Download citation
Download citation
link to html
The structures of three methyl-substituted acetoacetanilides and of an azo pigment derived from one of them are presented and discussed together with a review of related known crystal structures. By considering the position of any aromatic substituents it is possible to predict whether the simple acetoacetanilides adopt planar structures with intramolecular hydrogen bonding or twisted structures featuring intermolecular hydrogen bonding. However, we find that the same crystal engineering rules cannot be applied to the related azo pigments: this is apparently due to the presence of an sp2 atom which facilitates the adoption of planar conformations. The thermal properties of the acetoacetanilides were measured by DSC and are discussed with reference to their crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100010946/bm0031sup1.cif
Contains datablocks 9, 10, 11, 12

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010946/bm00319sup2.hkl
Contains datablock 9

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010946/bm003110sup3.hkl
Contains datablock cib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010946/bm003111sup4.hkl
Contains datablock c3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010946/bm003112sup5.hkl
Contains datablock c2

CCDC references: 156663; 156664; 156665; 156666

Comment top

SEE TEXT

Experimental top

SEE TEXT

Computing details top

Data collection: SMART (Siemens, 1995) for (9); MSC/Rigaku diffractometer control for (10), (11), (12). Cell refinement: local program for (9); MSC/Rigaku diffractometer control for (10), (11), (12). Data reduction: SAINT (Siemens, 1995) for (9); TEXSAN for (10), (11), (12). Program(s) used to solve structure: SHELXS (Sheldrick, 1990) for (9); SHELXS97 (Sheldrick, 1990) for (10), (11), (12). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP II for (9). For all compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(9) top
Crystal data top
C17H16N4O4F(000) = 712
Mr = 340.34Dx = 1.401 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.6891 Å
Hall symbol: -P 2yacCell parameters from 5749 reflections
a = 14.111 (6) Åθ = 2.5–23°
b = 7.567 (3) ŵ = 0.10 mm1
c = 15.338 (6) ÅT = 150 K
β = 99.967 (10)°Plate, light yellow
V = 1613.0 (11) Å30.20 × 0.04 × 0.02 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2445 independent reflections
Radiation source: Station 9.8, Daresbury SRS1600 reflections with I > 2σ(I)
Si111 monochromatorRint = 0.069
ω rotation with narrow frames scansθmax = 23.0°, θmin = 2.9°
Absorption correction: empirical (using intensity measurements)
SADABS - see comment below
h = 1615
Tmin = 0.980, Tmax = 0.999k = 88
5749 measured reflectionsl = 1117
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066Riding
wR(F2) = 0.166Calculated w = 1/[σ2(Fo2) + (0.0959P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2445 reflectionsΔρmax = 0.34 e Å3
231 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.068 (9)
Crystal data top
C17H16N4O4V = 1613.0 (11) Å3
Mr = 340.34Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.6891 Å
a = 14.111 (6) ŵ = 0.10 mm1
b = 7.567 (3) ÅT = 150 K
c = 15.338 (6) Å0.20 × 0.04 × 0.02 mm
β = 99.967 (10)°
Data collection top
Bruker SMART CCD
diffractometer
2445 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS - see comment below
1600 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.999Rint = 0.069
5749 measured reflectionsθmax = 23.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.166Riding
S = 1.00Δρmax = 0.34 e Å3
2445 reflectionsΔρmin = 0.28 e Å3
231 parameters
Special details top

Experimental. A standard Station 9.8 experiment was performed. For further details see Clegg et al. J. Chem. Soc. Dalton Trans. 1998, 3037. Decay of the incident beam was corrected using SADABS (Sheldrick 1997, a program for Scaling and Correction of Area Detector Data). The figure given in _diffrn_standards_decay_% includes this beam decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09586 (16)0.7620 (3)0.03614 (13)0.0300 (7)
O20.19376 (18)0.7401 (4)0.09218 (16)0.0421 (8)
O30.0133 (2)0.2248 (5)0.51310 (17)0.0615 (10)
O40.1373 (2)0.2916 (4)0.54092 (16)0.0449 (8)
N10.0122 (2)0.8410 (4)0.08688 (16)0.0239 (7)
H10.07380.83750.10970.053 (13)*
N20.05818 (19)0.5990 (4)0.10490 (16)0.0239 (7)
N30.02814 (19)0.5886 (4)0.15595 (16)0.0250 (7)
H30.07970.63050.13810.049 (12)*
N40.0589 (2)0.2875 (4)0.49128 (18)0.0328 (8)
C10.0467 (3)0.9254 (5)0.1393 (2)0.0256 (8)
C20.0012 (3)1.0040 (5)0.2186 (2)0.0277 (9)
C30.0559 (3)1.0795 (5)0.2731 (2)0.0340 (10)
H3A0.02461.13190.32670.041*
C40.1564 (3)1.0833 (6)0.2534 (2)0.0386 (10)
H40.19281.13960.29210.046*
C50.2016 (3)1.0031 (5)0.1764 (2)0.0386 (10)
H50.26981.00110.16260.046*
C60.1477 (2)0.9256 (5)0.1193 (2)0.0285 (9)
H60.17940.87200.06620.034*
C70.0118 (2)0.7648 (5)0.0071 (2)0.0241 (8)
C80.0685 (2)0.6790 (5)0.0285 (2)0.0239 (8)
C90.1710 (2)0.6745 (5)0.0188 (2)0.0287 (9)
C100.2453 (3)0.5892 (6)0.0259 (3)0.0409 (11)
H10A0.30930.60840.00950.061*
H10B0.24290.64120.08470.061*
H10C0.23260.46200.03170.061*
C110.0339 (2)0.5092 (5)0.2386 (2)0.0247 (8)
C120.1231 (2)0.5148 (5)0.2954 (2)0.0295 (9)
H120.17710.56890.27680.035*
C130.1314 (2)0.4411 (5)0.3782 (2)0.0279 (9)
H130.19120.44390.41770.034*
C140.0526 (2)0.3634 (5)0.4032 (2)0.0252 (8)
C150.0376 (2)0.3564 (5)0.3473 (2)0.0270 (9)
H150.09130.30150.36580.032*
C160.0448 (2)0.4316 (5)0.2655 (2)0.0259 (9)
H160.10490.43050.22650.031*
C210.1069 (3)0.9980 (6)0.2422 (2)0.0343 (9)
H21A0.12731.04910.30120.051*
H21B0.13511.06600.19860.051*
H21C0.12870.87510.24210.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (14)0.0419 (17)0.0258 (12)0.0028 (12)0.0068 (10)0.0042 (11)
O20.0198 (14)0.062 (2)0.0386 (15)0.0007 (13)0.0101 (11)0.0197 (14)
O30.0374 (19)0.106 (3)0.0379 (16)0.0211 (18)0.0033 (13)0.0277 (16)
O40.0331 (17)0.064 (2)0.0314 (14)0.0039 (14)0.0130 (12)0.0094 (13)
N10.0176 (16)0.0249 (17)0.0250 (15)0.0007 (13)0.0083 (12)0.0007 (12)
N20.0180 (16)0.0260 (18)0.0248 (15)0.0032 (13)0.0046 (12)0.0020 (13)
N30.0130 (15)0.0336 (19)0.0260 (14)0.0009 (13)0.0035 (12)0.0013 (13)
N40.029 (2)0.042 (2)0.0243 (15)0.0053 (15)0.0027 (14)0.0033 (14)
C10.026 (2)0.025 (2)0.0255 (17)0.0004 (16)0.0027 (15)0.0035 (15)
C20.033 (2)0.026 (2)0.0225 (17)0.0018 (17)0.0001 (15)0.0019 (15)
C30.045 (3)0.031 (2)0.0257 (18)0.0052 (19)0.0051 (17)0.0037 (16)
C40.040 (2)0.042 (3)0.038 (2)0.000 (2)0.0162 (18)0.0066 (18)
C50.030 (2)0.043 (3)0.042 (2)0.001 (2)0.0041 (17)0.0024 (19)
C60.0194 (19)0.036 (2)0.0287 (18)0.0017 (17)0.0003 (15)0.0029 (16)
C70.0171 (19)0.028 (2)0.0255 (17)0.0014 (16)0.0019 (14)0.0032 (15)
C80.0153 (18)0.026 (2)0.0274 (18)0.0017 (15)0.0034 (14)0.0007 (15)
C90.0128 (18)0.035 (2)0.036 (2)0.0036 (16)0.0022 (15)0.0028 (17)
C100.017 (2)0.056 (3)0.048 (2)0.0043 (19)0.0016 (16)0.012 (2)
C110.0225 (19)0.025 (2)0.0244 (17)0.0047 (16)0.0029 (14)0.0005 (15)
C120.0146 (18)0.041 (2)0.0303 (18)0.0048 (17)0.0024 (14)0.0036 (17)
C130.0176 (18)0.031 (2)0.0299 (19)0.0031 (16)0.0099 (14)0.0027 (16)
C140.0212 (19)0.029 (2)0.0218 (17)0.0064 (16)0.0059 (14)0.0021 (14)
C150.0166 (18)0.032 (2)0.0317 (19)0.0009 (16)0.0018 (14)0.0011 (16)
C160.0137 (18)0.035 (2)0.0258 (18)0.0008 (16)0.0066 (14)0.0014 (15)
C210.035 (2)0.040 (2)0.0244 (18)0.0004 (19)0.0071 (16)0.0045 (16)
Geometric parameters (Å, º) top
O1—C71.254 (4)C2—C211.507 (5)
O2—C91.221 (4)C3—C41.399 (6)
O3—N41.221 (4)C4—C51.381 (5)
O4—N41.230 (4)C5—C61.385 (5)
N1—C71.342 (4)C7—C81.490 (5)
N1—C11.405 (5)C8—C91.502 (5)
N2—C81.304 (4)C9—C101.496 (5)
N2—N31.331 (4)C11—C161.381 (5)
N3—C111.392 (4)C11—C121.403 (5)
N4—C141.457 (4)C12—C131.373 (5)
C1—C21.405 (5)C13—C141.371 (5)
C1—C61.406 (5)C14—C151.406 (5)
C2—C31.358 (5)C15—C161.366 (5)
C7—N1—C1129.5 (3)N1—C7—C8115.7 (3)
C8—N2—N3120.3 (3)N2—C8—C7123.9 (3)
N2—N3—C11117.6 (3)N2—C8—C9111.9 (3)
O3—N4—O4122.9 (3)C7—C8—C9124.2 (3)
O3—N4—C14119.2 (3)O2—C9—C10120.3 (3)
O4—N4—C14117.9 (3)O2—C9—C8121.0 (3)
C2—C1—N1117.5 (3)C10—C9—C8118.7 (3)
C2—C1—C6118.8 (3)C16—C11—N3122.2 (3)
N1—C1—C6123.6 (3)C16—C11—C12120.6 (3)
C3—C2—C1119.2 (3)N3—C11—C12117.2 (3)
C3—C2—C21121.6 (3)C13—C12—C11119.1 (3)
C1—C2—C21119.2 (3)C14—C13—C12119.3 (3)
C2—C3—C4122.6 (3)C13—C14—C15122.5 (3)
C5—C4—C3118.4 (3)C13—C14—N4120.4 (3)
C4—C5—C6120.3 (4)C15—C14—N4117.0 (3)
C5—C6—C1120.6 (3)C16—C15—C14117.4 (3)
O1—C7—N1123.7 (3)C15—C16—C11121.1 (3)
O1—C7—C8120.6 (3)
C8—N2—N3—C11177.0 (3)N1—C7—C8—C90.2 (5)
C7—N1—C1—C2176.1 (3)N2—C8—C9—O2178.6 (3)
C7—N1—C1—C68.0 (6)C7—C8—C9—O21.6 (6)
N1—C1—C2—C3176.9 (3)N2—C8—C9—C101.9 (5)
C6—C1—C2—C30.8 (5)C7—C8—C9—C10177.9 (4)
N1—C1—C2—C211.5 (5)N2—N3—C11—C164.6 (5)
C6—C1—C2—C21177.6 (3)N2—N3—C11—C12173.7 (3)
C1—C2—C3—C40.2 (6)C16—C11—C12—C130.4 (5)
C21—C2—C3—C4178.6 (4)N3—C11—C12—C13178.7 (3)
C2—C3—C4—C51.5 (6)C11—C12—C13—C140.2 (5)
C3—C4—C5—C61.8 (6)C12—C13—C14—C150.3 (6)
C4—C5—C6—C10.7 (6)C12—C13—C14—N4178.7 (3)
C2—C1—C6—C50.6 (5)O3—N4—C14—C13177.3 (4)
N1—C1—C6—C5176.4 (3)O4—N4—C14—C131.8 (5)
C1—N1—C7—O12.0 (6)O3—N4—C14—C151.2 (5)
C1—N1—C7—C8177.2 (3)O4—N4—C14—C15179.7 (3)
N3—N2—C8—C70.8 (5)C13—C14—C15—C160.2 (6)
N3—N2—C8—C9179.5 (3)N4—C14—C15—C16178.2 (3)
O1—C7—C8—N20.8 (5)C14—C15—C16—C110.8 (6)
N1—C7—C8—N2179.9 (3)N3—C11—C16—C15179.2 (3)
O1—C7—C8—C9179.5 (3)C12—C11—C16—C150.9 (6)
(10) top
Crystal data top
C12H15NO2F(000) = 220
Mr = 205.25Dx = 1.272 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2y1Cell parameters from 25 reflections
a = 8.8636 (15) Åθ = 16.9–17.9°
b = 6.605 (3) ŵ = 0.09 mm1
c = 9.2381 (17) ÅT = 123 K
β = 97.804 (14)°Cut needle, colourless
V = 535.9 (3) Å30.70 × 0.35 × 0.20 mm
Z = 2
Data collection top
Rigaku AFC7S DiffractometerRint = 0.023
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 3.0°
Graphite monochromatorh = 1111
ω/2θ scansk = 88
2714 measured reflectionsl = 1111
1279 independent reflections3 standard reflections every 150 reflections
1031 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033Riding
wR(F2) = 0.099Calculated w = 1/[σ2(Fo2) + (0.0409P)2 + 0.1624P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1279 reflectionsΔρmax = 0.30 e Å3
94 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (5)
Crystal data top
C12H15NO2V = 535.9 (3) Å3
Mr = 205.25Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.8636 (15) ŵ = 0.09 mm1
b = 6.605 (3) ÅT = 123 K
c = 9.2381 (17) Å0.70 × 0.35 × 0.20 mm
β = 97.804 (14)°
Data collection top
Rigaku AFC7S DiffractometerRint = 0.023
2714 measured reflections3 standard reflections every 150 reflections
1279 independent reflections intensity decay: none
1031 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.099Riding
S = 1.07Δρmax = 0.30 e Å3
1279 reflectionsΔρmin = 0.22 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All H atoms placed in calculated positions and in riding modes. The orientations of the C41 and C10 methyl groups were obtained by refining rotation about the C—Me bond. These methyl groups have disordered H atom positions with occupancy 50:50.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.03732 (14)0.25000.54875 (13)0.0165 (3)
H10.07970.25000.64060.020*
O10.19623 (13)0.25000.40767 (12)0.0245 (3)
O20.03134 (14)0.25000.84143 (12)0.0321 (4)
C10.13908 (17)0.25000.44372 (16)0.0159 (3)
C20.29615 (18)0.25000.49644 (17)0.0178 (3)
C30.39932 (18)0.25000.39533 (17)0.0193 (3)
H30.50520.25000.43010.023*
C40.35274 (18)0.25000.24467 (17)0.0196 (3)
C50.19730 (19)0.25000.19597 (16)0.0193 (4)
H50.16320.25000.09390.023*
C60.09070 (18)0.25000.29336 (16)0.0182 (3)
H60.01500.25000.25770.022*
C70.11684 (18)0.25000.52705 (16)0.0165 (3)
C80.19503 (17)0.25000.66439 (16)0.0172 (3)
H8A0.26240.37020.65790.021*0.50
H8B0.26240.12980.65790.021*0.50
C90.10690 (19)0.25000.81601 (17)0.0218 (4)
C100.2021 (2)0.25000.94029 (18)0.0292 (4)
H10A0.30680.28940.90320.044*0.50
H10B0.15910.34651.01530.044*0.50
H10C0.20190.11410.98280.044*0.50
C210.35046 (18)0.25000.65812 (17)0.0238 (4)
H21A0.31270.12840.70460.036*
H21B0.46140.25000.67480.036*
C410.4685 (2)0.25000.13861 (18)0.0263 (4)
H41A0.56360.31090.18530.039*0.50
H41B0.42900.32860.05170.039*0.50
H41C0.48780.11050.11000.039*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0130 (6)0.0238 (7)0.0126 (6)0.0000.0013 (5)0.000
O10.0144 (6)0.0401 (7)0.0184 (6)0.0000.0000 (4)0.000
O20.0182 (6)0.0595 (10)0.0179 (6)0.0000.0004 (5)0.000
C10.0144 (7)0.0169 (7)0.0165 (7)0.0000.0029 (6)0.000
C20.0150 (7)0.0199 (8)0.0180 (7)0.0000.0005 (6)0.000
C30.0138 (7)0.0228 (8)0.0215 (8)0.0000.0026 (6)0.000
C40.0204 (8)0.0180 (8)0.0213 (7)0.0000.0063 (6)0.000
C50.0220 (8)0.0206 (8)0.0151 (7)0.0000.0023 (6)0.000
C60.0168 (7)0.0200 (8)0.0172 (7)0.0000.0004 (6)0.000
C70.0152 (7)0.0173 (8)0.0169 (7)0.0000.0016 (6)0.000
C80.0133 (7)0.0202 (8)0.0184 (7)0.0000.0034 (6)0.000
C90.0207 (8)0.0264 (9)0.0190 (7)0.0000.0049 (6)0.000
C100.0277 (9)0.0424 (11)0.0188 (7)0.0000.0080 (7)0.000
C210.0136 (7)0.0396 (10)0.0177 (7)0.0000.0001 (6)0.000
C410.0248 (8)0.0332 (10)0.0230 (8)0.0000.0104 (7)0.000
Geometric parameters (Å, º) top
N1—C71.3538 (19)C3—C41.397 (2)
N1—C11.4116 (19)C4—C51.390 (2)
O1—C71.2251 (19)C4—C411.512 (2)
O2—C91.216 (2)C5—C61.390 (2)
C1—C61.397 (2)C7—C81.526 (2)
C1—C21.411 (2)C8—C91.508 (2)
C2—C31.393 (2)C9—C101.514 (2)
C2—C211.506 (2)
C7—N1—C1128.64 (13)C3—C4—C41120.73 (14)
C6—C1—C2119.89 (14)C4—C5—C6121.42 (14)
C6—C1—N1123.02 (13)C5—C6—C1119.97 (14)
C2—C1—N1117.09 (13)O1—C7—N1125.32 (14)
C3—C2—C1118.38 (14)O1—C7—C8118.57 (14)
C3—C2—C21120.97 (14)N1—C7—C8116.11 (13)
C1—C2—C21120.65 (14)C9—C8—C7122.39 (13)
C2—C3—C4122.41 (14)O2—C9—C8124.10 (14)
C5—C4—C3117.93 (14)O2—C9—C10120.27 (15)
C5—C4—C41121.34 (14)C8—C9—C10115.63 (14)
C7—N1—C1—C60.0C41—C4—C5—C6180.0
C7—N1—C1—C2180.0C4—C5—C6—C10.0
C6—C1—C2—C30.0C2—C1—C6—C50.0
N1—C1—C2—C3180.0N1—C1—C6—C5180.0
C6—C1—C2—C21180.0C1—N1—C7—O10.0
N1—C1—C2—C210.0C1—N1—C7—C8180.0
C1—C2—C3—C40.0O1—C7—C8—C9180.0
C21—C2—C3—C4180.0N1—C7—C8—C90.0
C2—C3—C4—C50.0C7—C8—C9—O20.0
C2—C3—C4—C41180.0C7—C8—C9—C10180.0
C3—C4—C5—C60.0
(11) top
Crystal data top
C11H13NO2F(000) = 816
Mr = 191.22Dx = 1.239 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 19 reflections
a = 26.766 (5) Åθ = 6.6–9.1°
b = 9.3754 (18) ŵ = 0.09 mm1
c = 8.1729 (13) ÅT = 123 K
V = 2050.9 (6) Å3Plate, colourless
Z = 80.70 × 0.40 × 0.15 mm
Data collection top
Rigaku AFC7S DiffractometerRint = 0.039
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.7°
Graphite monochromatorh = 3434
ω/2θ scansk = 1212
4726 measured reflectionsl = 1010
2363 independent reflections3 standard reflections every 150 reflections
1401 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103All H-atom parameters refined
S = 0.99Calculated w = 1/[σ2(Fo2) + (0.048P)2 + 0.0959P]
where P = (Fo2 + 2Fc2)/3
2363 reflections(Δ/σ)max = 0.040
168 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13NO2V = 2050.9 (6) Å3
Mr = 191.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 26.766 (5) ŵ = 0.09 mm1
b = 9.3754 (18) ÅT = 123 K
c = 8.1729 (13) Å0.70 × 0.40 × 0.15 mm
Data collection top
Rigaku AFC7S DiffractometerRint = 0.039
4726 measured reflections3 standard reflections every 150 reflections
2363 independent reflections intensity decay: none
1401 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 0.99Δρmax = 0.18 e Å3
2363 reflectionsΔρmin = 0.20 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25827 (4)0.29631 (10)0.03770 (14)0.0314 (3)
O20.17274 (5)0.12578 (13)0.21003 (14)0.0419 (3)
N10.29137 (4)0.07245 (13)0.03422 (14)0.0216 (3)
C10.34058 (5)0.10045 (15)0.08792 (17)0.0217 (3)
C20.37706 (5)0.00066 (15)0.05131 (18)0.0248 (3)
C30.42603 (6)0.01927 (18)0.10250 (18)0.0291 (3)
C40.43982 (5)0.13953 (18)0.19110 (18)0.0302 (3)
C50.40313 (6)0.23921 (18)0.2264 (2)0.0312 (3)
C60.35386 (5)0.22121 (15)0.1774 (2)0.0269 (3)
C70.25437 (5)0.16820 (15)0.00963 (17)0.0218 (3)
C80.20664 (5)0.10706 (15)0.05909 (18)0.0221 (3)
C90.16489 (5)0.10829 (15)0.06541 (19)0.0263 (3)
C100.11356 (7)0.0837 (3)0.0007 (3)0.0444 (5)
C410.49270 (6)0.1597 (2)0.2518 (2)0.0476 (5)
H41A0.49600.25440.30140.057*0.50
H41B0.50040.08650.33360.057*0.50
H41C0.51600.15120.15980.057*0.50
H41D0.51230.07370.22850.057*0.50
H41E0.50790.24160.19630.057*0.50
H41F0.49230.17680.37010.057*0.50
H10.3675 (5)0.0820 (19)0.012 (2)0.026 (4)*
H20.4495 (6)0.059 (2)0.077 (2)0.039 (5)*
H30.4122 (6)0.3239 (19)0.288 (2)0.036 (5)*
H40.3303 (6)0.2908 (18)0.206 (2)0.034 (5)*
H50.2843 (6)0.016 (2)0.011 (2)0.029 (4)*
H60.2103 (5)0.0112 (17)0.0939 (18)0.019 (4)*
H70.1981 (5)0.1678 (17)0.153 (2)0.024 (4)*
H80.1113 (8)0.011 (3)0.046 (3)0.061 (6)*
H90.1063 (9)0.153 (3)0.088 (3)0.078 (8)*
H100.0900 (9)0.087 (3)0.082 (4)0.078 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (5)0.0204 (5)0.0453 (7)0.0015 (4)0.0056 (5)0.0010 (4)
O20.0507 (7)0.0514 (7)0.0237 (6)0.0185 (6)0.0060 (5)0.0076 (5)
N10.0212 (6)0.0178 (6)0.0257 (6)0.0012 (4)0.0016 (5)0.0008 (5)
C10.0213 (6)0.0235 (7)0.0202 (7)0.0007 (5)0.0007 (5)0.0012 (5)
C20.0274 (8)0.0238 (7)0.0232 (7)0.0014 (6)0.0014 (6)0.0015 (6)
C30.0248 (8)0.0363 (8)0.0262 (8)0.0062 (6)0.0005 (6)0.0014 (7)
C40.0225 (7)0.0430 (9)0.0249 (7)0.0025 (6)0.0001 (6)0.0025 (7)
C50.0280 (7)0.0344 (8)0.0310 (8)0.0063 (7)0.0007 (6)0.0080 (7)
C60.0253 (7)0.0269 (8)0.0285 (8)0.0003 (6)0.0019 (6)0.0033 (6)
C70.0235 (7)0.0209 (7)0.0210 (6)0.0010 (5)0.0002 (5)0.0027 (5)
C80.0244 (7)0.0217 (7)0.0202 (6)0.0028 (5)0.0017 (5)0.0004 (5)
C90.0287 (7)0.0224 (7)0.0278 (7)0.0050 (6)0.0025 (6)0.0035 (6)
C100.0264 (9)0.0579 (12)0.0488 (11)0.0084 (8)0.0048 (8)0.0159 (10)
C410.0253 (8)0.0708 (13)0.0465 (10)0.0023 (9)0.0037 (7)0.0149 (10)
Geometric parameters (Å, º) top
O1—C71.2273 (17)C3—C41.390 (2)
O2—C91.2117 (18)C4—C51.386 (2)
N1—C71.3516 (18)C4—C411.512 (2)
N1—C11.4129 (17)C5—C61.389 (2)
C1—C21.3935 (19)C7—C81.5088 (19)
C1—C61.394 (2)C8—C91.511 (2)
C2—C31.388 (2)C9—C101.494 (2)
C7—N1—C1127.28 (12)C4—C5—C6122.08 (14)
C2—C1—C6119.11 (13)C5—C6—C1119.48 (14)
C2—C1—N1117.40 (13)O1—C7—N1124.06 (13)
C6—C1—N1123.47 (13)O1—C7—C8120.88 (12)
C3—C2—C1120.35 (14)N1—C7—C8115.06 (12)
C2—C3—C4121.13 (14)C7—C8—C9111.88 (12)
C5—C4—C3117.84 (14)O2—C9—C10122.20 (15)
C5—C4—C41120.72 (15)O2—C9—C8121.97 (13)
C3—C4—C41121.41 (15)C10—C9—C8115.81 (14)
C7—N1—C1—C2157.92 (13)C4—C5—C6—C10.9 (2)
C7—N1—C1—C623.5 (2)C2—C1—C6—C50.8 (2)
C6—C1—C2—C30.4 (2)N1—C1—C6—C5179.38 (14)
N1—C1—C2—C3179.08 (13)C1—N1—C7—O13.0 (2)
C1—C2—C3—C40.1 (2)C1—N1—C7—C8176.08 (13)
C2—C3—C4—C50.2 (2)O1—C7—C8—C970.81 (18)
C2—C3—C4—C41178.04 (16)N1—C7—C8—C9110.10 (14)
C3—C4—C5—C60.6 (2)C7—C8—C9—O215.5 (2)
C41—C4—C5—C6177.65 (16)C7—C8—C9—C10165.72 (15)
(12) top
Crystal data top
C11H13NO2F(000) = 408
Mr = 191.22Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 24 reflections
a = 7.3247 (10) Åθ = 10.1–17.7°
b = 12.108 (2) ŵ = 0.09 mm1
c = 10.7479 (14) ÅT = 123 K
β = 99.357 (13)°Needle, colourless
V = 940.5 (2) Å30.55 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC7S
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 26.5°, θmin = 2.6°
Graphite monochromatorh = 09
ω/2θ scansk = 015
2104 measured reflectionsl = 1313
1951 independent reflections3 standard reflections every 150 reflections
1168 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.128Calculated w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2688P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1951 reflectionsΔρmax = 0.22 e Å3
180 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (18)
Crystal data top
C11H13NO2V = 940.5 (2) Å3
Mr = 191.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3247 (10) ŵ = 0.09 mm1
b = 12.108 (2) ÅT = 123 K
c = 10.7479 (14) Å0.55 × 0.15 × 0.10 mm
β = 99.357 (13)°
Data collection top
Rigaku AFC7S
diffractometer
Rint = 0.027
2104 measured reflections3 standard reflections every 150 reflections
1951 independent reflections intensity decay: none
1168 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128All H-atom parameters refined
S = 1.07Δρmax = 0.22 e Å3
1951 reflectionsΔρmin = 0.20 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0678 (3)0.52659 (14)0.27430 (15)0.0271 (4)
O20.2796 (2)0.72230 (14)0.59108 (14)0.0238 (4)
N10.2256 (3)0.52332 (17)0.47681 (18)0.0183 (5)
C10.2560 (3)0.40959 (19)0.4996 (2)0.0161 (5)
C20.3564 (3)0.38052 (19)0.61879 (19)0.0164 (5)
C30.3869 (3)0.2686 (2)0.6453 (2)0.0198 (5)
C40.3206 (3)0.1868 (2)0.5581 (2)0.0219 (5)
C50.2231 (3)0.2174 (2)0.4420 (2)0.0217 (5)
C60.1907 (3)0.3274 (2)0.4124 (2)0.0200 (5)
C70.1379 (3)0.57432 (19)0.3709 (2)0.0169 (5)
C80.1285 (3)0.6996 (2)0.3758 (2)0.0175 (5)
C90.2060 (3)0.76505 (19)0.4926 (2)0.0187 (5)
C100.1891 (4)0.8882 (2)0.4800 (2)0.0230 (5)
C210.4236 (4)0.4663 (2)0.7163 (2)0.0205 (5)
H10.446 (4)0.251 (2)0.726 (2)0.027 (7)*
H20.345 (3)0.112 (2)0.583 (2)0.023 (7)*
H30.184 (4)0.159 (2)0.384 (2)0.031 (8)*
H40.120 (3)0.3503 (19)0.333 (2)0.011 (6)*
H50.264 (4)0.572 (2)0.535 (2)0.022 (7)*
H60.012 (4)0.717 (2)0.359 (2)0.029 (7)*
H70.182 (4)0.729 (2)0.305 (2)0.033 (8)*
H80.090 (4)0.909 (2)0.408 (3)0.033 (7)*
H90.311 (4)0.916 (2)0.460 (2)0.030 (7)*
H100.170 (4)0.918 (2)0.562 (3)0.033 (7)*
H110.501 (4)0.523 (2)0.685 (3)0.031 (8)*
H120.314 (4)0.509 (2)0.734 (2)0.032 (7)*
H130.492 (4)0.435 (2)0.787 (3)0.034 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (11)0.0204 (9)0.0166 (8)0.0011 (8)0.0079 (7)0.0023 (7)
O20.0291 (10)0.0224 (9)0.0178 (8)0.0009 (8)0.0026 (7)0.0011 (7)
N10.0228 (11)0.0157 (10)0.0151 (10)0.0005 (8)0.0009 (8)0.0028 (8)
C10.0151 (12)0.0173 (11)0.0164 (10)0.0010 (8)0.0039 (9)0.0014 (9)
C20.0151 (11)0.0197 (12)0.0146 (10)0.0012 (9)0.0035 (9)0.0009 (9)
C30.0175 (12)0.0229 (13)0.0183 (12)0.0006 (10)0.0006 (9)0.0020 (9)
C40.0221 (13)0.0179 (13)0.0262 (12)0.0039 (10)0.0048 (10)0.0020 (10)
C50.0241 (13)0.0188 (12)0.0225 (12)0.0001 (10)0.0043 (10)0.0050 (10)
C60.0204 (12)0.0245 (13)0.0144 (11)0.0017 (10)0.0009 (9)0.0011 (9)
C70.0177 (12)0.0194 (11)0.0137 (10)0.0002 (9)0.0028 (9)0.0014 (9)
C80.0165 (12)0.0196 (12)0.0156 (10)0.0028 (9)0.0004 (9)0.0016 (9)
C90.0169 (11)0.0192 (12)0.0203 (11)0.0037 (10)0.0036 (9)0.0003 (10)
C100.0273 (14)0.0181 (12)0.0223 (12)0.0032 (11)0.0003 (10)0.0005 (10)
C210.0223 (12)0.0204 (12)0.0163 (11)0.0010 (11)0.0045 (10)0.0014 (10)
Geometric parameters (Å, º) top
O1—C71.225 (3)C2—C211.500 (3)
O2—C91.222 (3)C3—C41.396 (3)
N1—C71.361 (3)C4—C51.384 (3)
N1—C11.410 (3)C5—C61.381 (3)
C1—C61.397 (3)C7—C81.520 (3)
C1—C21.414 (3)C8—C91.514 (3)
C2—C31.395 (3)C9—C101.501 (3)
C7—N1—C1128.9 (2)C6—C5—C4120.6 (2)
C6—C1—N1123.5 (2)C5—C6—C1120.4 (2)
C6—C1—C2120.1 (2)O1—C7—N1124.8 (2)
N1—C1—C2116.4 (2)O1—C7—C8119.0 (2)
C3—C2—C1118.0 (2)N1—C7—C8116.2 (2)
C3—C2—C21120.4 (2)C9—C8—C7122.5 (2)
C1—C2—C21121.6 (2)O2—C9—C10121.2 (2)
C2—C3—C4121.7 (2)O2—C9—C8123.3 (2)
C5—C4—C3119.2 (2)C10—C9—C8115.5 (2)
C7—N1—C1—C62.3 (4)C4—C5—C6—C10.1 (4)
C7—N1—C1—C2178.5 (2)N1—C1—C6—C5178.9 (2)
C6—C1—C2—C30.0 (3)C2—C1—C6—C50.2 (3)
N1—C1—C2—C3179.2 (2)C1—N1—C7—O10.3 (4)
C6—C1—C2—C21178.1 (2)C1—N1—C7—C8179.8 (2)
N1—C1—C2—C211.1 (3)O1—C7—C8—C9178.0 (2)
C1—C2—C3—C40.3 (3)N1—C7—C8—C92.0 (3)
C21—C2—C3—C4177.8 (2)C7—C8—C9—O20.8 (4)
C2—C3—C4—C50.5 (4)C7—C8—C9—C10178.6 (2)
C3—C4—C5—C60.3 (4)

Experimental details

(9)(10)(11)(12)
Crystal data
Chemical formulaC17H16N4O4C12H15NO2C11H13NO2C11H13NO2
Mr340.34205.25191.22191.22
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/mOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)150123123123
a, b, c (Å)14.111 (6), 7.567 (3), 15.338 (6)8.8636 (15), 6.605 (3), 9.2381 (17)26.766 (5), 9.3754 (18), 8.1729 (13)7.3247 (10), 12.108 (2), 10.7479 (14)
α, β, γ (°)90, 99.967 (10), 9090, 97.804 (14), 9090, 90, 9090, 99.357 (13), 90
V3)1613.0 (11)535.9 (3)2050.9 (6)940.5 (2)
Z4284
Radiation typeSynchrotron, λ = 0.6891 ÅMo KαMo KαMo Kα
µ (mm1)0.100.090.090.09
Crystal size (mm)0.20 × 0.04 × 0.020.70 × 0.35 × 0.200.70 × 0.40 × 0.150.55 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Rigaku AFC7S DiffractometerRigaku AFC7S DiffractometerRigaku AFC7S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS - see comment below
Tmin, Tmax0.980, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
5749, 2445, 1600 2714, 1279, 1031 4726, 2363, 1401 2104, 1951, 1168
Rint0.0690.0230.0390.027
θmax (°)23.027.027.526.5
(sin θ/λ)max1)0.5670.6390.6500.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.166, 1.00 0.033, 0.099, 1.07 0.035, 0.103, 0.99 0.043, 0.128, 1.07
No. of reflections2445127923631951
No. of parameters23194168180
H-atom treatmentRidingRidingAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.34, 0.280.30, 0.220.18, 0.200.22, 0.20

Computer programs: SMART (Siemens, 1995), MSC/Rigaku diffractometer control, local program, SAINT (Siemens, 1995), TEXSAN, SHELXS (Sheldrick, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP II.

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds