Download citation
Download citation
link to html
The title mononuclear complex, [Yb(C5H7O2)3(C12H8N2)(H2O)], is a most uncommon carboxylate complex of a rare earth metal. Each YbIII ion is eightfold coordinated, being bonded to five O atoms of three dimethylacrylate groups, both N atoms of a phenanthroline and one O atom of a water molecule, giving a distorted square antiprismatic coordination polyhedron.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016169/bm1371sup1.cif
Contains datablocks global, I

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199016169/bm1371Isup2.sft
Supplementary material

CCDC reference: 143234

Comment top

The chemistry of rare earth complexes is a fascinating field because of the potential use of such complexes as extraction agents, luminescent compounds and catalysts (Richardon, 1982; Molander & Hoberg, 1992). Knowledge of the structures of lanthanide compounds is vital to the interpretation of their bonding and chemical properties. trans-2,3-dimethylacrylic acid is a prochiral compound and has often been used as model substrate in asymmetric hydrogenation catalysis (Ashby & Halpern, 1991). Information on the stereochemistry of its complexes can help to clarify the catalytic mechanism of asymmetric homogeneous hydrogenation. The present investigation of the title compound, (I), forms part of our studies of rare earth complexes with unsaturated carboxylic acids.

In (I), the YbIII ion is eightfold coordinated by five O atoms from three trans-2,3-dimethylacrylato groups, two N atoms from a phenanthroline and one O atom from a water molecule. The phenanthroline forms a five-membered chelate ring (consisting of Yb, N1, N2, C11 and C12) and two trans-2,3-dimethylacrylato groups act as bidentate chelating ligands, forming two four-membered chelating rings (consisting of Yb, O3, C18 and O4, and of Yb, O5, C23 and O6). The two four-atom mean planes make a dihedral angle of 93.8 (2)° and form dihedral angles with mean plane through Yb, N1, C11, C12 and N2 of 100.8 (2) and 8.1 (2)°, respectively. The coordination polyhedron of YbIII is a slightly distorted square antiprism. The two N atoms of a phenanthroline group and five carboxylato O atoms and the O atom from a water molecule occupy the ligand sites of two square faces of the antiprism. The least-squares planes through O3, O4, O5 and O6, and O1, O7, N1 and N2 are essentially parallel to each other [dihedral angle about 3.4 (2)°] and the distance of YbIII from the least-squares mean planes of the square faces are 1.3998 (6) and 1.2324 Å, respectively.

Lanthanide carboxylate complexes have been widely studied and most are found to exhibit a variety of dimeric, trimeric or infinite chain structures in the solid state (Ma & Ni, 1996; Wei, 1998). The title complex, however, is a monomer. We beleive that two factors hinder the complex polymerization. One is the small radius of YbIII (a consequence of lanthanide contraction). The other is steric hindrance: the trans-2,3-dimethylacrylato group is larger than the methylacrylato ligand in the dimeric complex [Yb(C4H5O2)3(C12H8N2)]2, (II) (Lu et al., 1999).

Carboxylate ligands exhibit various modes of coordination to rare earth metal ions (Ma & Ni, 1996). The title complex presents two modes, bidentate or unidentate, and also has two distinct Yb—O distances. The average Yb—Ochelating bond length (2.348 Å) in the title complex is nearly equal to the corresponding length (2.363 Å) in complex (II). It indicates that different carboxylato groups with the same mode of coordination with YbIII ion have essentially the same bond lengths. The distances Yb—Ounidentate and Yb—Owater are 2.233 (8) and 2.295 (7) Å, respectively, which are slightly larger than average value (2.218 Å) of the Yb—Obridging bonds in complex (II). The Yb—N bond lengths are similar at 2.458 (8) and 2.478 (9) Å. The Yb—Ochelating bond lengths are significantly longer than the sum of the covalent radii of the two atoms, which is to be expected because the angles O3—Yb—O4 and O5—Yb—O6 of about 55° indicate ring strain. This may be the reason why a water molecule also takes part in the coordination. The water ligand also forms an intramolecular hydrogen bond with the uncoordinated O atom of a carboxylate ligand.

The carboxyl groups give rise to very strong IR absorptions, which can in principle be used to distinguish between the different coordination modes of the ligands (i.e. ionic, unidentate or bidentate) by comparison of the band separation with that of the corresponding sodium compound (Deacon & Phillips, 1980). Separation between νasym(COO) and νsym(COO), which are substantially greater than the value of 170 cm-1 for the sodium salt, are thought to be indicative of unidentate coordination. However, the value for the title complex, in which the carboxylate ligands are bidentate and unidentate, is 150 cm-1, indicating that the spectroscopic technique could not correctly identify the coordination mode.

Experimental top

trans-2,3-Dimethylacrylic acid (150 mg,1.5 mmol) and Yb(NO3)3·6H2O (130 mg, 0.3 mmol) were dissolved in of aqueous ethanol (12 ml, 1:1 v/v) and adjusted to pH 4.3 by the addition of 10% NaOH solution. An ethanolic solution of 1,10-phenanthroline (60 mg, 0.3 mmol) was added, with stirring, to the solution. After filtration, the filtrate was allowed to stand at room temperature, whereupon single crystals suitable for X-ray work were obtained after a few days. Analysis: calculated C 48.50, H 4.67, N 4.19, Yb 25.88%; found C 49.06, H 4.91, N 4.13, Yb 26.08%. IR spectra: νas (COO) 1578, νs (COO) 1428, ν (CC) 1658, ν (C— C, phen ring) 1520, ν (C—H, out of phen ring bend) 731 and 850 cm-1.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Coprporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Coprporation, 1985); program(s) used to solve structure: DIRDIF92 (Beurskens et al., 1992), SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme of the title complex. Displacement ellipsoids are shown at the 40% probability level and H atoms are omitted for clarity.
Aquatris(trans-2,3-dimethylacrylato)(1,10-phenanthroline)ytterbium(III) top
Crystal data top
[Yb(C5H7O2)3(C12H8N2)(H2O)]F(000) = 1332.00
Mr = 668.59Dx = 1.606 Mg m3
Dm = 1.64 Mg m3
Dm measured by ?
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 9.512 (3) ÅCell parameters from 21 reflections
b = 20.472 (10) Åθ = 13.9–25.2°
c = 14.412 (3) ŵ = 3.43 mm1
β = 99.92 (2)°T = 293 K
V = 2764 (1) Å3Square prism, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
AFC-7R four-circle
diffractometer
Rint = 0.053
ω/2θ scansθmax = 25.5°
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
h = 011
Tmin = 0.377, Tmax = 0.504k = 024
5655 measured reflectionsl = 1717
5384 independent reflections3 standard reflections every 200 reflections
3359 reflections with I > 2.5σ(I) intensity decay: 5.7%
Refinement top
Refinement on Fw = 1/σ2(Fo) + 4(Fo)2/σ2(Fo)2 w = 1/σ2(Fo) + 4(Fo)2/σ2(Fo)2
R[F2 > 2σ(F2)] = 0.052(Δ/σ)max = 0.05
wR(F2) = 0.063Δρmax = 1.08 e Å3
S = 1.98Δρmin = 1.21 e Å3
3359 reflectionsExtinction correction: Secondary extinction (Zachariasen, 1963)
335 parametersExtinction coefficient: 1.69042 × 10-7
H-atom parameters not refined
Crystal data top
[Yb(C5H7O2)3(C12H8N2)(H2O)]V = 2764 (1) Å3
Mr = 668.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.512 (3) ŵ = 3.43 mm1
b = 20.472 (10) ÅT = 293 K
c = 14.412 (3) Å0.30 × 0.20 × 0.20 mm
β = 99.92 (2)°
Data collection top
AFC-7R four-circle
diffractometer
3359 reflections with I > 2.5σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.053
Tmin = 0.377, Tmax = 0.5043 standard reflections every 200 reflections
5655 measured reflections intensity decay: 5.7%
5384 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052335 parameters
wR(F2) = 0.063H-atom parameters not refined
S = 1.98Δρmax = 1.08 e Å3
3359 reflectionsΔρmin = 1.21 e Å3
Special details top

Refinement. The data were corrected for Lorentz and polarization effects, and a secondary extinction correction was applied. The structure was solved by heavy-atom Patterson methods (Sheldrick, 1985) and expanded using Fourier techniques (Beurskens et al., 1992). All non-H atoms were refined by full-matrix least-squares methods with anisotropic displacement parameters, and H atoms were located in ΔF maps but not refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb0.02508 (5)0.03570 (2)0.20685 (3)0.0443
O10.109 (1)0.1360 (4)0.2433 (5)0.0661
O20.105 (1)0.2016 (4)0.1216 (6)0.0976
O30.0629 (9)0.0626 (4)0.2581 (5)0.0595
O40.0824 (9)0.0501 (4)0.1058 (5)0.0518
O50.2309 (9)0.0117 (5)0.1733 (5)0.0673
O60.2201 (8)0.0061 (4)0.3216 (5)0.0591
O70.0138 (9)0.0843 (4)0.0622 (5)0.0582
N10.0713 (10)0.0675 (4)0.3480 (5)0.0431
N20.2295 (10)0.0687 (5)0.1737 (6)0.0507
C10.007 (1)0.0693 (6)0.4317 (8)0.0543
C20.045 (2)0.0883 (7)0.5129 (8)0.0664
C30.182 (2)0.1064 (7)0.5055 (8)0.0639
C40.270 (1)0.1076 (6)0.4149 (7)0.0523
C50.415 (2)0.1274 (7)0.4010 (9)0.0719
C60.495 (1)0.1276 (7)0.316 (1)0.0746
C70.437 (1)0.1064 (7)0.2358 (8)0.0592
C80.515 (1)0.1039 (7)0.1443 (10)0.0736
C90.450 (1)0.0841 (8)0.0720 (9)0.0749
C100.309 (1)0.0667 (7)0.0888 (9)0.0651
C110.293 (1)0.0874 (5)0.2472 (7)0.0443
C120.207 (1)0.0877 (5)0.3405 (7)0.0438
C130.131 (1)0.1897 (6)0.2058 (8)0.0586
C140.202 (1)0.2424 (6)0.2736 (8)0.0561
C150.213 (2)0.2339 (7)0.362 (1)0.0782
C160.277 (2)0.2808 (9)0.441 (1)0.1256
C170.250 (2)0.3002 (8)0.225 (1)0.1111
C180.101 (1)0.0842 (6)0.1765 (8)0.0482
C190.174 (1)0.1501 (6)0.1635 (8)0.0528
C200.241 (2)0.1657 (7)0.0749 (9)0.0718
C210.324 (2)0.224 (1)0.048 (1)0.1325
C220.175 (2)0.1913 (8)0.2456 (9)0.0895
C230.287 (1)0.0153 (6)0.2606 (8)0.0516
C240.432 (1)0.0450 (7)0.2876 (9)0.0638
C250.492 (1)0.0443 (6)0.3765 (8)0.0599
C260.635 (2)0.0717 (8)0.414 (1)0.0851
C270.497 (1)0.0728 (8)0.2082 (10)0.0817
H10.12020.05050.43930.0858
H20.01680.08860.57220.0784
H30.22020.11830.56000.0858
H40.45690.14060.45360.0830
H50.59130.14190.30790.0858
H60.61290.11630.13190.0858
H70.50110.08280.00930.0866
H80.26510.05210.03810.0821
H90.17650.19410.38200.0766
H100.27030.26170.50000.1552
H110.22550.32060.43390.1552
H120.37400.28850.43700.1552
H130.20080.33790.24000.0766
H140.34990.30620.24420.1224
H150.23040.29340.15840.1224
H160.23140.13490.02650.0883
H170.35610.22260.01870.1513
H180.26370.26090.06260.1224
H190.40110.22540.07970.1513
H200.13260.23170.23600.1047
H210.27070.19740.25420.1047
H220.12260.17010.29930.1047
H230.46690.03350.45330.0858
H240.62460.11330.44060.0858
H250.68770.07590.36360.1011
H260.68430.04320.46020.1011
H270.51100.03870.16630.1011
H280.43580.10500.17620.0959
H290.58690.09200.23340.0858
H300.05860.12620.05690.0709
H310.03530.06430.00650.1333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb0.0529 (3)0.0495 (3)0.0323 (3)0.0037 (3)0.0124 (2)0.0023 (3)
O10.105 (7)0.048 (5)0.045 (5)0.011 (5)0.013 (5)0.001 (4)
O20.18 (1)0.063 (6)0.049 (5)0.017 (7)0.031 (7)0.001 (5)
O30.081 (6)0.056 (5)0.040 (4)0.013 (5)0.009 (4)0.006 (4)
O40.075 (5)0.048 (5)0.034 (4)0.003 (4)0.015 (4)0.010 (3)
O50.059 (5)0.100 (7)0.046 (5)0.020 (5)0.016 (4)0.013 (5)
O60.053 (5)0.082 (6)0.042 (4)0.017 (5)0.007 (4)0.008 (4)
O70.080 (6)0.065 (5)0.031 (4)0.000 (5)0.013 (4)0.006 (4)
N10.059 (6)0.044 (5)0.027 (4)0.007 (5)0.008 (4)0.008 (4)
N20.057 (6)0.055 (6)0.040 (5)0.006 (5)0.007 (4)0.008 (5)
C10.065 (8)0.056 (7)0.044 (7)0.012 (7)0.015 (6)0.006 (6)
C20.087 (10)0.077 (10)0.038 (6)0.001 (8)0.018 (6)0.009 (6)
C30.091 (10)0.065 (8)0.039 (6)0.002 (8)0.023 (7)0.007 (6)
C40.061 (7)0.053 (7)0.044 (6)0.006 (6)0.014 (6)0.004 (6)
C50.09 (1)0.08 (1)0.054 (8)0.011 (8)0.028 (8)0.010 (7)
C60.077 (10)0.08 (1)0.075 (10)0.018 (8)0.030 (8)0.001 (8)
C70.063 (8)0.066 (8)0.049 (7)0.005 (7)0.010 (6)0.003 (6)
C80.055 (8)0.09 (1)0.078 (9)0.012 (8)0.010 (7)0.013 (9)
C90.064 (8)0.11 (1)0.049 (7)0.015 (8)0.000 (6)0.004 (8)
C100.073 (9)0.072 (9)0.053 (8)0.002 (8)0.017 (7)0.005 (7)
C110.050 (6)0.044 (7)0.042 (6)0.001 (5)0.017 (5)0.001 (5)
C120.062 (7)0.033 (6)0.039 (6)0.008 (5)0.017 (5)0.006 (5)
C130.085 (9)0.054 (8)0.041 (6)0.002 (7)0.022 (6)0.000 (6)
C140.072 (8)0.042 (7)0.056 (8)0.009 (6)0.016 (7)0.004 (6)
C150.10 (1)0.061 (9)0.073 (10)0.014 (8)0.012 (9)0.024 (8)
C160.15 (2)0.10 (1)0.11 (1)0.01 (1)0.03 (1)0.03 (1)
C170.15 (2)0.07 (1)0.13 (1)0.03 (1)0.06 (1)0.01 (1)
C180.058 (7)0.049 (7)0.040 (6)0.000 (6)0.013 (5)0.012 (6)
C190.059 (7)0.052 (7)0.052 (7)0.012 (6)0.020 (6)0.000 (6)
C200.080 (9)0.08 (1)0.057 (8)0.028 (8)0.010 (7)0.016 (7)
C210.15 (2)0.12 (2)0.13 (2)0.00 (1)0.01 (1)0.02 (1)
C220.12 (1)0.09 (1)0.052 (8)0.01 (1)0.003 (8)0.014 (8)
C230.065 (7)0.054 (8)0.036 (6)0.004 (6)0.008 (6)0.001 (5)
C240.059 (7)0.074 (9)0.062 (8)0.008 (7)0.020 (6)0.006 (7)
C250.063 (7)0.069 (9)0.044 (7)0.011 (7)0.002 (6)0.009 (6)
C260.072 (9)0.11 (1)0.073 (9)0.026 (9)0.007 (8)0.003 (9)
C270.066 (9)0.10 (1)0.08 (1)0.032 (8)0.028 (8)0.005 (9)
Geometric parameters (Å, º) top
Yb—O12.233 (8)C4—C51.42 (2)
Yb—O32.347 (8)C4—C121.38 (1)
Yb—O42.396 (7)C5—C61.32 (2)
Yb—O52.310 (8)C6—C71.43 (2)
Yb—O62.342 (7)C7—C81.40 (2)
Yb—O72.295 (7)C7—C111.40 (2)
Yb—N12.458 (8)C8—C91.37 (2)
Yb—N22.480 (9)C9—C101.36 (2)
O1—C131.26 (1)C11—C121.45 (1)
O2—C131.22 (1)C13—C141.53 (2)
O3—C181.25 (1)C14—C151.28 (2)
O4—C181.27 (1)C14—C171.49 (2)
O5—C231.28 (1)C15—C161.53 (2)
O6—C231.25 (1)C18—C191.51 (2)
N1—C11.30 (1)C19—C201.36 (2)
N1—C121.34 (1)C19—C221.45 (2)
N2—C101.32 (1)C20—C211.45 (2)
N2—C111.36 (1)C23—C241.50 (2)
C1—C21.40 (2)C24—C251.31 (2)
C2—C31.35 (2)C24—C271.51 (2)
C3—C41.43 (2)C25—C261.49 (2)
O1—Yb—O3147.9 (3)C1—C2—C3119 (1)
O1—Yb—O4156.3 (3)C2—C3—C4119 (1)
O1—Yb—O598.9 (3)C3—C4—C5122 (1)
O1—Yb—O682.2 (3)C3—C4—C12116 (1)
O1—Yb—O776.9 (3)C5—C4—C12121 (1)
O1—Yb—N174.4 (3)C4—C5—C6121 (1)
O1—Yb—N295.3 (3)C5—C6—C7120 (1)
O3—Yb—O454.9 (2)C6—C7—C8123 (1)
O3—Yb—O593.8 (3)C6—C7—C11119 (1)
O3—Yb—O680.7 (3)C8—C7—C11116 (1)
O3—Yb—O7133.9 (3)C7—C8—C9119 (1)
O3—Yb—N176.3 (3)C8—C9—C10120 (1)
O3—Yb—N284.6 (3)N2—C10—C9122 (1)
O4—Yb—O581.5 (3)N2—C11—C7122 (1)
O4—Yb—O6116.3 (3)N2—C11—C12117.9 (10)
O4—Yb—O779.5 (3)C7—C11—C12119.4 (10)
O4—Yb—N1121.1 (3)N1—C12—C4124 (1)
O4—Yb—N277.4 (3)N1—C12—C11117.0 (9)
O5—Yb—O656.1 (3)C4—C12—C11118 (1)
O5—Yb—O784.3 (3)O1—C13—O2125 (1)
O5—Yb—N1137.3 (3)O1—C13—C14115 (1)
O5—Yb—N2155.4 (3)O2—C13—C14119 (1)
O6—Yb—O7131.4 (3)C13—C14—C15119 (1)
O6—Yb—N181.2 (3)C13—C14—C17113 (1)
O6—Yb—N2146.6 (3)C15—C14—C17127 (1)
O7—Yb—N1132.1 (3)C14—C15—C16127 (1)
O7—Yb—N279.4 (3)O3—C18—O4119 (1)
N1—Yb—N266.2 (3)O3—C18—C19119 (1)
Yb—O1—C13141.4 (8)O4—C18—C19121.0 (9)
Yb—O3—C1894.0 (7)C18—C19—C20117 (1)
Yb—O4—C1891.2 (6)C18—C19—C22118 (1)
Yb—O5—C2392.3 (7)C20—C19—C22124 (1)
Yb—O6—C2391.7 (7)C19—C20—C21126 (1)
Yb—N1—C1122.6 (8)O5—C23—O6119 (1)
Yb—N1—C12120.4 (6)O5—C23—C24119 (1)
C1—N1—C12116.9 (9)O6—C23—C24121 (1)
Yb—N2—C10123.6 (8)C23—C24—C25118 (1)
Yb—N2—C11118.5 (7)C23—C24—C27116 (1)
C10—N2—C11117 (1)C25—C24—C27125 (1)
N1—C1—C2123 (1)C24—C25—C26124 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H30···O20.971.822.650 (12)141.6

Experimental details

Crystal data
Chemical formula[Yb(C5H7O2)3(C12H8N2)(H2O)]
Mr668.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.512 (3), 20.472 (10), 14.412 (3)
β (°) 99.92 (2)
V3)2764 (1)
Z4
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerAFC-7R four-circle
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.377, 0.504
No. of measured, independent and
observed [I > 2.5σ(I)] reflections
5655, 5384, 3359
Rint0.053
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.063, 1.98
No. of reflections3359
No. of parameters335
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.08, 1.21

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Coprporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Coprporation, 1985), DIRDIF92 (Beurskens et al., 1992), SHELXS86 (Sheldrick, 1985), TEXSAN.

Selected geometric parameters (Å, º) top
Yb—O12.233 (8)Yb—N22.480 (9)
Yb—O32.347 (8)O1—C131.26 (1)
Yb—O42.396 (7)O2—C131.22 (1)
Yb—O52.310 (8)O3—C181.25 (1)
Yb—O62.342 (7)O4—C181.27 (1)
Yb—O72.295 (7)O5—C231.28 (1)
Yb—N12.458 (8)O6—C231.25 (1)
O1—Yb—O3147.9 (3)O4—Yb—O6116.3 (3)
O1—Yb—O4156.3 (3)O4—Yb—O779.5 (3)
O1—Yb—O598.9 (3)O4—Yb—N1121.1 (3)
O1—Yb—O682.2 (3)O4—Yb—N277.4 (3)
O1—Yb—O776.9 (3)O5—Yb—O656.1 (3)
O1—Yb—N174.4 (3)O5—Yb—O784.3 (3)
O1—Yb—N295.3 (3)O5—Yb—N1137.3 (3)
O3—Yb—O454.9 (2)O5—Yb—N2155.4 (3)
O3—Yb—O593.8 (3)O6—Yb—O7131.4 (3)
O3—Yb—O680.7 (3)O6—Yb—N181.2 (3)
O3—Yb—O7133.9 (3)O6—Yb—N2146.6 (3)
O3—Yb—N176.3 (3)O7—Yb—N1132.1 (3)
O3—Yb—N284.6 (3)O7—Yb—N279.4 (3)
O4—Yb—O581.5 (3)N1—Yb—N266.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H30···O20.971.822.650 (12)141.6
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds