Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, bis­(pyridine-2,6-di­carboxyl­ato-N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine-2,6-dicarboxylato-N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl-N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H...O intermolecular hydrogen bonds between the complex and the water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015565/bm1356sup1.cif
Contains datablocks global, I, II

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199015565/bm1356Isup2.sft
Supplementary material

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199015565/bm1356IIsup3.sft
Supplementary material

CCDC references: 143228; 143229

Comment top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid), (I), is a compound produced by bacterial spores (Powell, 1953) which contain 5–15% of it on a dry weight basis (Church & Halvorson, 1959). It has been considered as the central component for the high heat resistance of bacterial spores, based on the hypothesis that the metal chelates of pyridine-2,6-dicarboxylic acid with divalent metal ions within the spores construct a stabilizing structure analogous to bone substance in higher animals (Chung et al., 1971). Many crystal structures of the chelate compounds of pyridine-2,6-dicarboxylic acid with divalent ions such as CaII (Strahs & Dickerson, 1968), AgII (Drew et al., 1969, 1970), TiII (Schwarzenbach, 1970), SrII (Palmer et al., 1972), NiII (Quaglieri et al., 1972), FeII (Laié et al., 1995a,b,c; Laié, Gourdon, Launay & Tuchagues, 1995) and CuII (Quaglieri et al., 1972) have been determined. In order to clarify the coordination modes of chelate compounds of pyridine-2,6-dicarboxylic acid with biologically important transition metal ions, we have analyzed 1:2 complexes of transition metal ions, CuII and ZnII with pyridine-2,6-dicarboxylic acid (compounds (I) and (II), respectively). \sch

In (I), the complex is located on a twofold axis of symmetry which passes through C3, N1, Cu1, N2 and C7 (Fig. 1) and contains two ligands with different degrees of deprotonation, one being neutral and the other dianionic. The CuII ion is bonded to the nitrogen [Cu1—N1 1.914 (4) Å] and two crystallographically equivalent, negatively charged O atoms [Cu1—O2 2.019 (3) Å] of the dianionic ligand. It is also bonded, although less strongly, to the N atom [Cu1—N2 2.009 (4) Å] and two crystallographically equivalent ketonic O atoms [Cu1—O3 2.427 (3) Å] of the neutral ligand. In the (1:1) complex of CuII and pyridine-2,6-dicarboxylic acid (Chastain, 1965), the Cu—N distance of is 1.91 Å and that of CuII—O is 2.03 Å, which are comparable to the values for the doubly ionized ligand observed in this study. The bond angle of C1—C4—O2 113.2 (3)° around the carboxylato C atom of the dianionic ligand is significantly narrower than the corresponding angle C5—C8—O3 of 121.9 (4)° in the neutral ligand. These differences may depend on the electrostatic attractive force between the positively charged CuII ion and negatively charged O atoms of the dianionic ligand. The carboxylato groups of the dianionic ligand and the carboxyl groups of the neutral ligand lie almost in the plane of the corresponding pyridine ring as indicated by the torsion angles O2—C4—C1—N1 [0.0 (5)°] and O3—C8—C5—N2 [-6.7 (6)°].

In contrast to (I), (II) contains two identical, monoanionic ligands. The ZnII ion is bonded to the pyridyl N atoms [Zn1—N1 2.011 (2), Zn1—N2 2.007 (2) Å], the two carboxylato O atoms [Zn1—O4 2.070 (2), Zn1—O8 2.115 (2) Å] and the two ketonic O atoms of the carboxyl groups [Zn1—O1 2.350 (2), Zn1—O5 2.321 (2) Å]. The bond angles C5—C7—O4 [115.5 (2)°] and C12—C14—O8 [115.1 (2)°] around the carboxylato C atoms are somewhat narrower than the corresponding angles around the carboxyl C atoms C1—C6—O1 [119.0 (2)°] and C8—C13—O5 [119.5 (3)°]. These differences may also depend on the electrostatic attractive force between the positively charged ZnII ion and negatively charged O atoms of the anionic carboxylato groups as observed in the CuII complex. The carboxyl and carboxylato groups of the ligand molecules lie almost in the plane of the corresponding plane, as indicated by torsion angles N1—C5—C7—O3 175.1 (2), N1—C1—C6—O1 1.1 (3), N2—C8—C13—O5 3.3 (4) and N2—C12—C14—O7 - 177.8 (3)°.

The overall coordination modes about the CuII and ZnII ions are similar with a distorted octahedral (trans meridional) geometry. Both metal ions are six-coordinate, and are bonded similarly to the two N and four O atoms from the two terdentate ligand molecules, which are oriented nearly perpendicular to each other. However, the copper(II) complex contains two different ligands, one neutral and one dianionic, whereas the zinc(II) complex contains two identical monoanionic ligands. This different behaviour of the ligands may be a manifestation of the Jahn-Teller effect, which is exhibited by copper(II) with its d9 electron configuration, but not by zinc(II) with d10.

In all of the crystal structures of 1:2 chelate complexes with transition metal ions, the ligand adopts an almost planar planar conformation, and acts as the terdentate ligand molecule in which the central metal ion is bonded to two N and four O atoms from two ligand molecules. The results of this study indicate that pyridine-2,6-dicarboxylic acid is a potential captor for transition metals in bacterial spores and its likely coordination mode in such a role. This planar conformation is also observed in the free ligand. (Takusagawa et al., 1973) is also manifested in the chelate compounds.

In the crystal structures of both (I) and (II), molecules of the metal complex are connected by O—H···O type hydrogen bonds to the uncoordinated water molecules (Tables 2 and 4). Stacking interactions between pyridine rings of the dianionic ligands are observed in the copper(II) complex, but not in the zinc(II) complex.

Experimental top

Compound (I): the blue crystal used for analysis was obtained by slow evaporation from a solution in ethanol:water (1:1) of a mixture containing pyridine-2,6-dicarboxylic acid and copper(II) chloride dihydrate in a 4:1 molar ratio at room temperature.

Compound(II): the colourless crystal used for analysis was obtained by the slow evaporation from a solution in ethanol:water (1:1) of a mixture containing pyridine-2,6-dicarboxylic acid and zinc(II) sulfate heptahydrate in a 4:1 molar ratio at room temperature.

Refinement top

The H atoms of the carboxyl groups in (I) and (II) were located from difference Fourier maps. Other H atoms were initially located from difference Fourier maps, removed and then placed in calculated positions.

The two H atoms bonded to O5 of the water molecule in (I) are not found in the Fourier maps, but are accounted for in the formula sum and formula weight calculations.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1992b); program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: TEXSAN/LS (Molecular Structure Corporation, 1992); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. (a). ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Ellipsoids for non-H atoms correspond to 50% probability. The symmetry code for each atom site with asterisk is (3/2 + x, y, -z).
[Figure 2] Fig. 2. (b). ORTEPII (Johnson, 1976) drawing of (II) with the atomic numbering scheme. Ellipsoids for non-H atoms correspond to 50% probability.
(I) top
Crystal data top
[Cu(C7H4NO4)2]·H2ODx = 1.843 Mg m3
Mr = 413.80Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, PnnaCell parameters from 25 reflections
a = 7.903 (4) Åθ = 14.1–15.0°
b = 11.068 (4) ŵ = 1.52 mm1
c = 17.053 (3) ÅT = 296 K
V = 1491 (1) Å3Pillar, blue
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Rigaku AFC5R
diffractometer
Rint = 0
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 09
Tmin = 0.784, Tmax = 0.859k = 014
1727 measured reflectionsl = 021
1727 independent reflections3 standard reflections every 150 reflections
1724 reflections with I > 0.00σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.081w = 1/σ2(Fo)
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.03Δρmax = 1.06 e Å3
1724 reflectionsΔρmin = 0.75 e Å3
121 parameters
Crystal data top
[Cu(C7H4NO4)2]·H2OV = 1491 (1) Å3
Mr = 413.80Z = 4
Orthorhombic, PnnaMo Kα radiation
a = 7.903 (4) ŵ = 1.52 mm1
b = 11.068 (4) ÅT = 296 K
c = 17.053 (3) Å0.40 × 0.10 × 0.10 mm
Data collection top
Rigaku AFC5R
diffractometer
1724 reflections with I > 0.00σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0
Tmin = 0.784, Tmax = 0.8593 standard reflections every 150 reflections
1727 measured reflections intensity decay: none
1727 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.081121 parameters
wR(F2) = 0.129H-atom parameters not refined
S = 1.03Δρmax = 1.06 e Å3
1724 reflectionsΔρmin = 0.75 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75000.00000.31655 (3)0.0263
O10.5177 (4)0.2672 (3)0.4344 (2)0.0451
O20.6131 (4)0.1509 (3)0.3369 (2)0.0360
O31.0058 (4)0.1062 (3)0.2785 (2)0.0394
O41.1465 (4)0.1373 (3)0.1657 (2)0.0389
O50.3744 (4)0.25000.25000.0326
N10.75000.00000.4288 (2)0.0246
N20.75000.00000.1987 (2)0.0237
C10.6753 (5)0.0911 (4)0.4656 (2)0.0266
C20.6743 (5)0.0945 (4)0.5470 (2)0.0341
C30.75000.00000.5871 (3)0.0398
C40.5947 (5)0.1798 (4)0.4105 (2)0.0322
C50.8759 (5)0.0510 (4)0.1579 (2)0.0272
C60.8771 (5)0.0562 (4)0.0765 (2)0.0319
C70.75000.00000.0362 (3)0.0340
C81.0157 (5)0.1019 (4)0.2074 (2)0.0302
H10.62390.16700.57860.0439
H20.75000.00000.64320.0439
H30.96020.10820.04850.0439
H40.75000.00000.02040.0439
H51.23950.17050.20180.0439
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0290 (3)0.0307 (4)0.0192 (3)0.0035 (4)0.00000.0000
O10.052 (2)0.036 (2)0.047 (2)0.016 (2)0.001 (2)0.009 (2)
O20.044 (2)0.035 (2)0.029 (1)0.012 (1)0.003 (1)0.000 (1)
O30.037 (2)0.052 (2)0.029 (1)0.016 (2)0.005 (1)0.006 (1)
O40.031 (1)0.051 (2)0.035 (2)0.011 (1)0.001 (1)0.002 (1)
O50.021 (2)0.043 (2)0.034 (2)0.00000.00000.006 (2)
N10.026 (2)0.030 (2)0.018 (2)0.001 (2)0.00000.0000
N20.022 (2)0.026 (2)0.024 (2)0.002 (2)0.00000.0000
C10.024 (2)0.028 (2)0.028 (2)0.002 (2)0.000 (2)0.004 (2)
C20.031 (2)0.045 (3)0.026 (2)0.003 (2)0.000 (2)0.006 (2)
C30.034 (3)0.063 (4)0.023 (2)0.007 (4)0.00000.0000
C40.027 (2)0.036 (2)0.034 (2)0.001 (2)0.001 (2)0.007 (2)
C50.026 (2)0.028 (2)0.028 (2)0.002 (2)0.000 (2)0.001 (2)
C60.029 (2)0.041 (2)0.026 (2)0.005 (2)0.006 (2)0.005 (2)
C70.034 (3)0.048 (3)0.020 (2)0.005 (3)0.00000.0000
C80.024 (2)0.032 (2)0.035 (2)0.004 (2)0.004 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O22.019 (3)N1—C11.327 (4)
Cu1—O32.427 (3)N1—C1i1.327 (4)
Cu1—N11.914 (4)N2—C51.339 (4)
Cu1—N22.009 (4)N2—C5i1.339 (4)
Cu1—O2i2.019 (3)C1—C21.388 (5)
Cu1—O3i2.427 (3)C1—C41.501 (6)
O1—C41.213 (5)C2—C31.385 (5)
O2—C41.303 (4)C5—C61.390 (5)
O3—C81.216 (5)C5—C81.500 (5)
O4—C81.314 (5)C6—C71.366 (5)
O2—Cu1—O2i160.2 (2)Cu1—N2—C5121.3 (2)
O2—Cu1—O395.3 (1)Cu1—N2—C5i121.3 (2)
O2i—Cu1—N180.10 (8)C5—N2—C5i117.3 (4)
O3—Cu1—N274.50 (7)N1—C1—C2119.8 (4)
O3i—Cu1—N1105.50 (7)N1—C1—C4112.9 (3)
O2—Cu1—O3i90.0 (1)C2—C1—C4127.3 (4)
O2—Cu1—N180.10 (8)C1—C2—C3118.0 (4)
O2—Cu1—N299.90 (8)C2—C3—C2i120.9 (5)
O2i—Cu1—O390.0 (1)O1—C4—O2125.2 (4)
O2i—Cu1—O3i95.3 (1)O1—C4—C1121.6 (4)
O2i—Cu1—N299.90 (8)O2—C4—C1113.2 (3)
O3—Cu1—O3i149.0 (1)N2—C5—C6122.8 (4)
O3—Cu1—N1105.50 (7)N2—C5—C8114.4 (3)
O3i—Cu1—N274.50 (7)C6—C5—C8122.8 (4)
N1—Cu1—N2180.0000C5—C6—C7118.6 (4)
Cu1—O2—C4115.4 (3)C6—C7—C6i119.7 (5)
Cu1—O3—C8107.5 (3)O3—C8—O4125.3 (4)
Cu1—N1—C1118.3 (2)O3—C8—C5121.9 (4)
Cu1—N1—C1i118.3 (2)O4—C8—C5112.8 (3)
C1—N1—C1i123.5 (4)
Cu1—O2—C4—O1179.7 (3)O3—Cu1—O2—C4102.3 (3)
Cu1—O2—C4—C12.0 (4)O3i—Cu1—O3—C84.0 (3)
Cu1—O3—C8—O4171.8 (3)O3—Cu1—N1—C190.2 (2)
Cu1—O3—C8—C56.7 (5)O3—Cu1—N2—C50.6 (2)
Cu1—N1—C1—C2179.4 (3)O3—C8—C5—N26.7 (6)
Cu1—N1—C1—C42.2 (3)O3—C8—C5—C6173.4 (4)
Cu1—N2—C5—C6177.8 (3)O4—C8—C5—N2171.9 (3)
Cu1—N2—C5—C82.3 (4)O4—C8—C5—C68.0 (6)
O1—C4—C1—N1178.4 (4)N1—Cu1—O2—C42.5 (3)
O1—C4—C1—C20.2 (7)N1—Cu1—O3—C8176.0 (3)
O2i—Cu1—O2—C42.5 (3)N1—C1—C2—C31.1 (5)
O2—Cu1—O3—C8102.8 (3)N2—Cu1—O2—C4177.5 (3)
O2—Cu1—N1—C12.6 (2)N2—Cu1—O3—C84.0 (3)
O2—Cu1—N2—C593.4 (2)N2—C5—C6—C74.3 (6)
O2—C4—C1—N10.0 (5)C1i—N1—C1—C20.6 (3)
O2—C4—C1—C2178.2 (4)C1i—N1—C1—C4177.8 (3)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H5···O5ii1.031.612.621 (4)168
O5···O22.638 (4)
Symmetry code: (ii) x+1, y, z.
(II) top
Crystal data top
[Zn(C7H4NO4)2]·3H2ODx = 1.724 Mg m3
Mr = 451.65Mo Kα radiation, λ = 0.71069 Å
Monoclinic, P21/aCell parameters from 25 reflections
a = 13.765 (2) Åθ = 14.8–15.0°
b = 10.052 (2) ŵ = 1.48 mm1
c = 14.060 (2) ÅT = 296 K
β = 116.554 (8)°Pillar, colourless
V = 1740.3 (4) Å30.50 × 0.15 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC5R
diffractometer
Rint = 0.017
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 017
Tmin = 0.755, Tmax = 0.801k = 013
4392 measured reflectionsl = 1816
3991 independent reflections3 standard reflections every 150 reflections
3991 reflections with I > 0.00σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.058w = 1/σ2(Fo)
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.36Δρmax = 0.81 e Å3
3991 reflectionsΔρmin = 0.63 e Å3
253 parameters
Crystal data top
[Zn(C7H4NO4)2]·3H2OV = 1740.3 (4) Å3
Mr = 451.65Z = 4
Monoclinic, P21/aMo Kα radiation
a = 13.765 (2) ŵ = 1.48 mm1
b = 10.052 (2) ÅT = 296 K
c = 14.060 (2) Å0.50 × 0.15 × 0.15 mm
β = 116.554 (8)°
Data collection top
Rigaku AFC5R
diffractometer
3991 reflections with I > 0.00σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.755, Tmax = 0.8013 standard reflections every 150 reflections
4392 measured reflections intensity decay: none
3991 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058253 parameters
wR(F2) = 0.114H-atom parameters not refined
S = 1.36Δρmax = 0.81 e Å3
3991 reflectionsΔρmin = 0.63 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73609 (3)0.00684 (3)0.74961 (2)0.0439
O10.9084 (2)0.0566 (2)0.7625 (2)0.0497
O21.0634 (2)0.1557 (2)0.8743 (2)0.0551
O30.6093 (2)0.0335 (2)0.9603 (2)0.0524
O40.6263 (2)0.0066 (2)0.8126 (2)0.0492
O50.7837 (2)0.2164 (2)0.7769 (1)0.0492
O60.7773 (2)0.3978 (2)0.6819 (2)0.0574
O70.5726 (2)0.2270 (3)0.4784 (2)0.0831
O80.6661 (2)0.1733 (2)0.6505 (2)0.0548
O90.8895 (2)0.4764 (2)0.8470 (2)0.0590
O101.1359 (2)0.1109 (2)0.7460 (2)0.0691
O111.0102 (6)0.0471 (7)0.3932 (7)0.2842
N10.8236 (2)0.0860 (2)0.8946 (2)0.0346
N20.6831 (2)0.0739 (2)0.6044 (2)0.0370
C10.9233 (2)0.1353 (3)0.9266 (2)0.0370
C20.9770 (2)0.1990 (3)1.0228 (2)0.0445
C30.9255 (2)0.2104 (3)1.0870 (2)0.0508
C40.8218 (2)0.1592 (3)1.0535 (2)0.0454
C50.7732 (2)0.0971 (3)0.9556 (2)0.0357
C60.9662 (2)0.1132 (3)0.8465 (2)0.0401
C70.6597 (2)0.0363 (3)0.9065 (2)0.0407
C80.6973 (2)0.2019 (3)0.5898 (2)0.0402
C90.6608 (2)0.2552 (4)0.4888 (2)0.0543
C100.6073 (3)0.1725 (4)0.4029 (2)0.0614
C110.5923 (2)0.0415 (4)0.4180 (2)0.0565
C120.6316 (2)0.0071 (3)0.5217 (2)0.0434
C130.7580 (2)0.2749 (3)0.6927 (2)0.0413
C140.6220 (2)0.1490 (3)0.5509 (3)0.0524
H11.04780.23451.04450.0534
H20.96120.25291.15420.0605
H30.78520.16681.09670.0541
H41.08490.12760.81180.0748
H50.67250.34630.47900.0644
H60.58060.20690.33280.0733
H70.55590.01600.35890.0678
H80.82100.44840.75250.0748
H90.87300.49250.89900.0748
H100.96420.47090.88180.0748
H111.15730.19710.72230.0748
H121.11080.03700.70690.0748
H130.98510.02040.44190.0748
H140.96830.10860.31740.0748
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0425 (2)0.0522 (2)0.0322 (2)0.0028 (1)0.0124 (1)0.0055 (1)
O10.043 (1)0.063 (1)0.046 (1)0.0064 (10)0.0229 (9)0.007 (1)
O20.041 (1)0.060 (1)0.070 (1)0.0106 (10)0.029 (1)0.010 (1)
O30.047 (1)0.069 (1)0.049 (1)0.0063 (10)0.0288 (10)0.003 (1)
O40.0386 (10)0.067 (1)0.040 (1)0.0126 (10)0.0160 (8)0.0096 (9)
O50.054 (1)0.050 (1)0.034 (1)0.0037 (9)0.0109 (9)0.0001 (9)
O60.070 (1)0.049 (1)0.052 (1)0.012 (1)0.027 (1)0.001 (1)
O70.085 (2)0.084 (2)0.078 (2)0.031 (2)0.034 (2)0.043 (2)
O80.055 (1)0.048 (1)0.060 (1)0.0057 (10)0.025 (1)0.005 (1)
O90.046 (1)0.074 (2)0.054 (1)0.014 (1)0.020 (1)0.010 (1)
O100.077 (2)0.059 (1)0.097 (2)0.005 (1)0.061 (1)0.005 (1)
O110.197 (6)0.190 (5)0.46 (1)0.077 (5)0.141 (7)0.205 (7)
N10.034 (1)0.034 (1)0.033 (1)0.0006 (9)0.0123 (8)0.0012 (9)
N20.029 (1)0.051 (1)0.028 (1)0.0000 (10)0.0110 (8)0.0031 (10)
C10.033 (1)0.032 (1)0.040 (1)0.000 (1)0.011 (1)0.001 (1)
C20.036 (1)0.039 (2)0.048 (2)0.004 (1)0.010 (1)0.003 (1)
C30.054 (2)0.051 (2)0.039 (1)0.006 (1)0.013 (1)0.015 (1)
C40.049 (2)0.045 (2)0.041 (1)0.001 (1)0.019 (1)0.005 (1)
C50.035 (1)0.035 (1)0.036 (1)0.001 (1)0.015 (1)0.001 (1)
C60.035 (1)0.037 (1)0.046 (2)0.002 (1)0.017 (1)0.001 (1)
C70.036 (1)0.043 (1)0.041 (1)0.000 (1)0.016 (1)0.001 (1)
C80.032 (1)0.053 (2)0.035 (1)0.003 (1)0.015 (1)0.005 (1)
C90.048 (2)0.071 (2)0.042 (2)0.003 (2)0.020 (1)0.012 (1)
C100.055 (2)0.094 (3)0.034 (2)0.006 (2)0.018 (1)0.014 (2)
C110.036 (1)0.098 (3)0.031 (1)0.000 (2)0.011 (1)0.014 (2)
C120.029 (1)0.065 (2)0.035 (1)0.003 (1)0.014 (1)0.012 (1)
C130.034 (1)0.049 (2)0.041 (1)0.002 (1)0.016 (1)0.001 (1)
C140.038 (2)0.066 (2)0.054 (2)0.010 (1)0.022 (1)0.021 (2)
Geometric parameters (Å, º) top
Zn1—O12.350 (2)N1—C51.327 (3)
Zn1—O42.070 (2)N2—C81.331 (4)
Zn1—O52.321 (2)N2—C121.334 (3)
Zn1—O82.115 (2)C1—C21.376 (4)
Zn1—N12.011 (2)C1—C61.504 (4)
Zn1—N22.007 (2)C2—C31.379 (4)
O1—C61.230 (3)C3—C41.387 (4)
O2—C61.287 (3)C4—C51.381 (4)
O3—C71.235 (3)C5—C71.525 (4)
O4—C71.264 (3)C8—C91.385 (4)
O5—C131.224 (3)C8—C131.499 (4)
O6—C131.286 (3)C9—C101.378 (5)
O7—C141.223 (4)C10—C111.365 (5)
O8—C141.277 (4)C11—C121.397 (4)
N1—C11.334 (3)C12—C141.506 (4)
O1—Zn1—O4152.33 (8)C1—C2—C3118.3 (2)
O1—Zn1—O589.54 (8)C2—C3—C4120.0 (3)
O1—Zn1—O891.69 (8)C3—C4—C5118.2 (3)
O1—Zn1—N173.21 (8)N1—C5—C4121.4 (2)
O1—Zn1—N293.44 (8)N1—C5—C7113.5 (2)
O4—Zn1—O594.18 (8)C4—C5—C7125.0 (2)
O4—Zn1—O897.39 (8)O1—C6—O2125.7 (3)
O4—Zn1—N179.22 (8)O1—C6—C1119.0 (2)
O4—Zn1—N2113.95 (8)O2—C6—C1115.3 (2)
O5—Zn1—O8152.37 (8)O3—C7—O4126.1 (3)
O5—Zn1—N1102.60 (8)O3—C7—C5118.3 (2)
O5—Zn1—N274.01 (8)O4—C7—C5115.5 (2)
O8—Zn1—N1104.18 (8)N2—C8—C9121.4 (3)
O8—Zn1—N278.36 (9)N2—C8—C13112.5 (2)
N1—Zn1—N2166.39 (8)C9—C8—C13126.1 (3)
Zn1—O1—C6111.8 (2)C8—C9—C10118.2 (3)
Zn1—O4—C7115.5 (2)C9—C10—C11120.3 (3)
Zn1—O5—C13111.5 (2)C10—C11—C12119.0 (3)
Zn1—O8—C14115.1 (2)N2—C12—C11120.2 (3)
Zn1—N1—C1123.2 (2)N2—C12—C14114.7 (2)
Zn1—N1—C5116.0 (2)C11—C12—C14125.1 (3)
C1—N1—C5120.5 (2)O5—C13—O6126.1 (3)
Zn1—N2—C8122.4 (2)O5—C13—C8119.5 (3)
Zn1—N2—C12116.7 (2)O6—C13—C8114.3 (2)
C8—N2—C12120.9 (2)O7—C14—O8127.3 (3)
N1—C1—C2121.6 (2)O7—C14—C12117.6 (3)
N1—C1—C6112.5 (2)O8—C14—C12115.1 (2)
C2—C1—C6125.9 (2)
Zn1—O1—C6—O2177.9 (2)O1—C6—C1—N11.1 (3)
O2—C6—C1—C22.0 (4)O7—C14—C12—N2177.8 (3)
Zn1—O1—C6—C12.8 (3)O1—C6—C1—C2178.7 (3)
O3—C7—C5—N1175.1 (2)O7—C14—C12—C112.8 (4)
Zn1—O4—C7—O3177.3 (2)O2—C6—C1—N1178.3 (2)
O3—C7—C5—C45.2 (4)O8—Zn1—O1—C6100.2 (2)
Zn1—O4—C7—C52.9 (3)O8—Zn1—O4—C7103.5 (2)
O4—Zn1—O1—C69.3 (3)C1—C2—C3—C40.5 (4)
Zn1—O5—C13—O6177.2 (2)O8—Zn1—O5—C131.2 (3)
O4—Zn1—O5—C13115.9 (2)C2—C1—N1—C50.1 (4)
Zn1—O5—C13—C83.5 (3)O8—Zn1—N1—C182.3 (2)
O4—Zn1—O8—C14111.0 (2)C2—C3—C4—C50.3 (5)
Zn1—O8—C14—O7176.7 (3)O8—Zn1—N1—C592.3 (2)
O4—Zn1—N1—C1177.2 (2)C3—C2—C1—C6179.9 (3)
Zn1—O8—C14—C122.3 (3)O8—Zn1—N2—C8179.2 (2)
O4—Zn1—N1—C52.7 (2)C3—C4—C5—C7179.6 (3)
Zn1—N1—C1—C2174.3 (2)O8—Zn1—N2—C121.2 (2)
O4—Zn1—N2—C887.8 (2)C5—N1—C1—C6179.8 (2)
Zn1—N1—C1—C65.5 (3)O8—C14—C12—N21.3 (4)
O4—Zn1—N2—C1291.7 (2)C8—N2—C12—C110.5 (4)
Zn1—N1—C5—C4174.9 (2)O8—C14—C12—C11178.1 (3)
O4—C7—C5—N15.1 (3)C8—N2—C12—C14179.9 (2)
Zn1—N1—C5—C74.8 (3)N1—Zn1—O1—C64.1 (2)
O4—C7—C5—C4174.5 (3)C8—C9—C10—C110.8 (5)
Zn1—N2—C8—C9179.4 (2)N1—Zn1—O4—C70.4 (2)
O5—Zn1—O1—C6107.4 (2)C9—C8—N2—C121.0 (4)
Zn1—N2—C8—C131.1 (3)N1—Zn1—O5—C13164.2 (2)
O5—Zn1—O4—C7101.7 (2)C9—C10—C11—C120.3 (5)
Zn1—N2—C12—C11179.9 (2)N1—Zn1—O8—C14168.3 (2)
O5—Zn1—O8—C142.9 (3)C10—C9—C8—C13179.2 (3)
Zn1—N2—C12—C140.5 (3)N1—Zn1—N2—C876.9 (4)
O5—Zn1—N1—C190.8 (2)C10—C11—C12—C14179.5 (3)
O1—Zn1—O4—C74.7 (3)N1—Zn1—N2—C12103.5 (4)
O5—Zn1—N1—C594.6 (2)C12—N2—C8—C13179.3 (2)
O1—Zn1—O5—C1391.6 (2)N1—C1—C2—C30.4 (4)
O5—Zn1—N2—C80.4 (2)N1—C5—C4—C30.1 (4)
O1—Zn1—O8—C1495.2 (2)N2—Zn1—O1—C6178.6 (2)
O5—Zn1—N2—C12179.2 (2)N2—Zn1—O4—C7176.0 (2)
O1—Zn1—N1—C15.2 (2)N2—Zn1—O5—C132.2 (2)
O5—C13—C8—N23.3 (4)N2—Zn1—O8—C142.0 (2)
O1—Zn1—N1—C5179.8 (2)N2—Zn1—N1—C116.9 (5)
O5—C13—C8—C9178.5 (3)N2—Zn1—N1—C5168.5 (3)
O1—Zn1—N2—C888.1 (2)N2—C8—C9—C101.1 (4)
O6—C13—C8—N2177.3 (2)N2—C12—C11—C100.2 (4)
O1—Zn1—N2—C1292.3 (2)C1—N1—C5—C40.2 (4)
O6—C13—C8—C90.9 (4)C1—N1—C5—C7179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···O101.081.402.462 (4)166
O6—H8···O9i1.031.452.483 (2)174
O9—H9···O3ii0.871.932.762 (3)160
O9—H10···O3iii0.921.802.719 (3)175
O10—H11···O8iii1.021.692.679 (3)164
O10—H12···O11iv0.901.842.623 (6)145
O11—H13···O11iv0.932.393.28 (2)159
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z; (iv) x+2, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C7H4NO4)2]·H2O[Zn(C7H4NO4)2]·3H2O
Mr413.80451.65
Crystal system, space groupOrthorhombic, PnnaMonoclinic, P21/a
Temperature (K)296296
a, b, c (Å)7.903 (4), 11.068 (4), 17.053 (3)13.765 (2), 10.052 (2), 14.060 (2)
α, β, γ (°)90, 90, 9090, 116.554 (8), 90
V3)1491 (1)1740.3 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.521.48
Crystal size (mm)0.40 × 0.10 × 0.100.50 × 0.15 × 0.15
Data collection
DiffractometerRigaku AFC5R
diffractometer
Rigaku AFC5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.784, 0.8590.755, 0.801
No. of measured, independent and
observed [I > 0.00σ(I)] reflections
1727, 1727, 1724 4392, 3991, 3991
Rint00.017
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.129, 1.03 0.058, 0.114, 1.36
No. of reflections17243991
No. of parameters121253
No. of restraints??
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.06, 0.750.81, 0.63

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a), MSC/AFC Diffractometer Control Software, TEXSAN PROCESS (Molecular Structure Corporation, 1992b), SIR88 (Burla et al., 1989), TEXSAN/LS (Molecular Structure Corporation, 1992), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
Cu1—O22.019 (3)Cu1—N11.914 (4)
Cu1—O32.427 (3)Cu1—N22.009 (4)
O2—Cu1—O395.3 (1)O3i—Cu1—N1105.50 (7)
O2i—Cu1—N180.10 (8)C5—C6—C7118.6 (4)
O3—Cu1—N274.50 (7)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H5···O5ii1.031.612.621 (4)168
O5···O2..2.638 (4).
Symmetry code: (ii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Zn1—O12.350 (2)Zn1—O82.115 (2)
Zn1—O42.070 (2)Zn1—N12.011 (2)
Zn1—O52.321 (2)Zn1—N22.007 (2)
O1—Zn1—O4152.33 (8)O4—Zn1—N2113.95 (8)
O1—Zn1—O589.54 (8)O5—Zn1—O8152.37 (8)
O1—Zn1—O891.69 (8)O5—Zn1—N1102.60 (8)
O1—Zn1—N173.21 (8)O5—Zn1—N274.01 (8)
O1—Zn1—N293.44 (8)O8—Zn1—N1104.18 (8)
O4—Zn1—O594.18 (8)O8—Zn1—N278.36 (9)
O4—Zn1—O897.39 (8)N1—Zn1—N2166.39 (8)
O4—Zn1—N179.22 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H4···O101.081.3992.462 (4)166
O6—H8···O9i1.031.4512.483 (2)174
O9—H9···O3ii0.871.9272.762 (3)160
O9—H10···O3iii0.921.7992.719 (3)175
O10—H11···O8iii1.021.6852.679 (3)164
O10—H12···O11iv0.901.8362.623 (6)145
O11—H13···O11iv0.932.3873.28 (2)159
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z; (iv) x+2, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds