Download citation
Download citation
link to html
The structure of the title compound, C14H19N2+·C9H3Cl6O4·H2O, consists of singly ionized 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid anions and protonated 1,8-bis(dimethylamino)naphthalene cations. In the (8-dimethylamino-1-napthyl)dimethylammonium cat­ion, a strong disordered intramolecular hydrogen bond is formed with N...N = 2.589 (3) Å. The geometry and occupancy obtained in the final restrained refinement suggest that the disordered hydrogen bond may be asymmetric. Water mol­ecules link the anion dimers into infinite chains via hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000664/bm1360sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000664/bm1360Isup2.hkl
Contains datablock I

CCDC reference: 144647

Comment top

The term `proton sponges' describes a class of compounds which combine an unusually high basicity with a low nucleophilic character. Most of these compounds are diamines (Llamas-Saiz et al., 1994). The [N—H···N]+ hydrogen bonds play an important role in these proton sponges. In a complex of 1,8-bis(dimethylamino)naphthalene (DMAN) with a (slightly) acidic compound, DMAN will absorb a proton from the acidic compound and an intramolecular hydrogen bond will be formed. These hydrogen bonds can be symmetric or asymmetric. When the bridge is asymmetric this will be reflected in the other bond distances of the DMAN·H+ cation (Kanters, Schouten, Duisenberg et al., 1991). It is remarkable that the N—H distance in proton sponges is found to be well out of the range usually observed for N—H···N hydrogen bonds in other molecules (Kanters, Schouten, Kroon & Grech, 1991). For protonated proton sponges the N···N distances are in the range 2.553–2.654 Å (Llamas-Saiz et al., 1994; Kanters, Schouten, Duisenberg et al., 1991). The H atom seems to be located on a rather flat potential energy surface, the nature of which is influenced by the crystal field environment (Jeffrey, 1997). The subject of the present study, (I), is the monohydrated complex of DMAN with 1,4,5,6,7,7-hexachloro-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (1:1), in which DMAN accepts one proton from the carboxylic acid molecule. \scheme

The asymmetric unit of (I) (Fig. 1, Table 1) consists of one DMAN·H+ cation, one singly deprotonated (3-carboxy-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2-carboxylate)- anion and one water molecule.

The DMAN ring system in (I) is planar (σplane 0.007 Å) and N1 and N2 lie within 0.020 and 0.022 Å, respectively, of the least squares mean plane of the ring system. The disordered H atoms (H1N and H2N) are also in the plane of the ring system, being displaced by only 0.040 and -0.038 Å, respectively. The DMAN residues are ordered in π-stacked colums along the a axis and the perpendicular distances between two DMAN molecules alternate between 4.261 and 4.711 Å.

Among the three different residues several types of hydrogen bonds were observed. In the DMAN molecule there is a strong, somewhat bent, intramolecular [N—H···N]+ hydrogen bond with an N···N distance of 2.589 (3) Å. The hydrogen is disordered over two positions whose occupancies refined to 0.60 (5) for H1N and 0.40 (5) for H2N. The resulting difference in occupancy of 0.20 (10) suggests a possible asymmetric hydrogen bond, although the evidence is not conclusive.

The deprotonated acid moiety accepts a hydrogen bond from the still-protonated acid moiety of a symmetry-related molecule, thereby forming a dimer [unitary graph set R22(14)] over the inversion centre at (0,0,1/2) (Fig. 2). Protonated and deprotonated acid moieties can easily be distinguished on the basis of their C—O bond lengths (Table 1). Intermolecular O···O distances clearly indicate that the water molecules link these rings into infinite chains along [100] by donating hydrogen bonds to both carboxylate O atoms. The water links also form hydrogen-bonded ring systems with the anions [unitary graph set DD, binary graph set R44(12)]. There are also weak intermolecular C—H···A interactions present (Table 2).

Experimental top

Crystals of (I) were obtained from a 1:1 solution of DMAN and 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (Aldrich) in a mixture of acetonitrile and water.

Refinement top

The carboxylic H atom was located in a difference Fourier synthesis and subsequently included as part of a rigid rotating group. The water H atoms were placed in hydrogen-bond-forming positions and their coordinates were refined freely. The amino H atoms were introduced at calculated positions and during refinement idealized tetrahedral geometry at the N carrier atom was enforced, with the N—H bond distance and the H atom occupancies allowed to refine. All other H atoms were introduced at calculated positions and refined riding on their carrier atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. The molecular view of (I) (PLATON; Spek, 1998) showing the cation, anion and water molecule, with the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. A plot of an infinite chain of hydrogen bonds in (I). The DMAN moieties and the chlorine-substituted rings of the heptene moieties have been omitted for clarity.
(8-dimethylamino-1-naphthyl)dimethylammonium 3-carboxy-1,4,5,6,7,7-hexachloro-bicyclo[2.2.1]hept-5-ene-2-carboxylate hydrate (1:1:1) top
Crystal data top
C14H19N2+C9H3Cl6O4·H2OZ = 2
Mr = 621.17F(000) = 636
Triclinic, P1Dx = 1.508 Mg m3
a = 8.7122 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8097 (11) ÅCell parameters from 25 reflections
c = 13.7023 (12) Åθ = 12.7–19.3°
α = 113.200 (7)°µ = 0.67 mm1
β = 91.680 (6)°T = 295 K
γ = 101.350 (6)°Block, colourless
V = 1368.32 (19) Å30.6 × 0.6 × 0.3 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
4286 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
β-filter monochromatorθmax = 27.5°, θmin = 1.6°
ω/2θ scansh = 1111
Absorption correction: ψ-scan
(PLATON; Spek, 1998)
k = 1616
Tmin = 0.745, Tmax = 0.819l = 1717
13079 measured reflections3 standard reflections every 60 min
6272 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.5928P]
where P = (Fo2 + 2Fc2)/3
6272 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H19N2+C9H3Cl6O4·H2Oγ = 101.350 (6)°
Mr = 621.17V = 1368.32 (19) Å3
Triclinic, P1Z = 2
a = 8.7122 (5) ÅMo Kα radiation
b = 12.8097 (11) ŵ = 0.67 mm1
c = 13.7023 (12) ÅT = 295 K
α = 113.200 (7)°0.6 × 0.6 × 0.3 mm
β = 91.680 (6)°
Data collection top
Enraf-Nonius CAD4
diffractometer
4286 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(PLATON; Spek, 1998)
Rint = 0.036
Tmin = 0.745, Tmax = 0.8193 standard reflections every 60 min
13079 measured reflections intensity decay: none
6272 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
6272 reflectionsΔρmin = 0.40 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4274 (2)0.79225 (16)0.10208 (15)0.0416 (6)
N20.3389 (2)0.69069 (19)0.22781 (15)0.0489 (6)
C10.2808 (2)0.58622 (19)0.03054 (17)0.0410 (7)
C20.3558 (3)0.68381 (19)0.01113 (17)0.0418 (7)
C30.3622 (3)0.6769 (2)0.0903 (2)0.0600 (9)
C40.2930 (4)0.5742 (3)0.1786 (2)0.0745 (11)
C50.2194 (4)0.4800 (3)0.1635 (2)0.0692 (10)
C60.2108 (3)0.4811 (2)0.0604 (2)0.0531 (8)
C70.1352 (3)0.3826 (2)0.0453 (3)0.0706 (10)
C80.1277 (4)0.3843 (3)0.0536 (4)0.0848 (13)
C90.1965 (4)0.4860 (3)0.1432 (3)0.0735 (11)
C100.2704 (3)0.5844 (2)0.1335 (2)0.0483 (8)
C110.4641 (4)0.6764 (3)0.2937 (3)0.0916 (16)
C120.2168 (4)0.7392 (3)0.2927 (2)0.0748 (11)
C130.6013 (3)0.8224 (3)0.1056 (2)0.0725 (10)
C140.3562 (4)0.8902 (2)0.1097 (2)0.0670 (10)
Cl10.23133 (10)0.63941 (6)0.45831 (6)0.0730 (3)
Cl40.18774 (9)0.87102 (6)0.82435 (5)0.0661 (2)
Cl50.16978 (11)0.88067 (7)0.88994 (5)0.0780 (3)
Cl60.42978 (9)0.73966 (9)0.66334 (9)0.0940 (4)
Cl7A0.16982 (8)0.71621 (6)0.55167 (5)0.0561 (2)
Cl7B0.03243 (9)0.60440 (5)0.65705 (6)0.0644 (2)
O28A0.2680 (2)0.96606 (18)0.62968 (14)0.0661 (7)
O28B0.20688 (19)0.94016 (16)0.46864 (13)0.0551 (6)
O29A0.0090 (2)1.08385 (14)0.83283 (13)0.0542 (6)
O29B0.0780 (2)1.13227 (13)0.70034 (13)0.0494 (5)
C210.1357 (2)0.75166 (18)0.57849 (16)0.0399 (6)
C220.0629 (2)0.86740 (17)0.56825 (15)0.0343 (6)
C230.0568 (2)0.93294 (17)0.67242 (15)0.0327 (5)
C240.0337 (2)0.84618 (18)0.72709 (15)0.0373 (6)
C250.1304 (3)0.8324 (2)0.76085 (17)0.0452 (7)
C260.2303 (3)0.7774 (2)0.6737 (2)0.0480 (8)
C270.0094 (3)0.72899 (18)0.62807 (16)0.0392 (6)
C280.1906 (2)0.93008 (18)0.55544 (17)0.0390 (6)
C290.0429 (2)1.05569 (18)0.74321 (17)0.0396 (6)
O300.5503 (3)1.0333 (3)0.64988 (18)0.0855 (9)
H1N0.4097 (13)0.7805 (8)0.156 (4)0.0500*0.60 (5)
H30.413500.741800.101000.0720*
H40.297700.570900.247500.0890*
H50.172900.412200.222700.0830*
H70.089200.314600.104500.0850*
H80.076900.317900.062100.1020*
H90.191500.486100.210900.0880*
H11A0.505200.748900.354000.1380*
H11B0.547400.653500.251400.1380*
H11C0.421000.617400.318300.1380*
H12A0.266100.809100.353600.1120*
H12B0.160200.683100.316500.1120*
H12C0.145000.756900.250200.1120*
H13A0.644000.894100.166500.1090*
H13B0.628100.831500.041400.1090*
H13C0.644400.761200.111000.1090*
H14A0.407500.958800.171200.1000*
H14B0.246000.871000.116500.1000*
H14C0.368800.904600.046400.1000*
H2N0.388 (5)0.748 (6)0.202 (2)0.0590*0.40 (5)
H220.004400.850100.505800.0410*
H230.163200.938400.650600.0390*
H29B0.117001.103200.645000.0740*
H30A0.477 (5)0.999 (4)0.626 (3)0.1280*
H30B0.598 (5)1.031 (4)0.591 (4)0.1280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0384 (10)0.0447 (10)0.0412 (9)0.0095 (8)0.0068 (8)0.0168 (8)
N20.0506 (11)0.0613 (12)0.0426 (10)0.0206 (10)0.0084 (9)0.0253 (10)
C10.0339 (11)0.0434 (12)0.0472 (12)0.0174 (9)0.0074 (9)0.0158 (10)
C20.0390 (11)0.0473 (12)0.0393 (11)0.0150 (10)0.0058 (9)0.0154 (10)
C30.0714 (17)0.0641 (16)0.0456 (13)0.0140 (14)0.0058 (12)0.0241 (13)
C40.086 (2)0.086 (2)0.0417 (14)0.0208 (18)0.0025 (14)0.0155 (15)
C50.0657 (18)0.0665 (18)0.0501 (15)0.0193 (15)0.0038 (13)0.0037 (14)
C60.0428 (13)0.0450 (13)0.0615 (15)0.0166 (11)0.0035 (11)0.0085 (11)
C70.0598 (17)0.0410 (14)0.098 (2)0.0143 (12)0.0067 (16)0.0136 (15)
C80.078 (2)0.0501 (18)0.135 (3)0.0122 (15)0.024 (2)0.047 (2)
C90.084 (2)0.0682 (19)0.088 (2)0.0211 (16)0.0251 (17)0.0496 (18)
C100.0456 (13)0.0502 (13)0.0579 (14)0.0200 (11)0.0129 (11)0.0263 (12)
C110.095 (3)0.101 (3)0.091 (2)0.035 (2)0.022 (2)0.048 (2)
C120.0742 (19)0.084 (2)0.0627 (17)0.0235 (16)0.0329 (15)0.0220 (16)
C130.0395 (14)0.088 (2)0.0662 (17)0.0021 (13)0.0091 (12)0.0144 (16)
C140.090 (2)0.0577 (16)0.0616 (16)0.0334 (15)0.0111 (15)0.0250 (14)
Cl10.0857 (5)0.0499 (4)0.0569 (4)0.0013 (3)0.0256 (3)0.0033 (3)
Cl40.0760 (5)0.0680 (4)0.0531 (3)0.0212 (3)0.0222 (3)0.0232 (3)
Cl50.1221 (7)0.0764 (5)0.0537 (4)0.0381 (5)0.0487 (4)0.0356 (4)
Cl60.0401 (4)0.1072 (7)0.1358 (8)0.0010 (4)0.0211 (4)0.0574 (6)
Cl7A0.0608 (4)0.0610 (4)0.0588 (4)0.0347 (3)0.0239 (3)0.0264 (3)
Cl7B0.0899 (5)0.0448 (3)0.0716 (4)0.0205 (3)0.0135 (4)0.0345 (3)
O28A0.0642 (11)0.0968 (14)0.0612 (11)0.0514 (11)0.0229 (9)0.0404 (11)
O28B0.0498 (9)0.0812 (12)0.0546 (10)0.0269 (9)0.0064 (8)0.0430 (9)
O29A0.0626 (11)0.0440 (9)0.0473 (9)0.0108 (8)0.0140 (8)0.0096 (7)
O29B0.0538 (10)0.0364 (8)0.0601 (10)0.0128 (7)0.0106 (8)0.0204 (8)
C210.0412 (11)0.0362 (11)0.0373 (10)0.0049 (9)0.0034 (9)0.0123 (9)
C220.0365 (10)0.0402 (11)0.0294 (9)0.0128 (9)0.0043 (8)0.0156 (8)
C230.0295 (9)0.0362 (10)0.0343 (9)0.0097 (8)0.0036 (8)0.0154 (8)
C240.0419 (11)0.0399 (11)0.0322 (10)0.0130 (9)0.0007 (8)0.0156 (9)
C250.0581 (14)0.0481 (12)0.0409 (11)0.0199 (11)0.0209 (10)0.0255 (10)
C260.0391 (12)0.0495 (13)0.0618 (14)0.0080 (10)0.0137 (11)0.0299 (12)
C270.0482 (12)0.0366 (11)0.0380 (10)0.0149 (9)0.0087 (9)0.0180 (9)
C280.0332 (10)0.0424 (11)0.0442 (11)0.0091 (9)0.0011 (9)0.0204 (10)
C290.0336 (10)0.0372 (11)0.0443 (12)0.0064 (9)0.0009 (9)0.0138 (9)
O300.0640 (13)0.140 (2)0.0626 (12)0.0559 (14)0.0090 (10)0.0364 (14)
Geometric parameters (Å, º) top
Cl1—C211.748 (2)C6—C71.398 (4)
Cl4—C241.753 (2)C7—C81.350 (6)
Cl5—C251.699 (2)C7—H70.93
Cl6—C261.696 (3)C8—H80.93
Cl7A—C271.765 (2)C9—C81.398 (6)
Cl7B—C271.765 (2)C9—H90.93
O28A—C281.223 (3)C10—C91.356 (5)
O28B—C281.253 (2)C11—H11A0.96
O29A—C291.200 (3)C11—H11B0.96
O29B—C291.322 (3)C11—H11C0.96
O29B—H29B0.82C12—H12A0.96
O30—H30A0.85 (5)C12—H12B0.96
O30—H30B0.88 (5)C12—H12C0.96
N1—C21.456 (3)C13—H13A0.96
N1—C131.482 (3)C13—H13B0.96
N1—C141.475 (4)C13—H13C0.96
N1—H1N0.82 (4)C14—H14A0.96
N2—C101.459 (3)C14—H14B0.96
N2—C121.479 (4)C14—H14C0.96
N2—C111.480 (4)C21—C261.523 (3)
N2—H2N0.97 (7)C21—C271.547 (3)
C1—C21.418 (4)C22—C211.555 (3)
C1—C61.431 (3)C22—C231.566 (3)
C1—C101.425 (3)C22—C281.538 (3)
C2—C31.361 (3)C22—H220.98
C3—C41.396 (4)C23—C291.519 (3)
C3—H30.93C23—H230.98
C4—H40.93C24—C231.554 (3)
C5—C41.345 (5)C24—C251.514 (3)
C5—H50.93C24—C271.547 (3)
C6—C51.412 (4)C25—C261.309 (3)
C29—O29B—H29B109.5H12B—C12—H12C109.5
H30A—O30—H30B102 (4)N1—C13—H13A109.5
C2—N1—C13112.0 (2)N1—C13—H13B109.5
C2—N1—C14113.28 (19)N1—C13—H13C109.5
C14—N1—C13112.0 (2)H13A—C13—H13B109.5
C2—N1—H1N106.3H13A—C13—H13C109.5
C13—N1—H1N106.3H13B—C13—H13C109.5
C14—N1—H1N106.3N1—C14—H14A109.5
C10—N2—C11113.2 (2)N1—C14—H14B109.5
C10—N2—C12111.9 (2)N1—C14—H14C109.5
C11—N2—C12111.4 (2)H14A—C14—H14B109.5
C10—N2—H2N106.6H14A—C14—H14C109.5
C11—N2—H2N106.6H14B—C14—H14C109.5
C12—N2—H2N106.6Cl1—C21—C22113.80 (14)
C2—C1—C6117.4 (2)Cl1—C21—C27115.64 (16)
C2—C1—C10125.1 (2)Cl1—C21—C26116.06 (16)
C6—C1—C10117.4 (2)C22—C21—C26109.45 (18)
N1—C2—C1118.75 (19)C22—C21—C27101.43 (16)
N1—C2—C3120.2 (2)C26—C21—C2798.57 (17)
C1—C2—C3121.0 (2)C21—C22—C23101.54 (16)
C2—C3—C4121.2 (3)C21—C22—C28111.57 (16)
C2—C3—H3119.4C23—C22—C28116.09 (17)
C4—C3—H3119.4C21—C22—H22109.1
C3—C4—C5119.6 (3)C23—C22—H22109.1
C3—C4—H4120.2C28—C22—H22109.1
C5—C4—H4120.2C22—C23—C24103.07 (17)
C4—C5—C6121.9 (3)C22—C23—C29116.08 (16)
C4—C5—H5119.0C24—C23—C29114.84 (16)
C6—C5—H5119.0Cl4—C23—C24114.96 (14)
C7—C6—C5121.7 (3)C22—C23—H23107.5
C7—C6—C1119.6 (3)C24—C23—H23107.5
C5—C6—C1118.8 (3)C29—C23—H23107.5
C8—C7—C6121.3 (3)C23—C24—C27100.42 (16)
C8—C7—H7119.4C22—C24—C25109.87 (17)
C6—C7—H7119.4C25—C24—C2798.95 (18)
C7—C8—C9119.9 (4)Cl4—C24—C25115.68 (15)
C7—C8—H8120.1Cl4—C24—C27114.88 (16)
C9—C8—H8120.1Cl5—C25—C24124.33 (17)
C8—C9—C10121.5 (4)Cl5—C25—C26128.2 (2)
C8—C9—H9119.3C24—C25—C26107.5 (2)
C10—C9—H9119.3C21—C26—C25107.8 (2)
N2—C10—C1118.7 (2)Cl6—C26—C21124.20 (18)
N2—C10—C9120.9 (3)Cl6—C26—C25128.0 (2)
C9—C10—C1120.4 (3)C21—C27—C2492.18 (17)
N2—C11—H11A109.5Cl7A—C27—Cl7B106.72 (14)
N2—C11—H11B109.5Cl7A—C27—C21115.10 (15)
N2—C11—H11C109.5Cl7A—C27—C24114.19 (17)
H11A—C11—H11B109.5Cl7B—C27—C21114.07 (17)
H11A—C11—H11C109.5Cl7B—C27—C24114.44 (15)
H11B—C11—H11C109.5O28A—C28—O28B125.1 (2)
N2—C12—H12A109.5O28A—C28—C22118.2 (2)
N2—C12—H12B109.5O28B—C28—C22116.73 (18)
N2—C12—H12C109.5O29A—C29—O29B121.5 (2)
H12A—C12—H12B109.5O29A—C29—C23123.6 (2)
H12A—C12—H12C109.5O29B—C29—C23114.81 (18)
C14—N1—C2—C362.0 (3)C22—C21—C27—Cl7A58.82 (19)
C14—N1—C2—C1118.4 (2)C22—C21—C27—Cl7B177.32 (14)
C13—N1—C2—C365.9 (3)C22—C21—C27—C2459.25 (17)
C13—N1—C2—C1113.7 (3)C26—C21—C27—Cl7A170.79 (17)
C11—N2—C10—C960.8 (4)C26—C21—C27—Cl7B65.4 (2)
C12—N2—C10—C966.1 (4)C26—C21—C27—C2452.7 (2)
C12—N2—C10—C1113.1 (3)C27—C21—C26—C2535.1 (3)
C11—N2—C10—C1120.0 (3)C27—C21—C26—Cl6145.1 (2)
C2—C1—C6—C7179.9 (2)C21—C22—C23—C29127.00 (18)
C2—C1—C6—C50.2 (4)C28—C22—C23—C24120.61 (18)
C10—C1—C2—C3178.9 (2)C21—C22—C28—O28A64.6 (3)
C6—C1—C10—C90.0 (4)C21—C22—C28—O28B115.4 (2)
C6—C1—C2—C30.7 (4)C28—C22—C23—C295.8 (3)
C6—C1—C2—N1179.7 (2)C21—C22—C23—C240.57 (17)
C6—C1—C10—N2179.2 (2)C23—C22—C28—O28B128.9 (2)
C10—C1—C2—N10.7 (4)C23—C22—C28—O28A51.1 (3)
C10—C1—C6—C70.5 (3)C22—C23—C24—C2565.63 (19)
C2—C1—C10—N21.1 (3)C22—C23—C24—C2737.95 (18)
C10—C1—C6—C5179.9 (3)C29—C23—C24—C2561.6 (2)
C2—C1—C10—C9179.7 (3)C29—C23—C24—C27165.16 (17)
C1—C2—C3—C41.1 (4)C29—C23—C24—Cl470.97 (18)
N1—C2—C3—C4179.3 (3)C22—C23—C24—Cl4161.82 (13)
C2—C3—C4—C50.4 (5)C24—C23—C29—O29A3.6 (3)
C3—C4—C5—C60.6 (5)C24—C23—C29—O29B173.55 (16)
C4—C5—C6—C10.9 (5)C22—C23—C29—O29A116.7 (2)
C4—C5—C6—C7179.5 (3)C22—C23—C29—O29B66.2 (2)
C5—C6—C7—C8179.9 (5)C23—C24—C25—Cl5111.8 (2)
C1—C6—C7—C80.4 (4)Cl4—C24—C25—Cl520.4 (3)
C6—C7—C8—C90.0 (5)Cl4—C24—C25—C26159.2 (2)
C7—C8—C9—C100.5 (5)C27—C24—C25—C2635.9 (3)
C8—C9—C10—C10.5 (5)Cl4—C24—C27—Cl7A64.0 (2)
C8—C9—C10—N2178.7 (3)Cl4—C24—C27—Cl7B59.4 (2)
C26—C21—C22—C2366.35 (19)Cl4—C24—C27—C21177.12 (15)
Cl1—C21—C22—C23161.98 (13)C23—C24—C27—Cl7A59.89 (18)
Cl1—C21—C22—C2873.74 (18)C23—C24—C27—Cl7B176.71 (15)
C27—C21—C22—C28161.40 (16)C23—C24—C27—C2158.96 (17)
Cl1—C21—C26—Cl621.0 (3)C25—C24—C27—Cl7A172.15 (16)
Cl1—C21—C26—C25159.2 (2)C25—C24—C27—Cl7B64.4 (2)
C22—C21—C26—Cl6109.5 (2)C25—C24—C27—C2153.30 (19)
C22—C21—C26—C2570.3 (3)C23—C24—C25—C2668.6 (3)
C26—C21—C22—C2857.9 (2)C27—C24—C25—Cl5143.7 (2)
C27—C21—C22—C2337.11 (17)Cl5—C25—C26—Cl61.1 (4)
Cl1—C21—C27—Cl7A64.8 (2)C24—C25—C26—C210.5 (3)
Cl1—C21—C27—Cl7B59.06 (19)Cl5—C25—C26—C21179.1 (2)
Cl1—C21—C27—C24177.13 (15)C24—C25—C26—Cl6179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.82 (4)1.82 (3)2.589 (3)154 (4)
N2—H2N···N10.97 (7)1.70 (5)2.589 (3)152 (4)
O29B—H29B···O28Bi0.821.702.520 (2)173
O30—H30B···O28Bii0.89 (5)2.02 (5)2.783 (3)143 (4)
O30—H30A···O28A0.85 (5)1.95 (5)2.749 (3)156 (4)
C9—H9···Cl7Biii0.932.783.599 (4)148
C12—H12C···O29Bi0.962.583.297 (4)132
C13—H13A···O30i0.962.543.220 (3)128
C14—H14B···O29Ai0.962.463.348 (4)155
C23—H23···Cl7A0.982.642.994 (2)102
C23—H23···O30iv0.982.553.480 (4)157
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H19N2+C9H3Cl6O4·H2O
Mr621.17
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.7122 (5), 12.8097 (11), 13.7023 (12)
α, β, γ (°)113.200 (7), 91.680 (6), 101.350 (6)
V3)1368.32 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.6 × 0.6 × 0.3
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ-scan
(PLATON; Spek, 1998)
Tmin, Tmax0.745, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
13079, 6272, 4286
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.00
No. of reflections6272
No. of parameters335
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), SHELXL97 and PLATON.

Selected geometric parameters (Å, º) top
O28A—C281.223 (3)N1—C131.482 (3)
O28B—C281.253 (2)N1—C141.475 (4)
O29A—C291.200 (3)N2—C101.459 (3)
O29B—C291.322 (3)N2—C121.479 (4)
N1—C21.456 (3)N2—C111.480 (4)
H30A—O30—H30B102 (4)N2—C10—C1118.7 (2)
C2—N1—C13112.0 (2)N2—C10—C9120.9 (3)
C2—N1—C14113.28 (19)O28A—C28—O28B125.1 (2)
C14—N1—C13112.0 (2)O28A—C28—C22118.2 (2)
C10—N2—C11113.2 (2)O28B—C28—C22116.73 (18)
C10—N2—C12111.9 (2)O29A—C29—O29B121.5 (2)
C11—N2—C12111.4 (2)O29A—C29—C23123.6 (2)
N1—C2—C1118.75 (19)O29B—C29—C23114.81 (18)
N1—C2—C3120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.82 (4)1.82 (3)2.589 (3)154 (4)
N2—H2N···N10.97 (7)1.70 (5)2.589 (3)152 (4)
O29B—H29B···O28Bi0.821.702.520 (2)173
O30—H30B···O28Bii0.89 (5)2.02 (5)2.783 (3)143 (4)
O30—H30A···O28A0.85 (5)1.95 (5)2.749 (3)156 (4)
C9—H9···Cl7Biii0.932.783.599 (4)148
C12—H12C···O29Bi0.962.583.297 (4)132
C13—H13A···O30i0.962.543.220 (3)128
C14—H14B···O29Ai0.962.463.348 (4)155
C23—H23···Cl7A0.982.642.994 (2)102
C23—H23···O30iv0.982.553.480 (4)157
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds