Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the title compounds have been determined in the temperature range 140–290 K for the zinc complex, and 190–270 K for the copper complex. The two structures are isostructural in the trigonal space group P{\bar{3}1c} with the sulfate anion severely disordered on a site with 32 (D3) symmetry. This sulfate disorder leads to a disordered three-dimensional hydrogen-bond network, with the N—H atoms acting as donors and the sulfate O atoms as acceptors. The displacement parameters of the N and C atoms in both compounds contain disorder contributions in the out-of-ligand plane direction owing to ring puckering and/or disorder in hydrogen bonding. In the Zn compound the vibrational amplitudes in the bond directions are closely similar. Their differences show no significant deviations from rigid-bond behaviour. In the Cu compound, a (presumably) dynamic Jahn–Teller effect is identified from a temperature-independent contribution to the displacement ellipsoids of the N atom along the N—Cu bond. These conclusions derive from analyses of the atomic displacement parameters with the Hirshfeld test, with rigid-body models at different temperatures, and with a normal coordinate analysis. This analysis considers the atomic displacement parameters (ADPs) from all different temperatures simultaneously and provides a detailed description of both the thermal motion and the disorder in the cation. The Jahn–Teller radii of the Cu compound derived on the basis of the ADP analysis and from the bond distances in the statically distorted low-temperature phase [Lutz (2010). Acta Cryst. C66, m330–m335] are found to be the same.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768110054571/bk5101sup1.cif
Contains datablocks 1a, 1b, 1c, 1d, 1e, 1f, 2a, 2b, 2c, 2d, 2e, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51011asup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51011bsup3.hkl
Contains datablock 1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51011csup4.hkl
Contains datablock 1c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51011dsup5.hkl
Contains datablock 1d

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51011esup6.hkl
Contains datablock 1e

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51011fsup7.hkl
Contains datablock 1f

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51012asup8.hkl
Contains datablock 2a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51012bsup9.hkl
Contains datablock 2b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51012csup10.hkl
Contains datablock 2c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51012dsup11.hkl
Contains datablock 2d

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054571/bk51012esup12.hkl
Contains datablock 2e

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768110054571/bk5101sup13.pdf
Extra figures and tables

CCDC references: 814500; 814501; 814502; 814503; 814504; 814505; 814506; 814507; 814508; 814509; 814510

Computing details top

For all structures, data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2005); data reduction: EVAL15 (Schreurs et al., 2010), SADABS2008/1 (Sheldrick, 2008b); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a).

(1a) top
Crystal data top
C6H24N6Zn·O4SDx = 1.708 Mg m3
Mr = 341.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 11284 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9594 (1) ŵ = 2.02 mm1
c = 9.5583 (1) ÅT = 140 K
V = 664.46 (2) Å3Needle, colourless
Z = 20.30 × 0.09 × 0.09 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
683 independent reflections
Radiation source: rotating anode649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.619, Tmax = 0.878k = 1212
10729 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: difference Fourier map
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.4531P]
where P = (Fo2 + 2Fc2)/3
683 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.56 e Å3
16 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.01092 (9)
N10.45179 (14)0.30945 (15)0.12505 (12)0.0197 (2)
H1N0.436 (3)0.393 (3)0.136 (2)0.033 (5)*
H2N0.470 (3)0.304 (3)0.040 (2)0.035 (5)*
C10.29463 (16)0.15271 (17)0.17058 (13)0.0199 (2)
H1A0.29120.04970.12920.024*
H1B0.19150.15650.13860.024*
S10.33330.66670.25000.01097 (13)
O10.3589 (9)0.5639 (7)0.1489 (3)0.0623 (18)0.33333
O20.2850 (10)0.7776 (9)0.1764 (4)0.093 (3)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01117 (11)0.01117 (11)0.01043 (15)0.00559 (6)0.0000.000
N10.0162 (5)0.0244 (5)0.0171 (5)0.0090 (4)0.0021 (4)0.0045 (4)
C10.0133 (5)0.0228 (6)0.0200 (5)0.0063 (4)0.0032 (4)0.0023 (4)
S10.01203 (18)0.01203 (18)0.0089 (3)0.00601 (9)0.0000.000
O10.156 (6)0.075 (3)0.0164 (16)0.103 (4)0.004 (2)0.0032 (18)
O20.212 (8)0.136 (6)0.026 (2)0.158 (6)0.020 (3)0.024 (3)
Geometric parameters (Å, º) top
Zn1—N1i2.1832 (11)S1—O1vi1.431 (3)
Zn1—N1ii2.1832 (11)S1—O1vii1.431 (3)
Zn1—N12.1832 (11)S1—O11.431 (3)
Zn1—N1iii2.1833 (11)S1—O1viii1.431 (3)
Zn1—N1iv2.1833 (11)S1—O1ix1.431 (3)
Zn1—N1v2.1833 (11)S1—O1v1.431 (3)
N1—C11.4720 (17)S1—O2viii1.449 (4)
N1—H1N0.84 (2)S1—O2ix1.450 (4)
N1—H2N0.84 (2)S1—O2vi1.450 (4)
C1—C1ii1.521 (3)S1—O21.450 (4)
C1—H1A0.9900S1—O2vii1.450 (4)
C1—H1B0.9900S1—O2v1.450 (4)
N1i—Zn1—N1ii94.50 (7)Zn1—N1—H1N112.5 (14)
N1i—Zn1—N192.93 (4)C1—N1—H2N110.8 (14)
N1ii—Zn1—N180.43 (6)Zn1—N1—H2N110.2 (15)
N1i—Zn1—N1iii92.93 (4)H1N—N1—H2N107 (2)
N1ii—Zn1—N1iii170.26 (6)N1—C1—C1ii108.98 (9)
N1—Zn1—N1iii92.93 (4)N1—C1—H1A109.9
N1i—Zn1—N1iv80.43 (6)C1ii—C1—H1A109.9
N1ii—Zn1—N1iv92.93 (4)N1—C1—H1B109.9
N1—Zn1—N1iv170.26 (6)C1ii—C1—H1B109.9
N1iii—Zn1—N1iv94.50 (7)H1A—C1—H1B108.3
N1i—Zn1—N1v170.26 (6)O1vii—S1—O1112.2 (5)
N1ii—Zn1—N1v92.93 (4)O1vii—S1—O2110.5 (4)
N1—Zn1—N1v94.50 (7)O1—S1—O2108.2 (2)
N1iii—Zn1—N1v80.43 (6)O1vii—S1—O2vii108.2 (2)
N1iv—Zn1—N1v92.93 (4)O1—S1—O2vii110.5 (4)
C1—N1—Zn1107.92 (8)O2—S1—O2vii107.1 (6)
C1—N1—H1N108.0 (14)
N1i—Zn1—N1—C179.09 (11)N1v—Zn1—N1—C1107.21 (9)
N1ii—Zn1—N1—C114.99 (6)Zn1—N1—C1—C1ii42.08 (14)
N1iii—Zn1—N1—C1172.18 (8)
Symmetry codes: (i) y+1, xy, z; (ii) x, xy, z+1/2; (iii) x+y+1, x+1, z; (iv) x+y+1, y, z+1/2; (v) y+1, x+1, z+1/2; (vi) x+y, x+1, z; (vii) x+y, y, z+1/2; (viii) y+1, xy+1, z; (ix) x, xy+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.84 (2)1.97 (2)2.799 (3)170 (2)
N1—H2N···O2x0.84 (2)2.12 (2)2.951 (4)178 (2)
Symmetry code: (x) xy+1, x, z.
(1b) top
Crystal data top
C6H24N6Zn·O4SDx = 1.704 Mg m3
Mr = 341.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 11070 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9649 (1) ŵ = 2.02 mm1
c = 9.5685 (1) ÅT = 170 K
V = 665.99 (2) Å3Needle, colourless
Z = 20.30 × 0.09 × 0.09 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
689 independent reflections
Radiation source: rotating anode650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.625, Tmax = 0.876k = 1212
10818 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.4729P]
where P = (Fo2 + 2Fc2)/3
689 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.53 e Å3
16 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.01325 (10)
N10.45189 (15)0.30936 (16)0.12505 (12)0.0222 (2)
H1N0.437 (3)0.393 (3)0.136 (2)0.031 (5)*
H2N0.472 (3)0.305 (3)0.038 (2)0.038 (6)*
C10.29493 (17)0.15272 (18)0.17071 (14)0.0231 (3)
H1A0.29160.04980.12960.028*
H1B0.19180.15630.13870.028*
S10.33330.66670.25000.01318 (14)
O10.3574 (10)0.5636 (7)0.1483 (4)0.071 (2)0.33333
O20.2849 (10)0.7773 (9)0.1777 (5)0.100 (3)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01350 (12)0.01350 (12)0.01276 (16)0.00675 (6)0.0000.000
N10.0190 (5)0.0270 (6)0.0198 (5)0.0109 (4)0.0024 (4)0.0040 (4)
C10.0155 (5)0.0262 (6)0.0235 (6)0.0074 (5)0.0040 (4)0.0035 (5)
S10.01415 (19)0.01415 (19)0.0112 (3)0.00707 (9)0.0000.000
O10.171 (7)0.086 (4)0.0215 (18)0.114 (5)0.005 (3)0.004 (2)
O20.222 (9)0.145 (6)0.032 (2)0.166 (7)0.020 (4)0.027 (3)
Geometric parameters (Å, º) top
Zn1—N1i2.1838 (11)S1—O1vi1.430 (3)
Zn1—N12.1838 (11)S1—O1vii1.430 (3)
Zn1—N1ii2.1838 (11)S1—O11.430 (3)
Zn1—N1iii2.1838 (11)S1—O1viii1.430 (3)
Zn1—N1iv2.1838 (11)S1—O1ix1.430 (3)
Zn1—N1v2.1839 (11)S1—O1iii1.430 (3)
N1—C11.4720 (18)S1—O21.443 (4)
N1—H1N0.83 (2)S1—O2vii1.443 (4)
N1—H2N0.85 (2)S1—O2iii1.443 (4)
C1—C1ii1.520 (3)S1—O2viii1.443 (4)
C1—H1A0.9900S1—O2vi1.443 (4)
C1—H1B0.9900S1—O2ix1.443 (4)
N1i—Zn1—N192.89 (4)Zn1—N1—H1N112.1 (14)
N1i—Zn1—N1ii170.22 (7)C1—N1—H2N111.4 (15)
N1—Zn1—N1ii80.44 (6)Zn1—N1—H2N110.0 (15)
N1i—Zn1—N1iii80.44 (6)H1N—N1—H2N107 (2)
N1—Zn1—N1iii94.58 (7)N1—C1—C1ii109.01 (9)
N1ii—Zn1—N1iii92.89 (4)N1—C1—H1A109.9
N1i—Zn1—N1iv92.89 (4)C1ii—C1—H1A109.9
N1—Zn1—N1iv92.89 (4)N1—C1—H1B109.9
N1ii—Zn1—N1iv94.58 (7)C1ii—C1—H1B109.9
N1iii—Zn1—N1iv170.22 (7)H1A—C1—H1B108.3
N1i—Zn1—N1v94.57 (7)O1vii—S1—O1112.0 (5)
N1—Zn1—N1v170.22 (7)O1vii—S1—O2110.7 (4)
N1ii—Zn1—N1v92.89 (4)O1—S1—O2108.2 (2)
N1iii—Zn1—N1v92.89 (4)O1vii—S1—O2vii108.2 (2)
N1iv—Zn1—N1v80.44 (6)O1—S1—O2vii110.7 (4)
C1—N1—Zn1107.86 (8)O2—S1—O2vii106.9 (6)
C1—N1—H1N108.5 (14)
N1i—Zn1—N1—C1172.21 (9)N1iv—Zn1—N1—C179.17 (12)
N1ii—Zn1—N1—C114.99 (6)Zn1—N1—C1—C1ii42.12 (15)
N1iii—Zn1—N1—C1107.16 (10)
Symmetry codes: (i) x+y+1, x+1, z; (ii) x, xy, z+1/2; (iii) y+1, x+1, z+1/2; (iv) y+1, xy, z; (v) x+y+1, y, z+1/2; (vi) x+y, x+1, z; (vii) x+y, y, z+1/2; (viii) y+1, xy+1, z; (ix) x, xy+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.83 (2)1.99 (2)2.810 (4)169 (2)
N1—H2N···O2x0.85 (2)2.11 (2)2.966 (5)177 (2)
Symmetry code: (x) xy+1, x, z.
(1c) top
Crystal data top
C6H24N6Zn·O4SDx = 1.700 Mg m3
Mr = 341.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 10704 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9696 (2) ŵ = 2.01 mm1
c = 9.5842 (1) ÅT = 200 K
V = 667.78 (3) Å3Needle, colourless
Z = 20.30 × 0.09 × 0.09 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
690 independent reflections
Radiation source: rotating anode652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.622, Tmax = 0.882k = 1212
10832 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.3881P]
where P = (Fo2 + 2Fc2)/3
690 reflections(Δ/σ)max = 0.001
49 parametersΔρmax = 0.56 e Å3
16 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.01591 (11)
N10.45178 (16)0.30936 (17)0.12531 (13)0.0251 (3)
H1N0.434 (3)0.394 (3)0.137 (2)0.040 (6)*
H2N0.472 (3)0.305 (3)0.039 (2)0.036 (5)*
C10.29525 (18)0.1529 (2)0.17090 (16)0.0278 (3)
H1A0.29210.05010.12980.033*
H1B0.19200.15620.13890.033*
S10.33330.66670.25000.01605 (15)
O10.3538 (11)0.5626 (8)0.1466 (4)0.082 (3)0.33333
O20.2837 (11)0.7780 (10)0.1814 (5)0.105 (3)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01605 (13)0.01605 (13)0.01564 (17)0.00802 (7)0.0000.000
N10.0225 (6)0.0308 (6)0.0222 (5)0.0136 (5)0.0030 (4)0.0028 (4)
C10.0187 (6)0.0320 (7)0.0287 (7)0.0096 (5)0.0048 (5)0.0044 (5)
S10.0165 (2)0.0165 (2)0.0152 (3)0.00825 (10)0.0000.000
O10.190 (8)0.099 (5)0.028 (2)0.125 (6)0.010 (3)0.003 (3)
O20.223 (10)0.152 (7)0.042 (3)0.170 (8)0.018 (4)0.027 (4)
Geometric parameters (Å, º) top
Zn1—N1i2.1852 (12)S1—O1vi1.435 (4)
Zn1—N1ii2.1852 (12)S1—O1vii1.435 (4)
Zn1—N12.1852 (12)S1—O1viii1.435 (4)
Zn1—N1iii2.1852 (12)S1—O1ix1.435 (4)
Zn1—N1iv2.1852 (12)S1—O11.435 (4)
Zn1—N1v2.1852 (12)S1—O1ii1.435 (4)
N1—C11.470 (2)S1—O2ii1.439 (4)
N1—H1N0.86 (3)S1—O21.439 (4)
N1—H2N0.86 (2)S1—O2ix1.439 (4)
C1—C1iii1.519 (3)S1—O2vii1.439 (4)
C1—H1A0.9900S1—O2vi1.439 (4)
C1—H1B0.9900S1—O2viii1.439 (4)
N1i—Zn1—N1ii80.38 (7)Zn1—N1—H1N113.1 (16)
N1i—Zn1—N192.95 (5)C1—N1—H2N111.5 (15)
N1ii—Zn1—N194.52 (7)Zn1—N1—H2N110.0 (15)
N1i—Zn1—N1iii170.22 (7)H1N—N1—H2N107 (2)
N1ii—Zn1—N1iii92.94 (5)N1—C1—C1iii109.03 (10)
N1—Zn1—N1iii80.38 (7)N1—C1—H1A109.9
N1i—Zn1—N1iv92.94 (5)C1iii—C1—H1A109.9
N1ii—Zn1—N1iv170.22 (7)N1—C1—H1B109.9
N1—Zn1—N1iv92.95 (5)C1iii—C1—H1B109.9
N1iii—Zn1—N1iv94.52 (7)H1A—C1—H1B108.3
N1i—Zn1—N1v94.52 (7)O1ix—S1—O1111.4 (6)
N1ii—Zn1—N1v92.94 (5)O1ix—S1—O2110.9 (4)
N1—Zn1—N1v170.22 (7)O1—S1—O2108.7 (3)
N1iii—Zn1—N1v92.94 (5)O1ix—S1—O2ix108.7 (3)
N1iv—Zn1—N1v80.38 (7)O1—S1—O2ix110.9 (4)
C1—N1—Zn1107.80 (9)O2—S1—O2ix106.2 (7)
C1—N1—H1N107.0 (16)
N1i—Zn1—N1—C1172.18 (10)N1iv—Zn1—N1—C179.08 (12)
N1ii—Zn1—N1—C1107.24 (10)Zn1—N1—C1—C1iii42.20 (17)
N1iii—Zn1—N1—C115.02 (7)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, x+1, z+1/2; (iii) x, xy, z+1/2; (iv) y+1, xy, z; (v) x+y+1, y, z+1/2; (vi) x+y, x+1, z; (vii) y+1, xy+1, z; (viii) x, xy+1, z+1/2; (ix) x+y, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.86 (3)1.97 (3)2.823 (5)170 (2)
N1—H2N···O2x0.86 (2)2.15 (2)3.006 (5)177 (2)
Symmetry code: (x) xy+1, x, z.
(1d) top
Crystal data top
C6H24N6Zn·O4SDx = 1.694 Mg m3
Mr = 341.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 10489 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9790 (1) ŵ = 2.01 mm1
c = 9.5973 (2) ÅT = 230 K
V = 670.09 (2) Å3Needle, colourless
Z = 20.30 × 0.09 × 0.09 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
694 independent reflections
Radiation source: rotating anode649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.625, Tmax = 0.878k = 1212
10896 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.3399P]
where P = (Fo2 + 2Fc2)/3
694 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.59 e Å3
16 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.01825 (12)
N10.45172 (17)0.30921 (18)0.12541 (14)0.0278 (3)
H1N0.434 (3)0.395 (3)0.138 (3)0.043 (6)*
H2N0.471 (3)0.305 (3)0.040 (2)0.046 (6)*
C10.29538 (19)0.1530 (2)0.17114 (17)0.0312 (3)
H1A0.29210.05130.13050.037*
H1B0.19330.15640.13960.037*
S10.33330.66670.25000.01843 (16)
O10.3535 (11)0.5634 (9)0.1464 (5)0.089 (3)0.33333
O20.2836 (11)0.7783 (10)0.1823 (6)0.110 (4)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01837 (14)0.01837 (14)0.01802 (18)0.00918 (7)0.0000.000
N10.0254 (6)0.0340 (7)0.0248 (6)0.0153 (5)0.0031 (5)0.0026 (5)
C10.0212 (6)0.0354 (8)0.0328 (7)0.0109 (6)0.0055 (5)0.0055 (6)
S10.0188 (2)0.0188 (2)0.0177 (3)0.00939 (11)0.0000.000
O10.196 (9)0.106 (5)0.035 (2)0.127 (7)0.014 (4)0.004 (3)
O20.228 (10)0.156 (8)0.049 (3)0.173 (8)0.019 (5)0.028 (4)
Geometric parameters (Å, º) top
Zn1—N1i2.1871 (13)S1—O1vi1.432 (4)
Zn1—N1ii2.1871 (13)S1—O1vii1.432 (4)
Zn1—N1iii2.1871 (13)S1—O1viii1.432 (4)
Zn1—N1iv2.1871 (13)S1—O11.432 (4)
Zn1—N1v2.1871 (13)S1—O1ix1.432 (4)
Zn1—N12.1871 (13)S1—O1i1.432 (4)
N1—C11.470 (2)S1—O2i1.440 (4)
N1—H1N0.87 (3)S1—O21.440 (4)
N1—H2N0.84 (2)S1—O2vii1.440 (4)
C1—C1ii1.517 (3)S1—O2vi1.440 (4)
C1—H1A0.9800S1—O2ix1.440 (4)
C1—H1B0.9800S1—O2viii1.440 (4)
N1i—Zn1—N1ii92.96 (5)Zn1—N1—H1N112.3 (16)
N1i—Zn1—N1iii92.96 (5)C1—N1—H2N111.4 (17)
N1ii—Zn1—N1iii92.96 (5)Zn1—N1—H2N110.3 (17)
N1i—Zn1—N1iv80.33 (7)H1N—N1—H2N108 (2)
N1ii—Zn1—N1iv170.16 (8)N1—C1—C1ii109.14 (11)
N1iii—Zn1—N1iv94.55 (8)N1—C1—H1A109.9
N1i—Zn1—N1v170.16 (8)C1ii—C1—H1A109.9
N1ii—Zn1—N1v94.55 (8)N1—C1—H1B109.9
N1iii—Zn1—N1v80.33 (7)C1ii—C1—H1B109.9
N1iv—Zn1—N1v92.96 (5)H1A—C1—H1B108.3
N1i—Zn1—N194.55 (8)O1vii—S1—O1111.8 (6)
N1ii—Zn1—N180.33 (7)O1vii—S1—O2110.8 (5)
N1iii—Zn1—N1170.16 (8)O1—S1—O2108.7 (3)
N1iv—Zn1—N192.96 (5)O1vii—S1—O2vii108.7 (3)
N1v—Zn1—N192.96 (5)O1—S1—O2vii110.8 (5)
C1—N1—Zn1107.79 (9)O2—S1—O2vii105.9 (7)
C1—N1—H1N107.2 (16)
N1i—Zn1—N1—C1107.19 (11)N1v—Zn1—N1—C179.17 (13)
N1ii—Zn1—N1—C114.95 (7)Zn1—N1—C1—C1ii42.11 (18)
N1iv—Zn1—N1—C1172.29 (10)
Symmetry codes: (i) y+1, x+1, z+1/2; (ii) x, xy, z+1/2; (iii) x+y+1, y, z+1/2; (iv) x+y+1, x+1, z; (v) y+1, xy, z; (vi) x, xy+1, z+1/2; (vii) x+y, y, z+1/2; (viii) x+y, x+1, z; (ix) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.87 (3)1.98 (3)2.835 (5)169 (2)
N1—H2N···O2x0.84 (2)2.18 (2)3.019 (6)177 (2)
Symmetry code: (x) xy+1, x, z.
(1e) top
Crystal data top
C6H24N6Zn·O4SDx = 1.690 Mg m3
Mr = 341.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 10365 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9855 (2) ŵ = 2.00 mm1
c = 9.6043 (1) ÅT = 260 K
V = 671.55 (3) Å3Needle, colourless
Z = 20.30 × 0.09 × 0.09 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
694 independent reflections
Radiation source: rotating anode653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.621, Tmax = 0.874k = 1212
11110 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.3022P]
where P = (Fo2 + 2Fc2)/3
694 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.66 e Å3
16 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.02039 (13)
N10.45185 (18)0.30916 (19)0.12549 (14)0.0302 (3)
H1N0.432 (3)0.393 (4)0.136 (3)0.048 (6)*
H2N0.471 (3)0.303 (3)0.038 (2)0.045 (6)*
C10.2958 (2)0.1531 (2)0.17122 (18)0.0343 (3)
H1A0.29270.05250.13110.041*
H1B0.19480.15630.13990.041*
S10.33330.66670.25000.02050 (17)
O10.3538 (12)0.5637 (9)0.1465 (5)0.096 (3)0.33333
O20.2838 (11)0.7780 (10)0.1822 (6)0.115 (4)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02054 (15)0.02054 (15)0.02010 (19)0.01027 (7)0.0000.000
N10.0281 (6)0.0368 (7)0.0268 (6)0.0170 (5)0.0035 (5)0.0027 (5)
C10.0232 (6)0.0385 (8)0.0365 (8)0.0118 (6)0.0063 (6)0.0058 (6)
S10.0207 (2)0.0207 (2)0.0201 (3)0.01036 (11)0.0000.000
O10.202 (10)0.112 (6)0.042 (3)0.131 (7)0.013 (4)0.007 (3)
O20.233 (11)0.158 (8)0.058 (4)0.175 (9)0.018 (5)0.029 (4)
Geometric parameters (Å, º) top
Zn1—N1i2.1871 (13)S1—O1vi1.432 (4)
Zn1—N1ii2.1871 (13)S1—O11.432 (4)
Zn1—N1iii2.1871 (13)S1—O1iv1.432 (4)
Zn1—N12.1872 (13)S1—O1vii1.432 (4)
Zn1—N1iv2.1872 (13)S1—O1viii1.432 (4)
Zn1—N1v2.1872 (13)S1—O1ix1.432 (4)
N1—C11.469 (2)S1—O2vii1.438 (5)
N1—H1N0.86 (3)S1—O2ix1.438 (5)
N1—H2N0.87 (2)S1—O2viii1.438 (5)
C1—C1iii1.516 (3)S1—O2iv1.438 (5)
C1—H1A0.9700S1—O21.438 (5)
C1—H1B0.9700S1—O2vi1.438 (5)
N1i—Zn1—N1ii80.31 (7)Zn1—N1—H1N114.1 (18)
N1i—Zn1—N1iii92.96 (5)C1—N1—H2N110.9 (16)
N1ii—Zn1—N1iii94.58 (8)Zn1—N1—H2N110.3 (17)
N1i—Zn1—N1170.13 (8)H1N—N1—H2N107 (2)
N1ii—Zn1—N192.96 (5)N1—C1—C1iii109.13 (11)
N1iii—Zn1—N180.31 (7)N1—C1—H1A109.9
N1i—Zn1—N1iv92.96 (5)C1iii—C1—H1A109.9
N1ii—Zn1—N1iv170.13 (8)N1—C1—H1B109.9
N1iii—Zn1—N1iv92.96 (5)C1iii—C1—H1B109.9
N1—Zn1—N1iv94.58 (8)H1A—C1—H1B108.3
N1i—Zn1—N1v94.58 (8)O1vi—S1—O1111.9 (6)
N1ii—Zn1—N1v92.96 (5)O1vi—S1—O2110.8 (5)
N1iii—Zn1—N1v170.13 (8)O1—S1—O2108.7 (3)
N1—Zn1—N1v92.96 (5)O1vi—S1—O2vi108.7 (3)
N1iv—Zn1—N1v80.31 (7)O1—S1—O2vi110.8 (5)
C1—N1—Zn1107.76 (10)O2—S1—O2vi105.9 (7)
C1—N1—H1N106.6 (17)
N1ii—Zn1—N1—C179.17 (13)N1v—Zn1—N1—C1172.29 (10)
N1iii—Zn1—N1—C114.98 (8)Zn1—N1—C1—C1iii42.19 (18)
N1iv—Zn1—N1—C1107.20 (11)
Symmetry codes: (i) x+y+1, y, z+1/2; (ii) y+1, xy, z; (iii) x, xy, z+1/2; (iv) y+1, x+1, z+1/2; (v) x+y+1, x+1, z; (vi) x+y, y, z+1/2; (vii) x, xy+1, z+1/2; (viii) x+y, x+1, z; (ix) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.86 (3)1.99 (3)2.839 (5)172 (3)
N1—H2N···O2x0.87 (2)2.16 (2)3.022 (6)177 (2)
Symmetry code: (x) xy+1, x, z.
(1f) top
Crystal data top
C6H24N6Zn·O4SDx = 1.686 Mg m3
Mr = 341.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 10072 reflections
Hall symbol: -P 3 2cθ = 2.1–34.9°
a = 8.9929 (2) ŵ = 2.00 mm1
c = 9.6101 (2) ÅT = 290 K
V = 673.07 (3) Å3Needle, colourless
Z = 20.30 × 0.09 × 0.09 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
696 independent reflections
Radiation source: rotating anode647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.627, Tmax = 0.872k = 1212
11155 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.1924P]
where P = (Fo2 + 2Fc2)/3
696 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.62 e Å3
16 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.02240 (13)
N10.45193 (17)0.30908 (19)0.12575 (14)0.0328 (3)
H1N0.432 (3)0.392 (4)0.136 (3)0.053 (6)*
H2N0.469 (3)0.304 (3)0.038 (2)0.050 (6)*
C10.2960 (2)0.1532 (2)0.17146 (18)0.0375 (3)
H1A0.29290.05270.13140.045*
H1B0.19510.15640.14020.045*
S10.33330.66670.25000.02259 (16)
O10.3543 (12)0.5644 (9)0.1464 (5)0.100 (3)0.33333
O20.2843 (11)0.7782 (10)0.1825 (6)0.119 (4)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02248 (15)0.02248 (15)0.02224 (19)0.01124 (7)0.0000.000
N10.0302 (6)0.0399 (7)0.0295 (6)0.0185 (5)0.0038 (5)0.0024 (5)
C10.0255 (6)0.0417 (8)0.0407 (8)0.0134 (6)0.0072 (6)0.0070 (6)
S10.0230 (2)0.0230 (2)0.0218 (3)0.01150 (11)0.0000.000
O10.206 (10)0.116 (6)0.045 (3)0.131 (7)0.015 (4)0.008 (3)
O20.239 (11)0.159 (8)0.063 (4)0.177 (9)0.020 (5)0.028 (4)
Geometric parameters (Å, º) top
Zn1—N1i2.1866 (13)S1—O1v1.430 (4)
Zn1—N1ii2.1866 (13)S1—O1vi1.430 (4)
Zn1—N1iii2.1866 (13)S1—O11.430 (4)
Zn1—N12.1866 (13)S1—O1vii1.430 (4)
Zn1—N1iv2.1866 (13)S1—O1viii1.430 (4)
Zn1—N1v2.1867 (13)S1—O1ix1.430 (4)
N1—C11.469 (2)S1—O2vii1.436 (5)
N1—H1N0.86 (3)S1—O21.436 (5)
N1—H2N0.86 (2)S1—O2ix1.436 (5)
C1—C1iii1.512 (3)S1—O2vi1.436 (5)
C1—H1A0.9700S1—O2viii1.436 (5)
C1—H1B0.9700S1—O2v1.436 (5)
N1i—Zn1—N1ii80.22 (7)Zn1—N1—H1N114.3 (18)
N1i—Zn1—N1iii93.02 (5)C1—N1—H2N110.8 (16)
N1ii—Zn1—N1iii94.56 (8)Zn1—N1—H2N111.4 (17)
N1i—Zn1—N1170.09 (8)H1N—N1—H2N106 (2)
N1ii—Zn1—N193.02 (5)N1—C1—C1iii109.14 (11)
N1iii—Zn1—N180.22 (7)N1—C1—H1A109.9
N1i—Zn1—N1iv94.56 (8)C1iii—C1—H1A109.9
N1ii—Zn1—N1iv93.02 (5)N1—C1—H1B109.9
N1iii—Zn1—N1iv170.09 (8)C1iii—C1—H1B109.9
N1—Zn1—N1iv93.02 (5)H1A—C1—H1B108.3
N1i—Zn1—N1v93.02 (5)O1vi—S1—O1112.3 (6)
N1ii—Zn1—N1v170.09 (8)O1vi—S1—O2110.7 (5)
N1iii—Zn1—N1v93.02 (5)O1—S1—O2108.7 (3)
N1—Zn1—N1v94.56 (8)O1vi—S1—O2vi108.7 (3)
N1iv—Zn1—N1v80.22 (7)O1—S1—O2vi110.7 (5)
C1—N1—Zn1107.80 (10)O2—S1—O2vi105.6 (7)
C1—N1—H1N106.5 (18)
N1ii—Zn1—N1—C179.15 (13)N1v—Zn1—N1—C1107.24 (11)
N1iii—Zn1—N1—C114.96 (8)Zn1—N1—C1—C1iii42.21 (18)
N1iv—Zn1—N1—C1172.34 (10)
Symmetry codes: (i) x+y+1, y, z+1/2; (ii) y+1, xy, z; (iii) x, xy, z+1/2; (iv) x+y+1, x+1, z; (v) y+1, x+1, z+1/2; (vi) x+y, y, z+1/2; (vii) x, xy+1, z+1/2; (viii) y+1, xy+1, z; (ix) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.86 (3)1.99 (3)2.846 (6)172 (3)
N1—H2N···O2x0.86 (2)2.17 (2)3.029 (6)178 (2)
Symmetry code: (x) xy+1, x, z.
(2a) top
Crystal data top
C6H24CuN6·O4SDx = 1.704 Mg m3
Mr = 339.91Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 9767 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9387 (1) ŵ = 1.82 mm1
c = 9.5766 (1) ÅT = 190 K
V = 662.66 (2) Å3Plate, blue
Z = 20.33 × 0.15 × 0.06 mm
F(000) = 358
Data collection top
Nonius KappaCCD
diffractometer
683 independent reflections
Radiation source: rotating anode644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.580, Tmax = 0.940k = 1212
9708 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.3168P]
where P = (Fo2 + 2Fc2)/3
683 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.45 e Å3
16 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.66670.33330.25000.01628 (11)
N10.45572 (19)0.31150 (19)0.12709 (15)0.0333 (3)
H1N0.435 (3)0.390 (3)0.135 (2)0.039 (6)*
H2N0.471 (3)0.305 (3)0.042 (2)0.050 (6)*
C10.29734 (18)0.1540 (2)0.17112 (16)0.0298 (3)
H1A0.29400.05090.12970.036*
H1B0.19430.15830.13900.036*
S10.33330.66670.25000.01729 (15)
O10.3523 (10)0.5611 (8)0.1455 (4)0.081 (2)0.33333
O20.2834 (10)0.7788 (9)0.1815 (6)0.104 (3)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01773 (13)0.01773 (13)0.01339 (17)0.00886 (7)0.0000.000
N10.0369 (7)0.0313 (6)0.0302 (6)0.0159 (6)0.0085 (5)0.0030 (5)
C10.0216 (6)0.0342 (7)0.0292 (7)0.0105 (5)0.0037 (5)0.0036 (5)
S10.0185 (2)0.0185 (2)0.0150 (3)0.00923 (10)0.0000.000
O10.170 (7)0.102 (5)0.032 (2)0.114 (5)0.003 (3)0.016 (3)
O20.210 (9)0.133 (6)0.058 (3)0.154 (7)0.013 (4)0.024 (4)
Geometric parameters (Å, º) top
Cu1—N12.1473 (16)S1—O1vi1.442 (4)
Cu1—N1i2.1473 (16)S1—O1vii1.442 (4)
Cu1—N1ii2.1473 (16)S1—O1viii1.442 (4)
Cu1—N1iii2.1473 (16)S1—O11.442 (4)
Cu1—N1iv2.1473 (16)S1—O1v1.442 (4)
Cu1—N1v2.1473 (16)S1—O1ix1.442 (4)
N1—C11.473 (2)S1—O2vii1.443 (4)
N1—H1N0.81 (3)S1—O2vi1.443 (4)
N1—H2N0.83 (2)S1—O21.443 (4)
C1—C1iv1.514 (3)S1—O2ix1.443 (4)
C1—H1A0.9900S1—O2v1.443 (4)
C1—H1B0.9900S1—O2viii1.443 (4)
N1—Cu1—N1i92.83 (5)Cu1—N1—H1N115.8 (16)
N1—Cu1—N1ii92.82 (5)C1—N1—H2N109.0 (17)
N1i—Cu1—N1ii92.83 (5)Cu1—N1—H2N111.8 (18)
N1—Cu1—N1iii170.97 (8)H1N—N1—H2N106 (2)
N1i—Cu1—N1iii80.99 (7)N1—C1—C1iv108.40 (10)
N1ii—Cu1—N1iii94.04 (8)N1—C1—H1A110.0
N1—Cu1—N1iv80.99 (7)C1iv—C1—H1A110.0
N1i—Cu1—N1iv94.04 (8)N1—C1—H1B110.0
N1ii—Cu1—N1iv170.97 (8)C1iv—C1—H1B110.0
N1iii—Cu1—N1iv92.82 (5)H1A—C1—H1B108.4
N1—Cu1—N1v94.04 (8)O1viii—S1—O1111.0 (5)
N1i—Cu1—N1v170.97 (8)O1viii—S1—O2111.3 (4)
N1ii—Cu1—N1v80.99 (7)O1—S1—O2108.5 (3)
N1iii—Cu1—N1v92.82 (5)O1viii—S1—O2viii108.5 (3)
N1iv—Cu1—N1v92.82 (5)O1—S1—O2viii111.3 (4)
C1—N1—Cu1108.09 (10)O2—S1—O2viii106.0 (6)
C1—N1—H1N105.9 (16)
N1i—Cu1—N1—C178.55 (13)N1v—Cu1—N1—C1107.32 (11)
N1ii—Cu1—N1—C1171.52 (10)Cu1—N1—C1—C1iv42.31 (17)
N1iv—Cu1—N1—C115.09 (7)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) x+y+1, y, z+1/2; (iv) x, xy, z+1/2; (v) y+1, x+1, z+1/2; (vi) y+1, xy+1, z; (vii) x+y, x+1, z; (viii) x+y, y, z+1/2; (ix) x, xy+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.81 (3)2.01 (3)2.816 (5)172 (2)
N1—H2N···O2x0.83 (2)2.19 (2)3.017 (6)179 (2)
Symmetry code: (x) xy+1, x, z.
(2b) top
Crystal data top
C6H24CuN6·O4SDx = 1.700 Mg m3
Mr = 339.91Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 9618 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9445 (1) ŵ = 1.82 mm1
c = 9.5826 (1) ÅT = 210 K
V = 663.94 (2) Å3Plate, blue
Z = 20.33 × 0.15 × 0.06 mm
F(000) = 358
Data collection top
Nonius KappaCCD
diffractometer
685 independent reflections
Radiation source: rotating anode637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.581, Tmax = 0.940k = 1212
9739 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.2851P]
where P = (Fo2 + 2Fc2)/3
685 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.46 e Å3
16 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.66670.33330.25000.01760 (12)
N10.4559 (2)0.31159 (19)0.12711 (15)0.0352 (3)
H1N0.435 (3)0.390 (3)0.135 (2)0.047 (6)*
H2N0.468 (3)0.304 (3)0.042 (2)0.051 (6)*
C10.29761 (19)0.1542 (2)0.17121 (16)0.0319 (3)
H1A0.29420.05220.13020.038*
H1B0.19560.15840.13940.038*
S10.33330.66670.25000.01877 (15)
O10.3531 (11)0.5622 (9)0.1458 (5)0.087 (2)0.33333
O20.2842 (11)0.7787 (9)0.1813 (6)0.107 (3)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01900 (14)0.01900 (14)0.01480 (17)0.00950 (7)0.0000.000
N10.0385 (7)0.0341 (7)0.0318 (6)0.0173 (6)0.0084 (5)0.0036 (5)
C10.0240 (6)0.0358 (7)0.0319 (7)0.0120 (5)0.0045 (5)0.0041 (6)
S10.0200 (2)0.0200 (2)0.0163 (3)0.01000 (10)0.0000.000
O10.177 (8)0.108 (5)0.037 (2)0.117 (6)0.002 (3)0.018 (3)
O20.212 (10)0.139 (7)0.064 (3)0.157 (8)0.018 (5)0.028 (4)
Geometric parameters (Å, º) top
Cu1—N1i2.1479 (16)S1—O1ii1.438 (4)
Cu1—N1ii2.1479 (16)S1—O1vi1.438 (4)
Cu1—N1iii2.1479 (16)S1—O1vii1.438 (4)
Cu1—N12.1479 (16)S1—O11.438 (4)
Cu1—N1iv2.1479 (16)S1—O1viii1.438 (4)
Cu1—N1v2.1479 (16)S1—O1ix1.438 (4)
N1—C11.474 (2)S1—O21.439 (4)
N1—H1N0.81 (3)S1—O2vii1.439 (4)
N1—H2N0.83 (2)S1—O2ii1.439 (4)
C1—C1iii1.513 (3)S1—O2vi1.439 (4)
C1—H1A0.9800S1—O2ix1.439 (4)
C1—H1B0.9800S1—O2viii1.439 (4)
N1i—Cu1—N1ii92.82 (5)Cu1—N1—H1N115.9 (17)
N1i—Cu1—N1iii92.82 (5)C1—N1—H2N108.0 (17)
N1ii—Cu1—N1iii92.82 (5)Cu1—N1—H2N113.4 (18)
N1i—Cu1—N1171.00 (8)H1N—N1—H2N105 (2)
N1ii—Cu1—N194.02 (8)N1—C1—C1iii108.45 (11)
N1iii—Cu1—N181.02 (7)N1—C1—H1A110.0
N1i—Cu1—N1iv94.02 (8)C1iii—C1—H1A110.0
N1ii—Cu1—N1iv81.02 (7)N1—C1—H1B110.0
N1iii—Cu1—N1iv171.00 (8)C1iii—C1—H1B110.0
N1—Cu1—N1iv92.82 (5)H1A—C1—H1B108.4
N1i—Cu1—N1v81.02 (7)O1vii—S1—O1111.5 (6)
N1ii—Cu1—N1v171.00 (8)O1vii—S1—O2111.4 (5)
N1iii—Cu1—N1v94.02 (8)O1—S1—O2108.3 (3)
N1—Cu1—N1v92.82 (5)O2—S1—O2vii105.8 (7)
N1iv—Cu1—N1v92.82 (5)O1vii—S1—O2vii108.3 (3)
C1—N1—Cu1108.04 (10)O1—S1—O2vii111.4 (5)
C1—N1—H1N105.8 (17)
N1ii—Cu1—N1—C1107.29 (11)N1v—Cu1—N1—C178.56 (13)
N1iii—Cu1—N1—C115.07 (7)Cu1—N1—C1—C1iii42.28 (17)
N1iv—Cu1—N1—C1171.52 (10)
Symmetry codes: (i) x+y+1, y, z+1/2; (ii) y+1, x+1, z+1/2; (iii) x, xy, z+1/2; (iv) x+y+1, x+1, z; (v) y+1, xy, z; (vi) x, xy+1, z+1/2; (vii) x+y, y, z+1/2; (viii) y+1, xy+1, z; (ix) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.81 (3)2.01 (3)2.821 (5)172 (2)
N1—H2N···O2x0.83 (2)2.19 (2)3.017 (6)179 (2)
Symmetry code: (x) xy+1, x, z.
(2c) top
Crystal data top
C6H24CuN6·O4SDx = 1.697 Mg m3
Mr = 339.91Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 9445 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9513 (1) ŵ = 1.82 mm1
c = 9.5876 (1) ÅT = 230 K
V = 665.29 (2) Å3Plate, blue
Z = 20.33 × 0.15 × 0.06 mm
F(000) = 358
Data collection top
Nonius KappaCCD
diffractometer
687 independent reflections
Radiation source: rotating anode642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.578, Tmax = 0.937k = 1212
9736 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2737P]
where P = (Fo2 + 2Fc2)/3
687 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.51 e Å3
16 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.66670.33330.25000.01892 (12)
N10.4561 (2)0.3115 (2)0.12728 (16)0.0369 (3)
H1N0.437 (3)0.390 (4)0.135 (3)0.048 (7)*
H2N0.469 (3)0.304 (3)0.043 (3)0.052 (7)*
C10.2978 (2)0.1543 (2)0.17130 (17)0.0339 (3)
H1A0.29440.05230.13030.041*
H1B0.19600.15860.13950.041*
S10.33330.66670.25000.02010 (16)
O10.3538 (11)0.5626 (9)0.1460 (5)0.091 (3)0.33333
O20.2842 (11)0.7787 (10)0.1816 (6)0.113 (4)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02039 (15)0.02039 (15)0.01598 (18)0.01020 (7)0.0000.000
N10.0410 (8)0.0362 (7)0.0327 (7)0.0186 (6)0.0079 (6)0.0036 (5)
C10.0248 (7)0.0386 (8)0.0340 (7)0.0126 (6)0.0049 (5)0.0044 (6)
S10.0214 (2)0.0214 (2)0.0176 (3)0.01069 (11)0.0000.000
O10.187 (9)0.112 (5)0.040 (3)0.123 (6)0.002 (4)0.016 (3)
O20.225 (11)0.142 (7)0.069 (4)0.164 (8)0.016 (5)0.029 (4)
Geometric parameters (Å, º) top
Cu1—N1i2.1466 (17)S1—O1vi1.437 (4)
Cu1—N1ii2.1466 (17)S1—O1vii1.437 (4)
Cu1—N1iii2.1467 (17)S1—O1viii1.437 (4)
Cu1—N12.1467 (17)S1—O1ii1.437 (4)
Cu1—N1iv2.1467 (17)S1—O1ix1.437 (4)
Cu1—N1v2.1467 (17)S1—O11.437 (4)
N1—C11.474 (2)S1—O2vi1.439 (4)
N1—H1N0.80 (3)S1—O2vii1.439 (4)
N1—H2N0.83 (2)S1—O21.439 (4)
C1—C1iii1.512 (3)S1—O2ix1.439 (4)
C1—H1A0.9800S1—O2viii1.439 (4)
C1—H1B0.9800S1—O2ii1.439 (4)
N1i—Cu1—N1ii80.98 (8)Cu1—N1—H1N115.6 (18)
N1i—Cu1—N1iii170.96 (9)C1—N1—H2N108.0 (18)
N1ii—Cu1—N1iii92.83 (6)Cu1—N1—H2N113.1 (19)
N1i—Cu1—N192.83 (6)H1N—N1—H2N105 (3)
N1ii—Cu1—N194.04 (9)N1—C1—C1iii108.42 (11)
N1iii—Cu1—N180.98 (8)N1—C1—H1A110.0
N1i—Cu1—N1iv92.83 (6)C1iii—C1—H1A110.0
N1ii—Cu1—N1iv170.96 (9)N1—C1—H1B110.0
N1iii—Cu1—N1iv94.04 (9)C1iii—C1—H1B110.0
N1—Cu1—N1iv92.83 (6)H1A—C1—H1B108.4
N1i—Cu1—N1v94.04 (9)O1ix—S1—O1111.7 (6)
N1ii—Cu1—N1v92.83 (6)O1ix—S1—O2111.1 (5)
N1iii—Cu1—N1v92.83 (6)O1—S1—O2108.5 (3)
N1—Cu1—N1v170.96 (9)O1ix—S1—O2ix108.5 (3)
N1iv—Cu1—N1v80.98 (8)O1—S1—O2ix111.1 (5)
C1—N1—Cu1108.12 (11)O2—S1—O2ix105.7 (7)
C1—N1—H1N106.4 (18)
N1i—Cu1—N1—C1171.56 (11)N1iv—Cu1—N1—C178.58 (14)
N1ii—Cu1—N1—C1107.29 (12)Cu1—N1—C1—C1iii42.25 (18)
N1iii—Cu1—N1—C115.06 (8)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, x+1, z+1/2; (iii) x, xy, z+1/2; (iv) y+1, xy, z; (v) x+y+1, y, z+1/2; (vi) x+y, x+1, z; (vii) y+1, xy+1, z; (viii) x, xy+1, z+1/2; (ix) x+y, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.80 (3)2.03 (3)2.825 (6)172 (3)
N1—H2N···O2x0.83 (2)2.20 (3)3.022 (6)179 (2)
Symmetry code: (x) xy+1, x, z.
(2d) top
Crystal data top
C6H24CuN6·O4SDx = 1.694 Mg m3
Mr = 339.91Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 9343 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9572 (1) ŵ = 1.81 mm1
c = 9.5926 (1) ÅT = 250 K
V = 666.52 (2) Å3Plate, blue
Z = 20.33 × 0.15 × 0.06 mm
F(000) = 358
Data collection top
Nonius KappaCCD
diffractometer
687 independent reflections
Radiation source: rotating anode638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.579, Tmax = 0.947k = 1212
9785 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.031P)2 + 0.3143P]
where P = (Fo2 + 2Fc2)/3
687 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.52 e Å3
16 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.66670.33330.25000.02025 (13)
N10.4560 (2)0.3115 (2)0.12733 (17)0.0385 (3)
H1N0.436 (3)0.390 (4)0.135 (3)0.048 (7)*
H2N0.469 (3)0.304 (3)0.043 (3)0.056 (7)*
C10.2980 (2)0.1544 (2)0.17132 (18)0.0361 (3)
H1A0.29460.05260.13030.043*
H1B0.19620.15870.13960.043*
S10.33330.66670.25000.02154 (16)
O10.3551 (12)0.5636 (9)0.1464 (5)0.096 (3)0.33333
O20.2847 (11)0.7790 (10)0.1813 (7)0.116 (4)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02168 (15)0.02168 (15)0.01737 (19)0.01084 (7)0.0000.000
N10.0427 (8)0.0376 (7)0.0347 (7)0.0198 (6)0.0076 (6)0.0034 (6)
C10.0266 (7)0.0402 (8)0.0370 (8)0.0134 (6)0.0056 (6)0.0050 (6)
S10.0227 (2)0.0227 (2)0.0193 (3)0.01133 (11)0.0000.000
O10.191 (9)0.119 (6)0.045 (3)0.127 (7)0.001 (4)0.019 (3)
O20.222 (11)0.145 (8)0.075 (4)0.163 (9)0.019 (5)0.032 (5)
Geometric parameters (Å, º) top
Cu1—N1i2.1479 (17)S1—O1vi1.434 (4)
Cu1—N1ii2.1479 (17)S1—O1vii1.434 (4)
Cu1—N12.1479 (17)S1—O11.434 (4)
Cu1—N1iii2.1479 (17)S1—O1viii1.434 (4)
Cu1—N1iv2.1479 (17)S1—O1iii1.434 (4)
Cu1—N1v2.1479 (17)S1—O1ix1.434 (4)
N1—C11.473 (2)S1—O2viii1.440 (5)
N1—H1N0.81 (3)S1—O2ix1.440 (5)
N1—H2N0.83 (3)S1—O21.440 (5)
C1—C1i1.513 (3)S1—O2vii1.440 (5)
C1—H1A0.9800S1—O2vi1.440 (5)
C1—H1B0.9800S1—O2iii1.440 (5)
N1i—Cu1—N1ii94.01 (9)Cu1—N1—H1N116.1 (18)
N1i—Cu1—N180.96 (8)C1—N1—H2N108.4 (18)
N1ii—Cu1—N192.85 (6)Cu1—N1—H2N113.0 (19)
N1i—Cu1—N1iii92.85 (6)H1N—N1—H2N105 (3)
N1ii—Cu1—N1iii170.97 (9)N1—C1—C1i108.44 (12)
N1—Cu1—N1iii94.01 (9)N1—C1—H1A110.0
N1i—Cu1—N1iv92.85 (6)C1i—C1—H1A110.0
N1ii—Cu1—N1iv80.96 (8)N1—C1—H1B110.0
N1—Cu1—N1iv170.97 (9)C1i—C1—H1B110.0
N1iii—Cu1—N1iv92.85 (6)H1A—C1—H1B108.4
N1i—Cu1—N1v170.97 (9)O1vi—S1—O1112.3 (6)
N1ii—Cu1—N1v92.85 (6)O1vi—S1—O2110.8 (5)
N1—Cu1—N1v92.85 (6)O1—S1—O2108.6 (3)
N1iii—Cu1—N1v80.96 (8)O1vi—S1—O2vi108.6 (3)
N1iv—Cu1—N1v94.01 (9)O1—S1—O2vi110.8 (5)
C1—N1—Cu1108.10 (11)O2—S1—O2vi105.6 (7)
C1—N1—H1N106.3 (18)
N1i—Cu1—N1—C115.06 (8)N1v—Cu1—N1—C1171.55 (11)
N1ii—Cu1—N1—C178.55 (15)Cu1—N1—C1—C1i42.26 (19)
N1iii—Cu1—N1—C1107.32 (12)
Symmetry codes: (i) x, xy, z+1/2; (ii) y+1, xy, z; (iii) y+1, x+1, z+1/2; (iv) x+y+1, y, z+1/2; (v) x+y+1, x+1, z; (vi) x+y, y, z+1/2; (vii) x+y, x+1, z; (viii) x, xy+1, z+1/2; (ix) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.81 (3)2.02 (3)2.827 (6)173 (3)
N1—H2N···O2x0.83 (3)2.19 (3)3.022 (7)180 (3)
Symmetry code: (x) xy+1, x, z.
(2e) top
Crystal data top
C6H24CuN6·O4SDx = 1.689 Mg m3
Mr = 339.91Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 8734 reflections
Hall symbol: -P 3 2cθ = 2.1–35.0°
a = 8.9664 (1) ŵ = 1.81 mm1
c = 9.5996 (1) ÅT = 270 K
V = 668.38 (2) Å3Plate, blue
Z = 20.33 × 0.15 × 0.06 mm
F(000) = 358
Data collection top
Nonius KappaCCD
diffractometer
690 independent reflections
Radiation source: rotating anode639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: analytical
SADABS-2008/1 (Sheldrick, 2008b)
h = 1212
Tmin = 0.578, Tmax = 0.947k = 1212
9819 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.2214P]
where P = (Fo2 + 2Fc2)/3
690 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.56 e Å3
16 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.66670.33330.25000.02174 (13)
N10.4561 (2)0.3115 (2)0.12731 (17)0.0405 (3)
H1N0.434 (4)0.389 (4)0.134 (3)0.054 (7)*
H2N0.469 (4)0.304 (3)0.042 (3)0.057 (7)*
C10.2983 (2)0.1545 (2)0.17148 (18)0.0387 (4)
H1A0.29510.05370.13100.046*
H1B0.19760.15850.14010.046*
S10.33330.66670.25000.02308 (17)
O10.3561 (12)0.5645 (10)0.1468 (6)0.102 (3)0.33333
O20.2845 (11)0.7783 (10)0.1814 (7)0.121 (4)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02328 (15)0.02328 (15)0.01866 (19)0.01164 (8)0.0000.000
N10.0443 (8)0.0405 (8)0.0364 (7)0.0210 (6)0.0076 (6)0.0038 (6)
C10.0290 (7)0.0438 (9)0.0398 (8)0.0155 (6)0.0060 (6)0.0052 (7)
S10.0242 (2)0.0242 (2)0.0208 (3)0.01211 (11)0.0000.000
O10.201 (10)0.126 (6)0.050 (3)0.134 (7)0.003 (4)0.019 (4)
O20.226 (11)0.156 (8)0.081 (4)0.171 (9)0.020 (6)0.035 (5)
Geometric parameters (Å, º) top
Cu1—N1i2.1495 (18)S1—O1vi1.431 (5)
Cu1—N12.1495 (18)S1—O1vii1.431 (5)
Cu1—N1ii2.1495 (18)S1—O1viii1.431 (5)
Cu1—N1iii2.1495 (18)S1—O11.431 (5)
Cu1—N1iv2.1495 (18)S1—O1ix1.431 (5)
Cu1—N1v2.1495 (18)S1—O1i1.431 (5)
N1—C11.474 (2)S1—O2ix1.437 (5)
N1—H1N0.82 (3)S1—O2vii1.437 (5)
N1—H2N0.84 (3)S1—O2vi1.437 (5)
C1—C1ii1.511 (4)S1—O21.437 (5)
C1—H1A0.9700S1—O2viii1.437 (5)
C1—H1B0.9700S1—O2i1.437 (5)
N1i—Cu1—N194.03 (9)Cu1—N1—H1N117.2 (19)
N1i—Cu1—N1ii92.85 (6)C1—N1—H2N108.1 (18)
N1—Cu1—N1ii80.96 (8)Cu1—N1—H2N113.0 (19)
N1i—Cu1—N1iii80.96 (8)H1N—N1—H2N105 (3)
N1—Cu1—N1iii92.85 (6)N1—C1—C1ii108.48 (12)
N1ii—Cu1—N1iii170.97 (9)N1—C1—H1A110.0
N1i—Cu1—N1iv170.96 (9)C1ii—C1—H1A110.0
N1—Cu1—N1iv92.85 (6)N1—C1—H1B110.0
N1ii—Cu1—N1iv94.02 (9)C1ii—C1—H1B110.0
N1iii—Cu1—N1iv92.84 (6)H1A—C1—H1B108.4
N1i—Cu1—N1v92.85 (6)O1viii—S1—O1112.7 (6)
N1—Cu1—N1v170.96 (9)O1viii—S1—O2110.5 (5)
N1ii—Cu1—N1v92.84 (6)O1—S1—O2108.6 (3)
N1iii—Cu1—N1v94.02 (9)O1viii—S1—O2viii108.6 (3)
N1iv—Cu1—N1v80.96 (8)O1—S1—O2viii110.5 (5)
C1—N1—Cu1108.01 (11)O2—S1—O2viii105.8 (7)
C1—N1—H1N105.2 (19)
N1i—Cu1—N1—C1107.30 (12)N1iv—Cu1—N1—C178.57 (15)
N1ii—Cu1—N1—C115.06 (8)Cu1—N1—C1—C1ii42.33 (19)
N1iii—Cu1—N1—C1171.56 (11)
Symmetry codes: (i) y+1, x+1, z+1/2; (ii) x, xy, z+1/2; (iii) x+y+1, x+1, z; (iv) y+1, xy, z; (v) x+y+1, y, z+1/2; (vi) x+y, x+1, z; (vii) x, xy+1, z+1/2; (viii) x+y, y, z+1/2; (ix) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.82 (3)2.01 (3)2.832 (6)175 (3)
N1—H2N···O2x0.84 (3)2.19 (3)3.025 (7)180 (3)
Symmetry code: (x) xy+1, x, z.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds