—C21112.7 (13)
O11—Ca—O3185.87 (13)C23A—C22A—C21107.7 (9)
O21—Ca—O3186.64 (14)O31—C31—O32122.0 (4)
O31—Ca—O21i93.36 (14)O31—C31—C32119.0 (5)
O31i—Ca—O1194.13 (13)O32—C31—C32119.1 (5)
O31i—Ca—O2193.36 (14)C33—C32—C33A128.4 (12)
O21i—Ca—O1188.90 (13)C33—C32—C31111.9 (8)
O31—Ca—O11i94.13 (13)C33A—C32—C31117.8 (10)
O21—Ca—O11i88.90 (13)N—C41—C42123.4 (4)
C11—O11—Ca149.1 (3)C43—C42—C41118.9 (4)
C11—O12—Zn130.8 (3)C42—C43—C44120.3 (4)
C21—O21—Ca151.2 (3)C43—C44—C45122.7 (4)
C21—O22—Zn127.6 (3)C43—C44—C49118.2 (4)
C31—O31—Ca170.5 (3)C45—C44—C49119.1 (4)
C31—O32—Zn115.2 (3)C46—C45—C44120.3 (4)
C41—N—C49118.7 (3)C45—C46—C47120.4 (5)
C41—N—Zn117.0 (3)C48—C47—C46120.5 (5)
C49—N—Zn124.3 (2)C47—C48—C49121.0 (4)
O11—C11—O12124.5 (4)N—C49—C48120.7 (3)
O11—C11—C12119.1 (4)N—C49—C44120.6 (4)
O12—C11—C12116.4 (4)C48—C49—C44118.7 (4)
C11—C12—C13116.5 (5)
Symmetry code: (i) x1, y+1, z+1.
(II) top
Crystal data top
[CaZn2(C5H9O2)6(C9H7N)2]F(000) = 2160
Mr = 1022.98Dx = 1.293 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.5710 (5) ÅCell parameters from 5832 reflections
b = 13.9851 (3) Åθ = 1.8–25.5°
c = 18.8102 (4) ŵ = 0.79 mm1
β = 103.814 (7)°T = 293 K
V = 5254.9 (2) Å3Triangular prism, purple
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4742 independent reflections
Radiation source: fine-focus sealed tube3269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
w scansθmax = 25.5°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.879, Tmax = 0.932k = 1616
12636 measured reflectionsl = 1022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.048P)2 + 5.7771P]
where P = (Fo2 + 2Fc2)/3
4742 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[CaZn2(C5H9O2)6(C9H7N)2]V = 5254.9 (2) Å3
Mr = 1022.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.5710 (5) ŵ = 0.79 mm1
b = 13.9851 (3) ÅT = 293 K
c = 18.8102 (4) Å0.15 × 0.10 × 0.10 mm
β = 103.814 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4742 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3269 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.932Rint = 0.042
12636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
4742 reflectionsΔρmin = 0.22 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.32872 (3)0.48044 (4)0.45486 (3)0.0600 (2)
Ca0.25000.25000.50000.0470 (3)
O110.34820 (14)0.2620 (2)0.46565 (17)0.0767 (8)
O120.37598 (14)0.38746 (19)0.41188 (16)0.0736 (8)
O210.28780 (16)0.3734 (2)0.57811 (15)0.0832 (9)
O220.34900 (16)0.4911 (2)0.55919 (17)0.0788 (8)
O310.20921 (15)0.3645 (2)0.41631 (16)0.0840 (9)
O320.23989 (14)0.5084 (2)0.40137 (19)0.0848 (9)
N10.38516 (15)0.5943 (2)0.43371 (17)0.0591 (8)
C110.37284 (19)0.2989 (3)0.4199 (2)0.0607 (10)
C120.4014 (3)0.2389 (3)0.3698 (3)0.0856 (14)
C130.4670 (3)0.2805 (5)0.3608 (4)0.134 (2)
H13A0.48470.24090.32830.201*
H13B0.49830.28320.40760.201*
H13C0.45950.34380.34080.201*
C140.3491 (4)0.2416 (4)0.2974 (3)0.149 (3)
H14A0.36430.20390.26180.224*
H14B0.34250.30650.28060.224*
H14C0.30770.21600.30410.224*
C150.4112 (4)0.1371 (3)0.3968 (3)0.136 (3)
H15A0.42970.09990.36350.204*
H15B0.36880.11060.39970.204*
H15C0.44130.13600.44450.204*
C210.32851 (19)0.4355 (3)0.6005 (2)0.0609 (10)
C220.3536 (2)0.4482 (4)0.6817 (2)0.0824 (14)
C230.3823 (4)0.3564 (6)0.7140 (3)0.184 (4)
H23A0.41840.33810.69260.275*
H23B0.34830.30790.70430.275*
H23C0.39880.36380.76590.275*
C240.4083 (3)0.5211 (6)0.6978 (4)0.174 (4)
H24A0.44490.50000.67830.261*
H24B0.42350.52920.74980.261*
H24C0.39160.58090.67580.261*
C250.2978 (3)0.4809 (5)0.7118 (3)0.141 (3)
H25A0.28090.54040.68930.211*
H25B0.31320.48980.76370.211*
H25C0.26280.43390.70210.211*
C310.1969 (2)0.4448 (3)0.3931 (2)0.0629 (10)
C320.1281 (2)0.4686 (4)0.3494 (3)0.0837 (14)
C330.1152 (3)0.5755 (5)0.3528 (4)0.155 (3)
H33A0.14860.61010.33540.233*
H33B0.11710.59360.40250.233*
H33C0.07170.59020.32270.233*
C340.0787 (3)0.4141 (7)0.3752 (5)0.211 (5)
H34A0.08110.43010.42540.317*
H34B0.08730.34710.37150.317*
H34C0.03490.42890.34600.317*
C350.1274 (3)0.4476 (6)0.2718 (3)0.160 (3)
H35A0.16090.48530.25710.240*
H35B0.08420.46280.24130.240*
H35C0.13660.38090.26670.240*
C410.44621 (19)0.5731 (3)0.4320 (2)0.0638 (10)
H41A0.45790.50890.43270.077*
C420.4946 (2)0.6399 (4)0.4293 (3)0.0833 (14)
H42A0.53770.62120.42820.100*
C430.4783 (3)0.7313 (4)0.4282 (3)0.0926 (16)
H43A0.51070.77740.42750.111*
C440.4139 (2)0.7594 (3)0.4279 (2)0.0724 (12)
C450.3933 (3)0.8543 (4)0.4269 (3)0.1037 (18)
H45A0.42420.90270.42620.124*
C460.3312 (3)0.8772 (4)0.4269 (4)0.1119 (19)
H46A0.31850.94110.42620.134*
C470.2854 (3)0.8066 (4)0.4280 (4)0.118 (2)
H47A0.24140.82310.42740.141*
C480.3028 (2)0.7138 (3)0.4300 (3)0.0944 (16)
H48A0.27100.66680.43080.113*
C490.3679 (2)0.6878 (3)0.4309 (2)0.0611 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0539 (3)0.0463 (3)0.0828 (4)0.0057 (2)0.0224 (3)0.0012 (3)
Ca0.0485 (6)0.0465 (6)0.0431 (6)0.0106 (5)0.0048 (4)0.0054 (5)
O110.0685 (18)0.076 (2)0.094 (2)0.0032 (15)0.0342 (16)0.0084 (17)
O120.083 (2)0.0489 (16)0.098 (2)0.0037 (14)0.0390 (17)0.0041 (15)
O210.097 (2)0.082 (2)0.0667 (19)0.0390 (18)0.0123 (16)0.0183 (16)
O220.090 (2)0.0723 (19)0.079 (2)0.0187 (16)0.0302 (17)0.0038 (16)
O310.078 (2)0.076 (2)0.085 (2)0.0039 (16)0.0060 (16)0.0343 (17)
O320.0542 (17)0.0658 (19)0.131 (3)0.0090 (15)0.0149 (17)0.0104 (18)
N10.0510 (19)0.056 (2)0.071 (2)0.0068 (15)0.0157 (16)0.0033 (16)
C110.056 (2)0.060 (3)0.068 (3)0.0062 (19)0.017 (2)0.001 (2)
C120.128 (4)0.058 (3)0.081 (3)0.013 (3)0.044 (3)0.001 (2)
C130.153 (6)0.128 (5)0.160 (6)0.039 (4)0.114 (5)0.025 (4)
C140.244 (9)0.109 (5)0.085 (4)0.011 (5)0.018 (5)0.031 (4)
C150.235 (8)0.058 (3)0.133 (5)0.033 (4)0.079 (5)0.003 (3)
C210.056 (2)0.067 (3)0.057 (3)0.009 (2)0.010 (2)0.015 (2)
C220.072 (3)0.107 (4)0.062 (3)0.005 (3)0.003 (2)0.031 (3)
C230.266 (10)0.181 (8)0.074 (4)0.087 (8)0.018 (5)0.010 (5)
C240.123 (5)0.248 (10)0.139 (6)0.075 (6)0.008 (4)0.097 (6)
C250.108 (4)0.231 (8)0.084 (4)0.010 (5)0.027 (3)0.053 (5)
C310.055 (2)0.066 (3)0.065 (3)0.001 (2)0.009 (2)0.017 (2)
C320.056 (3)0.105 (4)0.085 (3)0.001 (3)0.007 (2)0.046 (3)
C330.118 (5)0.146 (6)0.200 (8)0.053 (5)0.034 (5)0.072 (6)
C340.053 (3)0.308 (11)0.259 (9)0.029 (5)0.008 (4)0.188 (9)
C350.101 (5)0.256 (9)0.101 (5)0.007 (5)0.021 (4)0.043 (6)
C410.052 (2)0.069 (3)0.071 (3)0.007 (2)0.015 (2)0.003 (2)
C420.053 (3)0.097 (4)0.103 (4)0.016 (3)0.025 (2)0.003 (3)
C430.077 (3)0.089 (4)0.114 (4)0.036 (3)0.027 (3)0.008 (3)
C440.077 (3)0.066 (3)0.075 (3)0.020 (2)0.020 (2)0.011 (2)
C450.117 (5)0.059 (3)0.132 (5)0.028 (3)0.025 (4)0.011 (3)
C460.129 (5)0.054 (3)0.151 (5)0.001 (3)0.029 (4)0.007 (3)
C470.097 (4)0.073 (4)0.190 (7)0.012 (3)0.047 (4)0.012 (4)
C480.080 (3)0.057 (3)0.155 (5)0.002 (2)0.043 (3)0.005 (3)
C490.063 (3)0.052 (2)0.069 (3)0.0088 (19)0.018 (2)0.004 (2)
Geometric parameters (Å, º) top
Co—O121.914 (3)C12—C151.509 (6)
Co—O221.912 (3)C12—C131.515 (7)
Co—O321.904 (3)C12—C141.521 (8)
Co—N12.065 (3)C21—C221.501 (6)
Co—Ca3.7929 (5)C22—C251.469 (7)
Ca—O11i2.269 (3)C22—C231.480 (8)
Ca—O112.269 (3)C22—C241.495 (8)
Ca—O212.279 (3)C31—C321.495 (6)
Ca—O21i2.279 (3)C32—C341.445 (6)
Ca—O312.261 (3)C32—C351.486 (8)
Ca—O31i2.261 (3)C32—C331.522 (8)
O11—C111.213 (4)C41—C421.374 (6)
O12—C111.252 (5)C42—C431.320 (6)
O21—C211.210 (4)C43—C441.380 (6)
O22—C211.242 (5)C44—C491.389 (5)
O31—C311.210 (5)C44—C451.392 (7)
O32—C311.237 (5)C45—C461.318 (7)
N1—C411.298 (4)C46—C471.369 (7)
N1—C491.353 (5)C47—C481.345 (7)
C11—C121.484 (6)C48—C491.383 (6)
O12—Co—O22118.55 (13)C15—C12—C13110.5 (5)
O12—Co—O32115.87 (14)C11—C12—C14104.6 (4)
O22—Co—O32118.22 (14)C15—C12—C14109.5 (5)
O12—Co—N194.42 (12)C13—C12—C14110.4 (5)
O22—Co—N198.22 (13)O21—C21—O22122.8 (4)
O32—Co—N1104.63 (13)O21—C21—C22118.7 (4)
O31—Ca—O31i180.00 (12)O22—C21—C22118.5 (4)
O31—Ca—O11i92.46 (11)C25—C22—C23112.6 (6)
O31i—Ca—O11i87.54 (11)C25—C22—C24109.2 (5)
O11—Ca—O3187.54 (11)C23—C22—C24107.5 (6)
O31i—Ca—O1192.46 (11)C25—C22—C21108.6 (4)
O11i—Ca—O11180.0C23—C22—C21108.7 (4)
O11—Ca—O2186.43 (11)C24—C22—C21110.3 (5)
O21—Ca—O3185.74 (11)O31—C31—O32122.8 (4)
O31i—Ca—O2194.26 (11)O31—C31—C32119.6 (4)
O11i—Ca—O2193.57 (11)O32—C31—C32117.5 (4)
O31—Ca—O21i94.26 (11)C34—C32—C35112.5 (6)
O31i—Ca—O21i85.74 (11)C34—C32—C31110.3 (4)
O11i—Ca—O21i86.43 (11)C35—C32—C31106.4 (4)
O11—Ca—O21i93.57 (11)C34—C32—C33111.1 (6)
O21—Ca—O21i180.00 (10)C35—C32—C33106.0 (5)
C11—O11—Ca141.7 (3)C31—C32—C33110.4 (5)
C11—O12—Co125.1 (3)N1—C41—C42124.0 (4)
C21—O21—Ca150.3 (3)C43—C42—C41118.4 (4)
C21—O22—Co124.8 (3)C42—C43—C44121.0 (4)
C31—O31—Ca156.8 (3)C43—C44—C49117.3 (4)
C31—O32—Co119.0 (3)C43—C44—C45124.1 (5)
C41—N1—C49117.8 (3)C49—C44—C45118.6 (5)
C41—N1—Co114.8 (3)C46—C45—C44121.6 (5)
C49—N1—Co126.8 (3)C45—C46—C47119.8 (5)
O11—C11—O12123.3 (4)C48—C47—C46121.1 (5)
O11—C11—C12120.4 (4)C47—C48—C49120.3 (5)
O12—C11—C12116.3 (4)N1—C49—C48119.9 (4)
C11—C12—C15111.1 (4)N1—C49—C44121.5 (4)
C11—C12—C13110.6 (4)C48—C49—C44118.6 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[CaZn2(C3H5O2)6(C9H7N)2][CaZn2(C5H9O2)6(C9H7N)2]
Mr867.551022.98
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)293293
a, b, c (Å)8.614 (2), 19.363 (4), 12.473 (3)20.5710 (5), 13.9851 (3), 18.8102 (4)
β (°) 95.59 (3) 103.814 (7)
V3)2070.4 (7)5254.9 (2)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.340.79
Crystal size (mm)0.15 × 0.10 × 0.100.15 × 0.10 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ϕ scans (Fair, 1990)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.735, 0.8750.879, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
3633, 3633, 3007 12636, 4742, 3269
Rint0.0000.042
(sin θ/λ)max1)0.5950.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.155, 1.15 0.062, 0.135, 1.09
No. of reflections36334742
No. of parameters238295
No. of restraints30
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.330.33, 0.22

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SMART (Siemens, 1996), CAD-4 Software, SMART and SAINT (Siemens, 1994), MolEN (Fair, 1990), XPREP (1994), SHELXS86 (Sheldrick, 1990), SHELXTL (Siemens, 1994), SHELXL93 (Sheldrick, 1993), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Zn—O121.924 (3)Zn—N2.086 (3)
Zn—O221.924 (3)Ca—O112.323 (3)
Zn—O321.951 (3)Ca—O212.310 (3)
O12—Zn—O22119.41 (17)O32—Zn—N100.44 (14)
O12—Zn—O32116.19 (15)O11—Ca—O2191.10 (13)
O22—Zn—O32117.04 (17)O11—Ca—O3185.87 (13)
O12—Zn—N101.05 (13)O21—Ca—O3186.64 (14)
O22—Zn—N95.84 (13)
Selected geometric parameters (Å, º) for (II) top
Co—O121.914 (3)Ca—O112.269 (3)
Co—O221.912 (3)Ca—O212.279 (3)
Co—O321.904 (3)Ca—O312.261 (3)
Co—N12.065 (3)
O12—Co—O22118.55 (13)O32—Co—N1104.63 (13)
O12—Co—O32115.87 (14)O11—Ca—O3187.54 (11)
O22—Co—O32118.22 (14)O11—Ca—O2186.43 (11)
O12—Co—N194.42 (12)O21—Ca—O3185.74 (11)
O22—Co—N198.22 (13)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds