Download citation
Download citation
link to html
The structural compression mechanism of Ce4[Si4O3 + xN7 − x]Cl1 − xOx, x ≃ 0.2, was investigated by in situ single-crystal synchrotron X-ray diffraction at pressures of 3.0, 8.5 and 8.6 GPa using the diamond–anvil cell technique. On increasing pressure the low-pressure cubic structure first undergoes only minor structural changes. Between 8.5 and 8.6 GPa a first-order phase transition occurs, accompanied by a change of the single-crystal colour from light orange to dark red. The main structural mechanisms, leading to a volume reduction of about 5% at the phase transition, are an increase in and a rearrangement of the Ce coordination, the loss of the Ce2, Ce3 split position, and a bending of some of the inter-polyhedral Si—N—Si angles in the arrangement of the corner-sharing Si tetrahedra. The latter is responsible for the short c axis of the orthorhombic high-pressure structure compared with the cell parameter of the cubic low-pressure structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106003302/bk5022sup1.cif
Contains datablocks 3.0GPa, 8.5GPa, 8.6GPa, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106003302/bk50223.0GPasup2.hkl
Contains datablock 3.0GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106003302/bk50228.5GPasup3.hkl
Contains datablock 8.5GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106003302/bk50228.6GPasup4.hkl
Contains datablock 8.6GPa

Computing details top

For all compounds, data collection: DIF4 (Eichhorn, 1987a); cell refinement: DIF4 (Eichhorn, 1987a); data reduction: REDUCE (Eichhorn, 1987b); AVSORT (Eichhorn, 1978); ABSORB v6.0 (Angel, 2004). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a) for 8.6GPa. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: ATOMS (Dowty, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(3.0GPa) cerium oxonitridosilicate chloride top
Crystal data top
Ce4Cl0.92N6.92O3.16Si4Synchrotron radiation, λ = 0.45000 Å
Mr = 853.05Cell parameters from 10 reflections
Cubic, P213θ = 3.7–11.9°
a = 10.347 (4) ŵ = 4.48 mm1
V = 1107.8 (7) Å3T = 293 K
Z = 4Platelike, crystal was described in terms of coordinates of corners on the orthogonal phi-axis coordinate system of Busing and Levy (1967) (ie +Y along beam, +Z up at circles zero, +X to make right-handed set) with origin at the centre of the face of the incident-beam anvil loop is over x, y, z (mm) 0.082426 0.000000 0.127750 0.092000 0.040000 0.119000 0.071655 0.000000 0.132699 0.090000 0.000000 0.102000 0.098116 0.037494 0.096715 0.085334 0.000000 0.056894 0.093706 0.034644 0.060450 0.096619 0.038697 0.079564 0.048000 0.000000 0.014000 0.055975 0.039065 0.016326 -0.010984 0.000000 -0.003204 -0.006257 0.017214 -0.001825 0.045901 0.042720 0.013388 -0.023931 0.000000 0.018882 -0.015251 0.024601 0.017570 0.006709 0.000000 0.144507 0.037000 0.060000 0.124000 0.012334 0.060000 0.077570 0.052282 0.060000 0.121222 0.054000 0.060000 0.088000 0.032569 0.060000 0.053963 0.010000 0.060000 0.068000 0.019084 0.042390 0.131660, orange
F(000) = 15100.60 × 0.15 × 0.10 mm
Dx = 5.115 Mg m3
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
476 independent reflections
Radiation source: synchrotron HASYLAB/DESY471 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.051
Detector resolution: NaJ point detector pixels mm-1θmax = 14.0°, θmin = 1.8°
ω scan, continuous, fixed–phi methodh = 1010
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.469 0.597
thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1
No gasket shadowing corrections were made
k = 810
Tmin = 0.360, Tmax = 0.482l = 610
1712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0375P)2 + 16.083P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.019
wR(F2) = 0.063Δρmax = 0.90 e Å3
S = 1.02Δρmin = 0.86 e Å3
476 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
37 parametersExtinction coefficient: 0.0067 (8)
4 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (12)
Crystal data top
Ce4Cl0.92N6.92O3.16Si4Z = 4
Mr = 853.05Synchrotron radiation, λ = 0.45000 Å
Cubic, P213µ = 4.48 mm1
a = 10.347 (4) ÅT = 293 K
V = 1107.8 (7) Å30.60 × 0.15 × 0.10 mm
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
476 independent reflections
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.469 0.597
thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1
No gasket shadowing corrections were made
471 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.482Rint = 0.051
1712 measured reflectionsθmax = 14.0°
Refinement top
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0375P)2 + 16.083P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063Δρmax = 0.90 e Å3
S = 1.02Δρmin = 0.86 e Å3
476 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
37 parametersAbsolute structure parameter: 0.04 (12)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.81415 (6)0.69428 (6)0.04216 (6)0.0073 (3)*
Ce20.0373 (17)0.0373 (17)0.0373 (17)0.0074 (4)*0.038 (2)
Ce30.10523 (7)0.10523 (7)0.10523 (7)0.0074 (4)*0.962 (2)
Si10.0776 (3)0.7472 (3)0.1965 (3)0.0040 (7)*
Si20.4271 (3)0.4271 (3)0.4271 (3)0.0035 (11)*
O10.3364 (7)0.3364 (7)0.3364 (7)0.006 (3)*
Cl20.9284 (3)0.9284 (3)0.9284 (3)0.0113 (13)*0.922 (11)
O20.9284 (3)0.9284 (3)0.9284 (3)0.0113 (13)*0.078 (11)
O30.9261 (8)0.7911 (9)0.2353 (8)0.010 (2)*0.693 (4)
N30.9261 (8)0.7911 (9)0.2353 (8)0.010 (2)*0.307 (4)
N10.1282 (10)0.6533 (10)0.3258 (9)0.009 (2)*
N20.0584 (9)0.6345 (9)0.0782 (9)0.010 (2)*
Geometric parameters (Å, º) top
Ce1—N3i2.279 (9)Si1—O3xx1.681 (9)
Ce1—O3i2.279 (9)Si1—N21.702 (10)
Ce1—O1ii2.483 (6)Si1—N11.734 (10)
Ce1—O32.518 (8)Si1—Ce3xxi3.154 (3)
Ce1—N2iii2.561 (9)Si1—Ce1xx3.206 (3)
Ce1—N1iii2.580 (10)Si1—Ce1xvii3.230 (3)
Ce1—N2iv2.629 (10)Si1—Ce2xxii3.449 (6)
Ce1—O2v2.941 (3)Si2—O11.626 (14)
Ce1—Cl2v2.941 (3)Si2—N2xxiii1.695 (10)
Ce1—Si2vi3.188 (3)Si2—N2xxiv1.695 (10)
Ce1—Si1iv3.206 (3)Si2—N2xxv1.695 (10)
Ce2—Ce31.22 (3)Si2—Ce1xxvi3.188 (3)
Ce2—O2vii1.95 (3)Si2—Ce1i3.188 (3)
Ce2—Cl2vii1.95 (3)Si2—Ce1xxvii3.188 (3)
Ce2—N1viii2.526 (11)Si2—Ce1xviii3.483 (4)
Ce2—N1ix2.526 (11)Si2—Ce1xvii3.483 (4)
Ce2—N1x2.526 (11)Si2—Ce1xix3.483 (4)
Ce2—Si1xi3.449 (6)O1—Ce1xvii2.483 (6)
Ce2—Si1xii3.449 (6)O1—Ce1xix2.483 (6)
Ce2—Si1xiii3.449 (6)O1—Ce1xviii2.483 (6)
Ce2—Ce1xiv3.824 (2)Cl2—Ce2xxviii1.95 (3)
Ce2—Ce1xv3.824 (2)Cl2—Ce1xxix2.941 (3)
Ce2—Ce1xvi3.824 (2)Cl2—Ce1xxx2.941 (3)
Ce3—N3xvii2.555 (9)Cl2—Ce1xxxi2.941 (3)
Ce3—N3xviii2.555 (9)Cl2—Ce3xxviii3.169 (5)
Ce3—N3xix2.555 (9)O3—Si1iv1.681 (9)
Ce3—O3xvii2.555 (9)O3—Ce1xxxii2.279 (9)
Ce3—O3xviii2.555 (9)O3—Ce3ii2.555 (9)
Ce3—O3xix2.555 (9)N1—Si1xxiii1.692 (10)
Ce3—N1viii2.567 (10)N1—Ce2xxi2.526 (11)
Ce3—N1ix2.567 (10)N1—Ce3xxi2.567 (10)
Ce3—N1x2.567 (10)N1—Ce1xvii2.580 (10)
Ce3—Si1x3.154 (3)N2—Si2xxxiii1.695 (10)
Ce3—Si1ix3.154 (3)N2—Ce1xvii2.561 (9)
Si1—N1xviii1.692 (10)N2—Ce1xx2.629 (10)
Si1—N3xx1.681 (9)
N3i—Ce1—O3i0.0 (6)O3xvii—Ce3—N1ix115.0 (3)
N3i—Ce1—O1ii73.5 (3)O3xviii—Ce3—N1ix63.6 (3)
O3i—Ce1—O1ii73.5 (3)O3xix—Ce3—N1ix128.2 (3)
N3i—Ce1—O377.4 (4)N1viii—Ce3—N1ix112.96 (19)
O3i—Ce1—O377.4 (4)Ce2—Ce3—N1x74.3 (2)
O1ii—Ce1—O369.6 (3)N3xvii—Ce3—N1x128.2 (3)
N3i—Ce1—N2iii113.3 (3)N3xviii—Ce3—N1x115.0 (3)
O3i—Ce1—N2iii113.3 (3)N3xix—Ce3—N1x63.6 (3)
O1ii—Ce1—N2iii163.5 (3)O3xvii—Ce3—N1x128.2 (3)
O3—Ce1—N2iii125.8 (3)O3xviii—Ce3—N1x115.0 (3)
N3i—Ce1—N1iii104.3 (3)O3xix—Ce3—N1x63.6 (3)
O3i—Ce1—N1iii104.3 (3)N1viii—Ce3—N1x112.96 (19)
O1ii—Ce1—N1iii101.6 (3)N1ix—Ce3—N1x112.96 (19)
O3—Ce1—N1iii170.4 (3)Ce2—Ce3—Si1x107.35 (6)
N2iii—Ce1—N1iii62.5 (3)N3xvii—Ce3—Si1x103.5 (2)
N3i—Ce1—N2iv96.2 (3)N3xviii—Ce3—Si1x87.5 (2)
O3i—Ce1—N2iv96.2 (3)N3xix—Ce3—Si1x32.11 (19)
O1ii—Ce1—N2iv132.1 (3)O3xvii—Ce3—Si1x103.5 (2)
O3—Ce1—N2iv62.5 (3)O3xviii—Ce3—Si1x87.5 (2)
N2iii—Ce1—N2iv63.5 (4)O3xix—Ce3—Si1x32.11 (19)
N1iii—Ce1—N2iv126.1 (3)N1viii—Ce3—Si1x126.8 (2)
N3i—Ce1—O2v153.8 (2)N1ix—Ce3—Si1x118.6 (2)
O3i—Ce1—O2v153.8 (2)N1x—Ce3—Si1x33.3 (2)
O1ii—Ce1—O2v88.11 (14)Ce2—Ce3—Si1ix107.35 (6)
O3—Ce1—O2v78.8 (2)N3xvii—Ce3—Si1ix87.5 (2)
N2iii—Ce1—O2v89.5 (2)N3xviii—Ce3—Si1ix32.11 (19)
N1iii—Ce1—O2v97.5 (2)N3xix—Ce3—Si1ix103.49 (19)
N2iv—Ce1—O2v82.2 (2)O3xvii—Ce3—Si1ix87.5 (2)
N3i—Ce1—Cl2v153.8 (2)O3xviii—Ce3—Si1ix32.11 (19)
O3i—Ce1—Cl2v153.8 (2)O3xix—Ce3—Si1ix103.49 (19)
O1ii—Ce1—Cl2v88.11 (14)N1viii—Ce3—Si1ix118.6 (2)
O3—Ce1—Cl2v78.8 (2)N1ix—Ce3—Si1ix33.3 (2)
N2iii—Ce1—Cl2v89.5 (2)N1x—Ce3—Si1ix126.8 (2)
N1iii—Ce1—Cl2v97.5 (2)Si1x—Ce3—Si1ix111.51 (5)
N2iv—Ce1—Cl2v82.2 (2)N1xviii—Si1—N3xx114.1 (5)
O2v—Ce1—Cl2v0.00 (4)N1xviii—Si1—O3xx114.1 (5)
N3i—Ce1—Si2vi111.6 (2)N3xx—Si1—O3xx0.0 (2)
O3i—Ce1—Si2vi111.6 (2)N1xviii—Si1—N2113.7 (5)
O1ii—Ce1—Si2vi161.62 (11)N3xx—Si1—N2104.4 (5)
O3—Ce1—Si2vi93.82 (19)O3xx—Si1—N2104.4 (5)
N2iii—Ce1—Si2vi32.0 (2)N1xviii—Si1—N1116.9 (6)
N1iii—Ce1—Si2vi94.2 (2)N3xx—Si1—N1104.4 (5)
N2iv—Ce1—Si2vi32.1 (2)O3xx—Si1—N1104.4 (5)
O2v—Ce1—Si2vi80.64 (8)N2—Si1—N1101.9 (5)
Cl2v—Ce1—Si2vi80.64 (8)N1xviii—Si1—Ce3xxi151.8 (4)
N3i—Ce1—Si1iv91.2 (2)N3xx—Si1—Ce3xxi53.9 (3)
O3i—Ce1—Si1iv91.2 (2)O3xx—Si1—Ce3xxi53.9 (3)
O1ii—Ce1—Si1iv100.38 (19)N2—Si1—Ce3xxi94.5 (3)
O3—Ce1—Si1iv31.3 (2)N1—Si1—Ce3xxi54.4 (3)
N2iii—Ce1—Si1iv94.6 (2)N1xviii—Si1—Ce1xx120.1 (4)
N1iii—Ce1—Si1iv155.9 (2)N3xx—Si1—Ce1xx51.1 (3)
N2iv—Ce1—Si1iv32.0 (2)O3xx—Si1—Ce1xx51.1 (3)
O2v—Ce1—Si1iv73.55 (9)N2—Si1—Ce1xx55.0 (3)
Cl2v—Ce1—Si1iv73.55 (9)N1—Si1—Ce1xx123.0 (3)
Si2vi—Ce1—Si1iv62.56 (6)Ce3xxi—Si1—Ce1xx74.60 (7)
Ce3—Ce2—O2vii180.0 (11)N1xviii—Si1—Ce1xvii118.5 (4)
Ce3—Ce2—Cl2vii180.0 (11)N3xx—Si1—Ce1xvii127.4 (3)
O2vii—Ce2—Cl2vii0.0 (4)O3xx—Si1—Ce1xvii127.4 (3)
Ce3—Ce2—N1viii78.0 (7)N2—Si1—Ce1xvii52.0 (3)
O2vii—Ce2—N1viii102.0 (7)N1—Si1—Ce1xvii52.7 (3)
Cl2vii—Ce2—N1viii102.0 (7)Ce3xxi—Si1—Ce1xvii79.32 (7)
Ce3—Ce2—N1ix78.0 (7)Ce1xx—Si1—Ce1xvii98.20 (9)
O2vii—Ce2—N1ix102.0 (7)N1xviii—Si1—Ce2xxii44.1 (5)
Cl2vii—Ce2—N1ix102.0 (7)N3xx—Si1—Ce2xxii76.5 (3)
N1viii—Ce2—N1ix115.8 (5)O3xx—Si1—Ce2xxii76.5 (3)
Ce3—Ce2—N1x78.0 (7)N2—Si1—Ce2xxii103.8 (5)
O2vii—Ce2—N1x102.0 (7)N1—Si1—Ce2xxii153.2 (6)
Cl2vii—Ce2—N1x102.0 (7)Ce3xxi—Si1—Ce2xxii130.05 (13)
N1viii—Ce2—N1x115.8 (5)Ce1xx—Si1—Ce2xxii78.9 (5)
N1ix—Ce2—N1x115.8 (5)Ce1xvii—Si1—Ce2xxii146.7 (2)
Ce3—Ce2—Si1xi99.0 (5)O1—Si2—N2xxiii111.5 (4)
O2vii—Ce2—Si1xi81.0 (5)O1—Si2—N2xxiv111.5 (4)
Cl2vii—Ce2—Si1xi81.0 (5)N2xxiii—Si2—N2xxiv107.4 (4)
N1viii—Ce2—Si1xi139.0 (2)O1—Si2—N2xxv111.5 (4)
N1ix—Ce2—Si1xi27.8 (3)N2xxiii—Si2—N2xxv107.4 (4)
N1x—Ce2—Si1xi103.2 (2)N2xxiv—Si2—N2xxv107.4 (4)
Ce3—Ce2—Si1xii99.0 (5)O1—Si2—Ce1xxvi118.24 (8)
O2vii—Ce2—Si1xii81.0 (5)N2xxiii—Si2—Ce1xxvi130.2 (4)
Cl2vii—Ce2—Si1xii81.0 (5)N2xxiv—Si2—Ce1xxvi53.2 (3)
N1viii—Ce2—Si1xii103.2 (2)N2xxv—Si2—Ce1xxvi55.5 (3)
N1ix—Ce2—Si1xii139.0 (2)O1—Si2—Ce1i118.24 (8)
N1x—Ce2—Si1xii27.8 (3)N2xxiii—Si2—Ce1i53.2 (3)
Si1xi—Ce2—Si1xii117.6 (3)N2xxiv—Si2—Ce1i55.5 (3)
Ce3—Ce2—Si1xiii99.0 (5)N2xxv—Si2—Ce1i130.2 (4)
O2vii—Ce2—Si1xiii81.0 (5)Ce1xxvi—Si2—Ce1i99.45 (10)
Cl2vii—Ce2—Si1xiii81.0 (5)O1—Si2—Ce1xxvii118.24 (8)
N1viii—Ce2—Si1xiii27.8 (3)N2xxiii—Si2—Ce1xxvii55.5 (3)
N1ix—Ce2—Si1xiii103.2 (2)N2xxiv—Si2—Ce1xxvii130.2 (4)
N1x—Ce2—Si1xiii139.0 (2)N2xxv—Si2—Ce1xxvii53.2 (3)
Si1xi—Ce2—Si1xiii117.6 (3)Ce1xxvi—Si2—Ce1xxvii99.45 (10)
Si1xii—Ce2—Si1xiii117.6 (3)Ce1i—Si2—Ce1xxvii99.45 (10)
Ce3—Ce2—Ce1xiv93.1 (4)O1—Si2—Ce1xviii40.52 (6)
O2vii—Ce2—Ce1xiv86.9 (4)N2xxiii—Si2—Ce1xviii139.1 (4)
Cl2vii—Ce2—Ce1xiv86.9 (4)N2xxiv—Si2—Ce1xviii73.7 (3)
N1viii—Ce2—Ce1xiv157.8 (5)N2xxv—Si2—Ce1xviii111.1 (3)
N1ix—Ce2—Ce1xiv81.4 (2)Ce1xxvi—Si2—Ce1xviii84.22 (4)
N1x—Ce2—Ce1xiv42.0 (2)Ce1i—Si2—Ce1xviii107.18 (4)
Si1xi—Ce2—Ce1xiv62.03 (8)Ce1xxvii—Si2—Ce1xviii152.18 (10)
Si1xii—Ce2—Ce1xiv57.78 (7)O1—Si2—Ce1xvii40.52 (6)
Si1xiii—Ce2—Ce1xiv167.7 (9)N2xxiii—Si2—Ce1xvii73.7 (3)
Ce3—Ce2—Ce1xv93.1 (4)N2xxiv—Si2—Ce1xvii111.1 (3)
O2vii—Ce2—Ce1xv86.9 (4)N2xxv—Si2—Ce1xvii139.1 (4)
Cl2vii—Ce2—Ce1xv86.9 (4)Ce1xxvi—Si2—Ce1xvii152.18 (10)
N1viii—Ce2—Ce1xv81.4 (2)Ce1i—Si2—Ce1xvii84.22 (4)
N1ix—Ce2—Ce1xv42.0 (2)Ce1xxvii—Si2—Ce1xvii107.18 (4)
N1x—Ce2—Ce1xv157.8 (5)Ce1xviii—Si2—Ce1xvii68.48 (9)
Si1xi—Ce2—Ce1xv57.78 (7)O1—Si2—Ce1xix40.52 (6)
Si1xii—Ce2—Ce1xv167.7 (9)N2xxiii—Si2—Ce1xix111.1 (3)
Si1xiii—Ce2—Ce1xv62.03 (8)N2xxiv—Si2—Ce1xix139.1 (4)
Ce1xiv—Ce2—Ce1xv119.72 (8)N2xxv—Si2—Ce1xix73.7 (3)
Ce3—Ce2—Ce1xvi93.1 (4)Ce1xxvi—Si2—Ce1xix107.18 (4)
O2vii—Ce2—Ce1xvi86.9 (4)Ce1i—Si2—Ce1xix152.18 (10)
Cl2vii—Ce2—Ce1xvi86.9 (4)Ce1xxvii—Si2—Ce1xix84.22 (4)
N1viii—Ce2—Ce1xvi42.0 (2)Ce1xviii—Si2—Ce1xix68.48 (9)
N1ix—Ce2—Ce1xvi157.8 (5)Ce1xvii—Si2—Ce1xix68.48 (9)
N1x—Ce2—Ce1xvi81.4 (2)Si2—O1—Ce1xvii114.3 (3)
Si1xi—Ce2—Ce1xvi167.7 (9)Si2—O1—Ce1xix114.3 (3)
Si1xii—Ce2—Ce1xvi62.03 (8)Ce1xvii—O1—Ce1xix104.2 (3)
Si1xiii—Ce2—Ce1xvi57.78 (7)Si2—O1—Ce1xviii114.3 (3)
Ce1xiv—Ce2—Ce1xvi119.72 (8)Ce1xvii—O1—Ce1xviii104.2 (3)
Ce1xv—Ce2—Ce1xvi119.72 (8)Ce1xix—O1—Ce1xviii104.2 (3)
Ce2—Ce3—N3xvii137.24 (18)Ce2xxviii—Cl2—Ce1xxix118.46 (9)
Ce2—Ce3—N3xviii137.24 (18)Ce2xxviii—Cl2—Ce1xxx118.46 (9)
N3xvii—Ce3—N3xviii72.0 (3)Ce1xxix—Cl2—Ce1xxx99.17 (11)
Ce2—Ce3—N3xix137.24 (18)Ce2xxviii—Cl2—Ce1xxxi118.46 (9)
N3xvii—Ce3—N3xix72.0 (3)Ce1xxix—Cl2—Ce1xxxi99.17 (11)
N3xviii—Ce3—N3xix72.0 (3)Ce1xxx—Cl2—Ce1xxxi99.17 (11)
Ce2—Ce3—O3xvii137.24 (18)Ce2xxviii—Cl2—Ce3xxviii0.0 (4)
N3xvii—Ce3—O3xvii0.0 (5)Ce1xxix—Cl2—Ce3xxviii118.46 (9)
N3xviii—Ce3—O3xvii72.0 (3)Ce1xxx—Cl2—Ce3xxviii118.46 (9)
N3xix—Ce3—O3xvii72.0 (3)Ce1xxxi—Cl2—Ce3xxviii118.46 (9)
Ce2—Ce3—O3xviii137.24 (18)Si1iv—O3—Ce1xxxii143.1 (5)
N3xvii—Ce3—O3xviii72.0 (3)Si1iv—O3—Ce197.6 (4)
N3xviii—Ce3—O3xviii0.0 (5)Ce1xxxii—O3—Ce1109.5 (3)
N3xix—Ce3—O3xviii72.0 (3)Si1iv—O3—Ce3ii94.0 (4)
O3xvii—Ce3—O3xviii72.0 (3)Ce1xxxii—O3—Ce3ii105.6 (3)
Ce2—Ce3—O3xix137.24 (18)Ce1—O3—Ce3ii98.9 (3)
N3xvii—Ce3—O3xix72.0 (3)Si1xxiii—N1—Si1122.6 (6)
N3xviii—Ce3—O3xix72.0 (3)Si1xxiii—N1—Ce2xxi108.1 (7)
N3xix—Ce3—O3xix0.0 (5)Si1—N1—Ce2xxi119.6 (8)
O3xvii—Ce3—O3xix72.0 (3)Si1xxiii—N1—Ce3xxi127.2 (5)
O3xviii—Ce3—O3xix72.0 (3)Si1—N1—Ce3xxi92.3 (4)
Ce2—Ce3—N1viii74.3 (2)Ce2xxi—N1—Ce3xxi27.7 (7)
N3xvii—Ce3—N1viii63.6 (3)Si1xxiii—N1—Ce1xvii109.7 (5)
N3xviii—Ce3—N1viii128.2 (3)Si1—N1—Ce1xvii94.9 (4)
N3xix—Ce3—N1viii115.0 (3)Ce2xxi—N1—Ce1xvii97.0 (4)
O3xvii—Ce3—N1viii63.6 (3)Ce3xxi—N1—Ce1xvii104.7 (3)
O3xviii—Ce3—N1viii128.2 (3)Si2xxxiii—N2—Si1155.6 (6)
O3xix—Ce3—N1viii115.0 (3)Si2xxxiii—N2—Ce1xvii94.8 (4)
Ce2—Ce3—N1ix74.3 (2)Si1—N2—Ce1xvii96.5 (4)
N3xvii—Ce3—N1ix115.0 (3)Si2xxxiii—N2—Ce1xx92.4 (4)
N3xviii—Ce3—N1ix63.6 (3)Si1—N2—Ce1xx93.0 (4)
N3xix—Ce3—N1ix128.2 (3)Ce1xvii—N2—Ce1xx139.2 (4)
Symmetry codes: (i) z+1/2, x+3/2, y+1; (ii) x+1, y+1/2, z+1/2; (iii) z+1, x+1/2, y+1/2; (iv) x+1, y, z; (v) x, y, z1; (vi) x+3/2, y+1, z1/2; (vii) x1, y1, z1; (viii) y1/2, z+1/2, x; (ix) z+1/2, x, y1/2; (x) x, y1/2, z+1/2; (xi) x, y1, z; (xii) y1, z, x; (xiii) z, x, y1; (xiv) y+1/2, z, x1/2; (xv) x1/2, y+1/2, z; (xvi) z, x1/2, y+1/2; (xvii) y1/2, z+1/2, x+1; (xviii) z+1/2, x+1, y1/2; (xix) x+1, y1/2, z+1/2; (xx) x1, y, z; (xxi) x, y+1/2, z+1/2; (xxii) x, y+1, z; (xxiii) y+1, z+1/2, x+1/2; (xxiv) z+1/2, x+1/2, y+1; (xxv) x+1/2, y+1, z+1/2; (xxvi) x+3/2, y+1, z+1/2; (xxvii) y+1, z+1/2, x+3/2; (xxviii) x+1, y+1, z+1; (xxix) x, y, z+1; (xxx) z+1, x, y; (xxxi) y, z+1, x; (xxxii) y+3/2, z+1, x1/2; (xxxiii) x+1/2, y+1, z1/2.
(8.5GPa) cerium oxonitridosilicate chloride top
Crystal data top
Ce4Cl0.93N6.93O3.14Si4Synchrotron radiation, λ = 0.45000 Å
Mr = 853.28Cell parameters from 20 reflections
Cubic, P213θ = 4.4–12.7°
a = 10.223 (3) ŵ = 4.65 mm1
V = 1068.4 (5) Å3T = 293 K
Z = 4Round plate, crystal was described in terms of coordinates of corners on the orthogonal phi-axis coordinate system of Busing and Levy (1967) (ie +Y along beam, +Z up at circles zero, +X to make right-handed set) with origin at the centre of the face of the incident-beam anvil loop is over x, y, z (mm) -0.034000 0.000000 0.020000 -0.034000 0.035000 0.020000 0.080393 0.000000 -0.047290 0.080393 0.035000 -0.047290 -0.048000 0.000000 0.024000 -0.048000 0.035000 0.024000 -0.102000 0.000000 0.007000 -0.102000 0.035000 0.007000 -0.105000 0.000000 -0.034000 -0.105000 0.035000 -0.034000 -0.088000 0.000000 -0.082000 -0.088000 0.035000 -0.082000 -0.048000 0.000000 -0.088000 -0.048000 0.035000 -0.088000, orange
F(000) = 15100.11 × 0.11 × 0.04 mm
Dx = 5.305 Mg m3
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
535 independent reflections
Radiation source: synchrotron HASYLAB/DESY510 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.042
Detector resolution: NaJ point detector pixels mm-1θmax = 15.4°, θmin = 1.8°
ω scan, continuous, fixed–phi methodh = 1211
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.466 0.597
thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1
No gasket shadowing corrections were made
k = 1212
Tmin = 0.377, Tmax = 0.507l = 86
1557 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0449P)2 + 11.8113P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.074
wR(F2) = 0.070Δρmax = 1.35 e Å3
S = 1.04Δρmin = 1.26 e Å3
535 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
37 parametersExtinction coefficient: 0.0030 (8)
4 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (14)
Crystal data top
Ce4Cl0.93N6.93O3.14Si4Z = 4
Mr = 853.28Synchrotron radiation, λ = 0.45000 Å
Cubic, P213µ = 4.65 mm1
a = 10.223 (3) ÅT = 293 K
V = 1068.4 (5) Å30.11 × 0.11 × 0.04 mm
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
535 independent reflections
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.466 0.597
thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1
No gasket shadowing corrections were made
510 reflections with I > 2σ(I)
Tmin = 0.377, Tmax = 0.507Rint = 0.042
1557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0449P)2 + 11.8113P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070Δρmax = 1.35 e Å3
S = 1.04Δρmin = 1.26 e Å3
535 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
37 parametersAbsolute structure parameter: 0.04 (14)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.81275 (7)0.69676 (7)0.03900 (7)0.0099 (3)*
Ce20.0413 (16)0.0413 (16)0.0413 (16)0.0091 (4)*0.042 (2)
Ce30.10602 (7)0.10602 (7)0.10602 (7)0.0091 (4)*0.958 (2)
Si10.0761 (3)0.7490 (3)0.1971 (3)0.0052 (7)*
Si20.4275 (3)0.4275 (3)0.4275 (3)0.0062 (11)*
O10.3355 (8)0.3355 (8)0.3355 (8)0.009 (3)*
Cl20.9317 (3)0.9317 (3)0.9317 (3)0.0124 (12)*0.927 (11)
O20.9317 (3)0.9317 (3)0.9317 (3)0.0124 (12)*0.073 (11)
O30.9248 (9)0.7947 (9)0.2349 (9)0.011 (2)*0.690 (4)
N30.9248 (9)0.7947 (9)0.2349 (9)0.011 (2)*0.310 (4)
N10.1262 (11)0.6539 (11)0.3286 (10)0.013 (2)*
N20.0582 (11)0.6382 (10)0.0760 (10)0.015 (3)*
Geometric parameters (Å, º) top
Ce1—N3i2.251 (9)Si1—O3xx1.662 (9)
Ce1—O3i2.251 (9)Si1—N21.688 (11)
Ce1—O1ii2.440 (6)Si1—N11.736 (11)
Ce1—O32.515 (9)Si1—Ce3xxi3.107 (3)
Ce1—N1iii2.549 (11)Si1—Ce1xx3.186 (3)
Ce1—N2iii2.565 (10)Si1—Ce1xvii3.193 (3)
Ce1—N2iv2.608 (11)Si1—Ce2xxii3.405 (6)
Ce1—O2v2.907 (3)Si1—Ce1xxiii3.462 (4)
Ce1—Cl2v2.907 (3)Si2—O11.630 (15)
Ce1—Si2vi3.157 (3)Si2—N2xxiv1.667 (11)
Ce1—Si1iv3.186 (3)Si2—N2xxv1.667 (11)
Ce2—Ce31.15 (3)Si2—N2xxvi1.667 (11)
Ce2—O2vii1.94 (3)Si2—Ce1xxvii3.157 (3)
Ce2—Cl2vii1.94 (3)Si2—Ce1i3.156 (3)
Ce2—N1viii2.455 (12)Si2—Ce1xxviii3.156 (3)
Ce2—N1ix2.455 (12)Si2—Ce1xviii3.423 (4)
Ce2—N1x2.455 (12)Si2—Ce1xvii3.423 (4)
Ce2—Si1xi3.405 (6)Si2—Ce1xix3.423 (4)
Ce2—Si1xii3.405 (6)O1—Ce1xvii2.440 (6)
Ce2—Si1xiii3.405 (6)O1—Ce1xix2.440 (6)
Ce2—Ce1xiv3.781 (2)O1—Ce1xviii2.440 (6)
Ce2—Ce1xv3.781 (2)Cl2—Ce2xxix1.94 (3)
Ce2—Ce1xvi3.781 (2)Cl2—Ce1xxx2.907 (3)
Ce3—N1viii2.514 (11)Cl2—Ce1xxxi2.907 (3)
Ce3—N1ix2.514 (11)Cl2—Ce1xxxii2.907 (3)
Ce3—N1x2.514 (11)Cl2—Ce3xxix3.086 (5)
Ce3—N3xvii2.542 (9)O3—Si1iv1.662 (9)
Ce3—N3xviii2.542 (9)O3—Ce1xxxiii2.251 (9)
Ce3—N3xix2.542 (9)O3—Ce3ii2.542 (9)
Ce3—O3xvii2.542 (9)N1—Si1xxiv1.665 (11)
Ce3—O3xviii2.542 (9)N1—Ce2xxi2.455 (12)
Ce3—O3xix2.542 (9)N1—Ce3xxi2.514 (11)
Ce3—Cl2vii3.086 (5)N1—Ce1xvii2.549 (11)
Ce3—Si1x3.107 (3)N2—Si2xxxiv1.667 (11)
Si1—N1xviii1.665 (11)N2—Ce1xvii2.565 (10)
Si1—N3xx1.662 (9)N2—Ce1xx2.608 (11)
N3i—Ce1—O3i0.0 (6)N1viii—Ce3—O3xix115.2 (3)
N3i—Ce1—O1ii72.8 (3)N1ix—Ce3—O3xix128.7 (3)
O3i—Ce1—O1ii72.8 (3)N1x—Ce3—O3xix64.2 (3)
N3i—Ce1—O377.2 (5)N3xvii—Ce3—O3xix71.8 (3)
O3i—Ce1—O377.2 (5)N3xviii—Ce3—O3xix71.8 (3)
O1ii—Ce1—O368.4 (3)N3xix—Ce3—O3xix0.0 (5)
N3i—Ce1—N1iii103.2 (3)O3xvii—Ce3—O3xix71.8 (3)
O3i—Ce1—N1iii103.2 (3)O3xviii—Ce3—O3xix71.8 (3)
O1ii—Ce1—N1iii102.7 (3)Ce2—Ce3—Cl2vii0.0 (7)
O3—Ce1—N1iii170.7 (3)N1viii—Ce3—Cl2vii73.8 (3)
N3i—Ce1—N2iii112.7 (3)N1ix—Ce3—Cl2vii73.8 (3)
O3i—Ce1—N2iii112.7 (3)N1x—Ce3—Cl2vii73.8 (3)
O1ii—Ce1—N2iii165.4 (4)N3xvii—Ce3—Cl2vii137.4 (2)
O3—Ce1—N2iii125.5 (3)N3xviii—Ce3—Cl2vii137.4 (2)
N1iii—Ce1—N2iii63.2 (3)N3xix—Ce3—Cl2vii137.4 (2)
N3i—Ce1—N2iv96.0 (3)O3xvii—Ce3—Cl2vii137.4 (2)
O3i—Ce1—N2iv96.0 (3)O3xviii—Ce3—Cl2vii137.4 (2)
O1ii—Ce1—N2iv130.9 (3)O3xix—Ce3—Cl2vii137.4 (2)
O3—Ce1—N2iv62.5 (3)Ce2—Ce3—Si1x107.43 (6)
N1iii—Ce1—N2iv126.4 (3)N1viii—Ce3—Si1x127.1 (3)
N2iii—Ce1—N2iv63.2 (5)N1ix—Ce3—Si1x118.5 (3)
N3i—Ce1—O2v152.7 (3)N1x—Ce3—Si1x33.9 (3)
O3i—Ce1—O2v152.7 (3)N3xvii—Ce3—Si1x103.5 (2)
O1ii—Ce1—O2v88.74 (15)N3xviii—Ce3—Si1x87.1 (2)
O3—Ce1—O2v77.4 (2)N3xix—Ce3—Si1x32.3 (2)
N1iii—Ce1—O2v100.3 (3)O3xvii—Ce3—Si1x103.5 (2)
N2iii—Ce1—O2v90.2 (2)O3xviii—Ce3—Si1x87.1 (2)
N2iv—Ce1—O2v80.9 (2)O3xix—Ce3—Si1x32.3 (2)
N3i—Ce1—Cl2v152.7 (3)Cl2vii—Ce3—Si1x107.43 (6)
O3i—Ce1—Cl2v152.7 (3)N1xviii—Si1—N3xx113.0 (5)
O1ii—Ce1—Cl2v88.74 (15)N1xviii—Si1—O3xx113.0 (5)
O3—Ce1—Cl2v77.4 (2)N3xx—Si1—O3xx0.0 (2)
N1iii—Ce1—Cl2v100.3 (3)N1xviii—Si1—N2112.5 (6)
N2iii—Ce1—Cl2v90.2 (2)N3xx—Si1—N2105.0 (5)
N2iv—Ce1—Cl2v80.9 (2)O3xx—Si1—N2105.0 (5)
O2v—Ce1—Cl2v0.00 (4)N1xviii—Si1—N1117.5 (7)
N3i—Ce1—Si2vi110.4 (2)N3xx—Si1—N1104.6 (5)
O3i—Ce1—Si2vi110.4 (2)O3xx—Si1—N1104.6 (5)
O1ii—Ce1—Si2vi161.12 (15)N2—Si1—N1102.9 (5)
O3—Ce1—Si2vi93.7 (2)N1xviii—Si1—Ce3xxi152.0 (4)
N1iii—Ce1—Si2vi94.8 (3)N3xx—Si1—Ce3xxi54.8 (3)
N2iii—Ce1—Si2vi31.8 (2)O3xx—Si1—Ce3xxi54.8 (3)
N2iv—Ce1—Si2vi31.8 (2)N2—Si1—Ce3xxi95.4 (4)
O2v—Ce1—Si2vi81.05 (9)N1—Si1—Ce3xxi54.0 (4)
Cl2v—Ce1—Si2vi81.05 (9)N1xviii—Si1—Ce1xx119.2 (4)
N3i—Ce1—Si1iv90.5 (2)N3xx—Si1—Ce1xx51.5 (3)
O3i—Ce1—Si1iv90.5 (2)O3xx—Si1—Ce1xx51.5 (3)
O1ii—Ce1—Si1iv99.2 (2)N2—Si1—Ce1xx54.8 (4)
O3—Ce1—Si1iv31.2 (2)N1—Si1—Ce1xx123.2 (4)
N1iii—Ce1—Si1iv156.8 (3)Ce3xxi—Si1—Ce1xx75.13 (7)
N2iii—Ce1—Si1iv94.4 (3)N1xviii—Si1—Ce1xvii118.2 (4)
N2iv—Ce1—Si1iv31.9 (2)N3xx—Si1—Ce1xvii128.8 (4)
O2v—Ce1—Si1iv72.51 (9)O3xx—Si1—Ce1xvii128.8 (4)
Cl2v—Ce1—Si1iv72.51 (9)N2—Si1—Ce1xvii53.1 (4)
Si2vi—Ce1—Si1iv62.59 (6)N1—Si1—Ce1xvii52.7 (4)
Ce3—Ce2—O2vii180.0 (11)Ce3xxi—Si1—Ce1xvii79.53 (7)
Ce3—Ce2—Cl2vii180.0 (11)Ce1xx—Si1—Ce1xvii98.97 (9)
O2vii—Ce2—Cl2vii0.0 (4)N1xviii—Si1—Ce2xxii42.6 (5)
Ce3—Ce2—N1viii79.6 (7)N3xx—Si1—Ce2xxii76.4 (4)
O2vii—Ce2—N1viii100.4 (7)O3xx—Si1—Ce2xxii76.4 (4)
Cl2vii—Ce2—N1viii100.4 (7)N2—Si1—Ce2xxii103.5 (6)
Ce3—Ce2—N1ix79.6 (7)N1—Si1—Ce2xxii152.2 (6)
O2vii—Ce2—N1ix100.4 (7)Ce3xxi—Si1—Ce2xxii130.78 (13)
Cl2vii—Ce2—N1ix100.4 (7)Ce1xx—Si1—Ce2xxii79.7 (5)
N1viii—Ce2—N1ix116.8 (4)Ce1xvii—Si1—Ce2xxii146.6 (2)
Ce3—Ce2—N1x79.6 (7)N1xviii—Si1—Ce1xxiii44.2 (4)
O2vii—Ce2—N1x100.4 (7)N3xx—Si1—Ce1xxiii140.1 (4)
Cl2vii—Ce2—N1x100.4 (7)O3xx—Si1—Ce1xxiii140.1 (4)
N1viii—Ce2—N1x116.8 (4)N2—Si1—Ce1xxiii70.8 (4)
N1ix—Ce2—N1x116.8 (4)N1—Si1—Ce1xxiii115.1 (4)
Ce3—Ce2—Si1xi100.1 (5)Ce3xxi—Si1—Ce1xxiii161.04 (11)
O2vii—Ce2—Si1xi79.9 (5)Ce1xx—Si1—Ce1xxiii105.28 (9)
Cl2vii—Ce2—Si1xi79.9 (5)Ce1xvii—Si1—Ce1xxiii81.71 (8)
N1viii—Ce2—Si1xi138.8 (3)Ce2xxii—Si1—Ce1xxiii66.81 (6)
N1ix—Ce2—Si1xi27.4 (3)O1—Si2—N2xxiv110.1 (4)
N1x—Ce2—Si1xi103.3 (3)O1—Si2—N2xxv110.1 (4)
Ce3—Ce2—Si1xii100.1 (5)N2xxiv—Si2—N2xxv108.8 (4)
O2vii—Ce2—Si1xii79.9 (5)O1—Si2—N2xxvi110.1 (4)
Cl2vii—Ce2—Si1xii79.9 (5)N2xxiv—Si2—N2xxvi108.8 (4)
N1viii—Ce2—Si1xii103.3 (3)N2xxv—Si2—N2xxvi108.8 (4)
N1ix—Ce2—Si1xii138.8 (3)O1—Si2—Ce1xxvii117.50 (9)
N1x—Ce2—Si1xii27.4 (3)N2xxiv—Si2—Ce1xxvii132.4 (5)
Si1xi—Ce2—Si1xii117.0 (3)N2xxv—Si2—Ce1xxvii54.2 (4)
Ce3—Ce2—Si1xiii100.1 (5)N2xxvi—Si2—Ce1xxvii55.6 (4)
O2vii—Ce2—Si1xiii79.9 (5)O1—Si2—Ce1i117.50 (9)
Cl2vii—Ce2—Si1xiii79.9 (5)N2xxiv—Si2—Ce1i54.2 (4)
N1viii—Ce2—Si1xiii27.4 (3)N2xxv—Si2—Ce1i55.6 (4)
N1ix—Ce2—Si1xiii103.3 (3)N2xxvi—Si2—Ce1i132.4 (5)
N1x—Ce2—Si1xiii138.8 (3)Ce1xxvii—Si2—Ce1i100.38 (11)
Si1xi—Ce2—Si1xiii117.0 (3)O1—Si2—Ce1xxviii117.50 (9)
Si1xii—Ce2—Si1xiii117.0 (3)N2xxiv—Si2—Ce1xxviii55.6 (4)
Ce3—Ce2—Ce1xiv94.2 (4)N2xxv—Si2—Ce1xxviii132.4 (5)
O2vii—Ce2—Ce1xiv85.8 (4)N2xxvi—Si2—Ce1xxviii54.2 (4)
Cl2vii—Ce2—Ce1xiv85.8 (4)Ce1xxvii—Si2—Ce1xxviii100.38 (11)
N1viii—Ce2—Ce1xiv158.6 (4)Ce1i—Si2—Ce1xxviii100.38 (11)
N1ix—Ce2—Ce1xiv81.6 (3)O1—Si2—Ce1xviii41.02 (6)
N1x—Ce2—Ce1xiv41.9 (3)N2xxiv—Si2—Ce1xviii139.0 (4)
Si1xi—Ce2—Ce1xiv62.19 (8)N2xxv—Si2—Ce1xviii72.2 (4)
Si1xii—Ce2—Ce1xiv57.32 (8)N2xxvi—Si2—Ce1xviii109.3 (4)
Si1xiii—Ce2—Ce1xiv165.5 (9)Ce1xxvii—Si2—Ce1xviii82.87 (4)
Ce3—Ce2—Ce1xv94.2 (4)Ce1i—Si2—Ce1xviii106.87 (4)
O2vii—Ce2—Ce1xv85.8 (4)Ce1xxviii—Si2—Ce1xviii151.54 (11)
Cl2vii—Ce2—Ce1xv85.8 (4)O1—Si2—Ce1xvii41.02 (6)
N1viii—Ce2—Ce1xv81.6 (3)N2xxiv—Si2—Ce1xvii72.2 (4)
N1ix—Ce2—Ce1xv41.8 (3)N2xxv—Si2—Ce1xvii109.3 (4)
N1x—Ce2—Ce1xv158.6 (4)N2xxvi—Si2—Ce1xvii139.0 (4)
Si1xi—Ce2—Ce1xv57.32 (8)Ce1xxvii—Si2—Ce1xvii151.54 (11)
Si1xii—Ce2—Ce1xv165.5 (9)Ce1i—Si2—Ce1xvii82.87 (4)
Si1xiii—Ce2—Ce1xv62.19 (8)Ce1xxviii—Si2—Ce1xvii106.87 (4)
Ce1xiv—Ce2—Ce1xv119.47 (11)Ce1xviii—Si2—Ce1xvii69.28 (10)
Ce3—Ce2—Ce1xvi94.2 (4)O1—Si2—Ce1xix41.02 (6)
O2vii—Ce2—Ce1xvi85.8 (4)N2xxiv—Si2—Ce1xix109.3 (4)
Cl2vii—Ce2—Ce1xvi85.8 (4)N2xxv—Si2—Ce1xix139.0 (4)
N1viii—Ce2—Ce1xvi41.9 (3)N2xxvi—Si2—Ce1xix72.2 (4)
N1ix—Ce2—Ce1xvi158.6 (4)Ce1xxvii—Si2—Ce1xix106.87 (4)
N1x—Ce2—Ce1xvi81.6 (3)Ce1i—Si2—Ce1xix151.54 (11)
Si1xi—Ce2—Ce1xvi165.5 (9)Ce1xxviii—Si2—Ce1xix82.87 (4)
Si1xii—Ce2—Ce1xvi62.19 (8)Ce1xviii—Si2—Ce1xix69.28 (10)
Si1xiii—Ce2—Ce1xvi57.32 (8)Ce1xvii—Si2—Ce1xix69.28 (10)
Ce1xiv—Ce2—Ce1xvi119.47 (11)Si2—O1—Ce1xvii113.0 (3)
Ce1xv—Ce2—Ce1xvi119.47 (11)Si2—O1—Ce1xix113.0 (3)
Ce2—Ce3—N1viii73.8 (3)Ce1xvii—O1—Ce1xix105.8 (3)
Ce2—Ce3—N1ix73.8 (3)Si2—O1—Ce1xviii113.0 (3)
N1viii—Ce3—N1ix112.5 (2)Ce1xvii—O1—Ce1xviii105.8 (3)
Ce2—Ce3—N1x73.8 (3)Ce1xix—O1—Ce1xviii105.8 (3)
N1viii—Ce3—N1x112.5 (2)Ce2xxix—Cl2—Ce1xxx120.05 (9)
N1ix—Ce3—N1x112.5 (2)Ce2xxix—Cl2—Ce1xxxi120.05 (9)
Ce2—Ce3—N3xvii137.4 (2)Ce1xxx—Cl2—Ce1xxxi97.12 (12)
N1viii—Ce3—N3xvii64.2 (3)Ce2xxix—Cl2—Ce1xxxii120.05 (9)
N1ix—Ce3—N3xvii115.2 (3)Ce1xxx—Cl2—Ce1xxxii97.12 (12)
N1x—Ce3—N3xvii128.7 (3)Ce1xxxi—Cl2—Ce1xxxii97.12 (12)
Ce2—Ce3—N3xviii137.4 (2)Ce2xxix—Cl2—Ce3xxix0.0 (4)
N1viii—Ce3—N3xviii128.7 (3)Ce1xxx—Cl2—Ce3xxix120.05 (9)
N1ix—Ce3—N3xviii64.2 (3)Ce1xxxi—Cl2—Ce3xxix120.05 (9)
N1x—Ce3—N3xviii115.2 (3)Ce1xxxii—Cl2—Ce3xxix120.05 (9)
N3xvii—Ce3—N3xviii71.8 (3)Si1iv—O3—Ce1xxxiii143.9 (5)
Ce2—Ce3—N3xix137.4 (2)Si1iv—O3—Ce197.3 (4)
N1viii—Ce3—N3xix115.2 (3)Ce1xxxiii—O3—Ce1109.3 (3)
N1ix—Ce3—N3xix128.7 (3)Si1iv—O3—Ce3ii92.9 (4)
N1x—Ce3—N3xix64.2 (3)Ce1xxxiii—O3—Ce3ii106.2 (3)
N3xvii—Ce3—N3xix71.8 (3)Ce1—O3—Ce3ii98.7 (3)
N3xviii—Ce3—N3xix71.8 (3)Si1xxiv—N1—Si1122.0 (7)
Ce2—Ce3—O3xvii137.4 (2)Si1xxiv—N1—Ce2xxi110.0 (7)
N1viii—Ce3—O3xvii64.2 (3)Si1—N1—Ce2xxi118.5 (8)
N1ix—Ce3—O3xvii115.2 (3)Si1xxiv—N1—Ce3xxi128.3 (6)
N1x—Ce3—O3xvii128.7 (3)Si1—N1—Ce3xxi92.1 (5)
N3xvii—Ce3—O3xvii0.0 (5)Ce2xxi—N1—Ce3xxi26.6 (7)
N3xviii—Ce3—O3xvii71.8 (3)Si1xxiv—N1—Ce1xvii108.7 (5)
N3xix—Ce3—O3xvii71.8 (3)Si1—N1—Ce1xvii94.5 (5)
Ce2—Ce3—O3xviii137.4 (2)Ce2xxi—N1—Ce1xvii98.2 (4)
N1viii—Ce3—O3xviii128.7 (3)Ce3xxi—N1—Ce1xvii105.5 (4)
N1ix—Ce3—O3xviii64.2 (3)Si1—N2—Si2xxxiv158.3 (7)
N1x—Ce3—O3xviii115.2 (3)Si1—N2—Ce1xvii95.1 (5)
N3xvii—Ce3—O3xviii71.8 (3)Si2xxxiv—N2—Ce1xvii94.1 (4)
N3xviii—Ce3—O3xviii0.0 (5)Si1—N2—Ce1xx93.3 (4)
N3xix—Ce3—O3xviii71.8 (3)Si2xxxiv—N2—Ce1xx92.5 (5)
O3xvii—Ce3—O3xviii71.8 (3)Ce1xvii—N2—Ce1xx139.3 (4)
Ce2—Ce3—O3xix137.4 (2)
Symmetry codes: (i) z+1/2, x+3/2, y+1; (ii) x+1, y+1/2, z+1/2; (iii) z+1, x+1/2, y+1/2; (iv) x+1, y, z; (v) x, y, z1; (vi) x+3/2, y+1, z1/2; (vii) x1, y1, z1; (viii) y1/2, z+1/2, x; (ix) z+1/2, x, y1/2; (x) x, y1/2, z+1/2; (xi) x, y1, z; (xii) y1, z, x; (xiii) z, x, y1; (xiv) y+1/2, z, x1/2; (xv) x1/2, y+1/2, z; (xvi) z, x1/2, y+1/2; (xvii) y1/2, z+1/2, x+1; (xviii) z+1/2, x+1, y1/2; (xix) x+1, y1/2, z+1/2; (xx) x1, y, z; (xxi) x, y+1/2, z+1/2; (xxii) x, y+1, z; (xxiii) x1/2, y+3/2, z; (xxiv) y+1, z+1/2, x+1/2; (xxv) z+1/2, x+1/2, y+1; (xxvi) x+1/2, y+1, z+1/2; (xxvii) x+3/2, y+1, z+1/2; (xxviii) y+1, z+1/2, x+3/2; (xxix) x+1, y+1, z+1; (xxx) x, y, z+1; (xxxi) z+1, x, y; (xxxii) y, z+1, x; (xxxiii) y+3/2, z+1, x1/2; (xxxiv) x+1/2, y+1, z1/2.
(8.6GPa) cerium oxonitridosilicate chloride top
Crystal data top
Ce4Cl0.93N6.93O3.14Si4Dx = 5.572 Mg m3
Mr = 853.28Synchrotron radiation, λ = 0.45000 Å
Orthorhombic, P212121Cell parameters from 16 reflections
a = 10.824 (9) Åθ = 3.1–9.9°
b = 10.479 (3) ŵ = 4.89 mm1
c = 8.967 (3) ÅT = 293 K
V = 1017.1 (10) Å3Round plate, crystal was described in terms of coordinates of corners on the orthogonal phi-axis coordinate system of Busing and Levy (1967) (ie +Y along beam, +Z up at circles zero, +X to make right-handed set) with origin at the centre of the face of the incident-beam anvil loop is over x, y, z (mm) -0.059000 0.000000 0.032000 -0.059000 0.035000 0.032000 0.000000 0.000000 0.000000 0.000000 0.035000 0.000000 -0.095000 0.000000 0.016000 -0.095000 0.035000 0.016000 -0.111000 0.000000 0.000000 -0.111000 0.035000 0.000000 -0.111000 0.000000 -0.044000 -0.111000 0.035000 -0.044000 -0.087000 0.000000 -0.064000 -0.087000 0.035000 -0.064000 -0.019000 0.000000 -0.064000 -0.019000 0.035000 -0.064000 0.000000 0.000000 -0.048000 0.000000 0.035000 -0.048000, red
Z = 40.11 × 0.10 × 0.04 mm
F(000) = 1510
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
823 independent reflections
Radiation source: synchrotron HASYLAB/DESY663 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.084
Detector resolution: NaJ point detector pixels mm-1θmax = 15.0°, θmin = 1.9°
ω scan, continuous, fixed–phi methodh = 84
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.492 0.597
thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1
No gasket shadowing corrections were made
k = 1212
Tmin = 0.404, Tmax = 0.503l = 1010
1726 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycleSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.55 e Å3
823 reflectionsΔρmin = 1.98 e Å3
79 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.2 (2)
Crystal data top
Ce4Cl0.93N6.93O3.14Si4V = 1017.1 (10) Å3
Mr = 853.28Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.45000 Å
a = 10.824 (9) ŵ = 4.89 mm1
b = 10.479 (3) ÅT = 293 K
c = 8.967 (3) Å0.11 × 0.10 × 0.04 mm
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
823 independent reflections
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.492 0.597
thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1
No gasket shadowing corrections were made
663 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.503Rint = 0.084
1726 measured reflectionsθmax = 15.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.122Δρmax = 1.55 e Å3
S = 1.06Δρmin = 1.98 e Å3
823 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
79 parametersAbsolute structure parameter: 0.2 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce20.0894 (4)0.03956 (19)0.0840 (2)0.0159 (15)
Ce1A0.8262 (4)0.69793 (17)0.07711 (19)0.0077 (5)*
Ce1B0.0667 (4)0.81923 (17)0.6574 (2)0.0078 (5)*
Ce1C0.7035 (4)0.01999 (17)0.7533 (2)0.0098 (5)*
Si1A0.0935 (18)0.7660 (8)0.2331 (9)0.007 (2)*
Si1B0.1673 (18)0.0910 (8)0.7450 (10)0.0060 (19)*
Si1C0.7146 (19)0.2080 (8)0.0357 (9)0.007 (2)*
Si20.431 (2)0.4259 (8)0.4629 (9)0.006 (2)*
Cl0.9075 (17)0.9163 (7)0.8989 (8)0.0078 (19)*0.93
O20.9075 (17)0.9163 (7)0.8989 (8)0.008 (8)*0.07
O10.348 (4)0.3286 (18)0.359 (2)0.005 (5)*
O3A0.979 (5)0.865 (2)0.215 (2)0.012 (9)*0.69
N3AA0.979 (5)0.865 (2)0.215 (2)0.012 (8)*0.31
O3B0.198 (5)0.956 (2)0.834 (2)0.010 (8)*0.69
N3BA0.198 (5)0.956 (2)0.834 (2)0.010 (7)*0.31
O3C0.725 (5)0.267 (2)0.862 (3)0.020 (10)*0.69
N3CA0.725 (5)0.267 (2)0.862 (3)0.020 (8)*0.31
N1C0.610 (6)0.305 (3)0.123 (3)0.019 (8)*
N1B0.289 (7)0.150 (3)0.645 (3)0.019*
N1A0.136 (5)0.706 (3)0.406 (3)0.015 (7)*
N2C0.071 (6)0.047 (3)0.603 (3)0.021 (8)*
N2B0.669 (7)0.051 (3)0.036 (3)0.021 (8)*
N2A0.054 (6)0.630 (3)0.144 (3)0.021 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce20.014 (5)0.0067 (9)0.0267 (11)0.0017 (13)0.0054 (16)0.0072 (8)
Geometric parameters (Å, º) top
Ce2—N1Bi2.45 (4)Si1B—N1Civ1.73 (4)
Ce2—N3AAii2.48 (3)Si1B—Ce1Axxv3.099 (9)
Ce2—O3Aii2.48 (3)Si1B—Ce1Bxxi3.148 (11)
Ce2—N1Ciii2.48 (3)Si1B—Ce2xx3.200 (10)
Ce2—N3CAiv2.55 (4)Si1B—Ce2xxvi3.299 (17)
Ce2—O3Civ2.55 (4)Si1C—N3CAxii1.68 (2)
Ce2—N3BAv2.68 (3)Si1C—O3Cxii1.68 (2)
Ce2—O3Bv2.68 (3)Si1C—N1Axxv1.70 (6)
Ce2—O2vi2.881 (15)Si1C—N1C1.71 (5)
Ce2—Clvi2.881 (15)Si1C—N2B1.71 (3)
Ce2—N1Avii3.00 (5)Si1C—Ce1Bxxv3.156 (17)
Ce2—Si1Ciii3.160 (12)Si1C—Ce2xxvii3.160 (12)
Ce1A—N3BAviii2.28 (4)Si1C—Ce1Cxxviii3.209 (11)
Ce1A—O3Bviii2.28 (4)Si1C—Ce1Cxii3.211 (9)
Ce1A—O1ix2.40 (4)Si1C—Ce1Bxxiii3.25 (2)
Ce1A—N1Bix2.41 (4)Si2—N2Cxviii1.65 (7)
Ce1A—N2Cix2.52 (4)Si2—O11.65 (3)
Ce1A—N3CAx2.64 (2)Si2—N2Bix1.71 (5)
Ce1A—O3Cx2.64 (2)Si2—N2Axiv1.73 (3)
Ce1A—N2Axi2.64 (7)Si2—Ce1Cxiii3.095 (13)
Ce1A—O3A2.71 (4)Si2—Ce1Axvii3.10 (2)
Ce1A—Clxii2.926 (10)Si2—Ce1Civ3.189 (19)
Ce1A—O2xii2.926 (10)Si2—Ce1Bviii3.232 (13)
Ce1B—N3CAxiii2.33 (6)Cl—Ce1Cxv2.786 (16)
Ce1B—O3Cxiii2.33 (6)Cl—Ce2xxix2.881 (15)
Ce1B—N1Cxiv2.33 (6)Cl—Ce1Axx2.926 (10)
Ce1B—N2Cxv2.43 (3)Cl—Ce1Bxi2.948 (13)
Ce1B—O1xiv2.55 (2)O1—Ce1Axxv2.40 (4)
Ce1B—O3B2.57 (4)O1—Ce1Civ2.45 (3)
Ce1B—N1A2.66 (3)O1—Ce1Bxxiii2.55 (2)
Ce1B—O2xvi2.948 (13)O3A—Si1Axi1.63 (5)
Ce1B—Clxvi2.948 (13)O3A—Ce1Cx2.33 (5)
Ce1B—Si1Bxv3.148 (11)O3A—Ce2xxx2.48 (3)
Ce1B—Si1Cix3.156 (17)O3B—Si1Bxv1.65 (2)
Ce1C—N3AAxvii2.33 (5)O3B—Ce1Axxxi2.28 (4)
Ce1C—O3Axvii2.33 (5)O3B—Ce2xxxii2.68 (3)
Ce1C—N2Axviii2.43 (5)O3C—Si1Cxx1.68 (2)
Ce1C—O1xviii2.45 (3)O3C—Ce1Bxxii2.33 (6)
Ce1C—N2Bxix2.50 (5)O3C—Ce2xviii2.55 (4)
Ce1C—N2Bxx2.58 (3)O3C—Ce1Axvii2.64 (2)
Ce1C—O3C2.77 (2)N1C—Si1Bxviii1.73 (4)
Ce1C—O2xxi2.786 (16)N1C—Ce1Bxxiii2.33 (6)
Ce1C—Clxxi2.786 (16)N1C—Ce2xxvii2.48 (3)
Ce1C—N1Axviii2.86 (3)N1B—Si1Axiv1.74 (6)
Ce1C—Si2xxii3.095 (13)N1B—Ce1Axxv2.41 (4)
Si1A—N3AAxvi1.63 (5)N1B—Ce2xxvi2.45 (4)
Si1A—O3Axvi1.63 (5)N1A—Si1Cix1.70 (6)
Si1A—N2A1.69 (3)N1A—Ce1Civ2.86 (3)
Si1A—N1A1.73 (3)N1A—Ce2xxiv3.00 (5)
Si1A—N1Bxxiii1.74 (6)N2C—Si2iv1.65 (7)
Si1A—Ce2xv3.163 (9)N2C—Ce1Bxxi2.43 (3)
Si1A—Ce1Civ3.227 (11)N2C—Ce1Axxv2.52 (4)
Si1A—Ce1Axvi3.292 (19)N2B—Si2xxv1.71 (5)
Si1A—Ce2xxiv3.500 (14)N2B—Ce1Cxxviii2.50 (5)
Si1B—N3BAxxi1.65 (2)N2B—Ce1Cxii2.58 (3)
Si1B—O3Bxxi1.65 (2)N2A—Si2xxiii1.73 (3)
Si1B—N1B1.71 (6)N2A—Ce1Civ2.43 (5)
Si1B—N2C1.71 (5)N2A—Ce1Axvi2.64 (7)
N1Bi—Ce2—N3AAii63.7 (18)N2Bxix—Ce1C—Si2xxii143.7 (7)
N1Bi—Ce2—O3Aii63.7 (18)N2Bxx—Ce1C—Si2xxii33.4 (11)
N3AAii—Ce2—O3Aii0 (3)O3C—Ce1C—Si2xxii92.8 (8)
N1Bi—Ce2—N1Ciii130.9 (18)O2xxi—Ce1C—Si2xxii82.2 (4)
N3AAii—Ce2—N1Ciii151.8 (16)Clxxi—Ce1C—Si2xxii82.2 (4)
O3Aii—Ce2—N1Ciii151.8 (16)N1Axviii—Ce1C—Si2xxii91.4 (8)
N1Bi—Ce2—N3CAiv107.0 (16)N3AAxvi—Si1A—O3Axvi0 (3)
N3AAii—Ce2—N3CAiv140.6 (9)N3AAxvi—Si1A—N2A107 (2)
O3Aii—Ce2—N3CAiv140.6 (9)O3Axvi—Si1A—N2A107 (2)
N1Ciii—Ce2—N3CAiv64.4 (12)N3AAxvi—Si1A—N1A121.5 (18)
N1Bi—Ce2—O3Civ107.0 (16)O3Axvi—Si1A—N1A121.5 (18)
N3AAii—Ce2—O3Civ140.6 (9)N2A—Si1A—N1A100.6 (15)
O3Aii—Ce2—O3Civ140.6 (9)N3AAxvi—Si1A—N1Bxxiii101 (2)
N1Ciii—Ce2—O3Civ64.4 (12)O3Axvi—Si1A—N1Bxxiii101 (2)
N3CAiv—Ce2—O3Civ0.0 (12)N2A—Si1A—N1Bxxiii113 (2)
N1Bi—Ce2—N3BAv71.8 (11)N1A—Si1A—N1Bxxiii113 (3)
N3AAii—Ce2—N3BAv111.7 (8)N3AAxvi—Si1A—Ce2xv50.9 (14)
O3Aii—Ce2—N3BAv111.7 (8)O3Axvi—Si1A—Ce2xv50.9 (14)
N1Ciii—Ce2—N3BAv63.1 (10)N2A—Si1A—Ce2xv124.1 (11)
N3CAiv—Ce2—N3BAv99.5 (11)N1A—Si1A—Ce2xv135.3 (11)
O3Civ—Ce2—N3BAv99.5 (11)N1Bxxiii—Si1A—Ce2xv50.1 (16)
N1Bi—Ce2—O3Bv71.8 (11)N3AAxvi—Si1A—Ce1Civ151.4 (15)
N3AAii—Ce2—O3Bv111.7 (8)O3Axvi—Si1A—Ce1Civ151.4 (15)
O3Aii—Ce2—O3Bv111.7 (8)N2A—Si1A—Ce1Civ47.7 (19)
N1Ciii—Ce2—O3Bv63.1 (10)N1A—Si1A—Ce1Civ62.0 (11)
N3CAiv—Ce2—O3Bv99.5 (11)N1Bxxiii—Si1A—Ce1Civ102.6 (16)
O3Civ—Ce2—O3Bv99.5 (11)Ce2xv—Si1A—Ce1Civ149.6 (5)
N3BAv—Ce2—O3Bv0 (2)N3AAxvi—Si1A—Ce1Axvi54.9 (13)
N1Bi—Ce2—O2vi97.7 (12)O3Axvi—Si1A—Ce1Axvi54.9 (13)
N3AAii—Ce2—O2vi67.2 (9)N2A—Si1A—Ce1Axvi53 (2)
O3Aii—Ce2—O2vi67.2 (9)N1A—Si1A—Ce1Axvi122.3 (18)
N1Ciii—Ce2—O2vi85.7 (12)N1Bxxiii—Si1A—Ce1Axvi124.2 (17)
N3CAiv—Ce2—O2vi149.3 (7)Ce2xv—Si1A—Ce1Axvi90.3 (4)
O3Civ—Ce2—O2vi149.3 (7)Ce1Civ—Si1A—Ce1Axvi98.0 (3)
N3BAv—Ce2—O2vi70.9 (10)N3AAxvi—Si1A—Ce2xxiv92.7 (15)
O3Bv—Ce2—O2vi70.9 (10)O3Axvi—Si1A—Ce2xxiv92.7 (15)
N1Bi—Ce2—Clvi97.7 (12)N2A—Si1A—Ce2xxiv60.5 (15)
N3AAii—Ce2—Clvi67.2 (9)N1A—Si1A—Ce2xxiv59.0 (17)
O3Aii—Ce2—Clvi67.2 (9)N1Bxxiii—Si1A—Ce2xxiv166.2 (18)
N1Ciii—Ce2—Clvi85.7 (12)Ce2xv—Si1A—Ce2xxiv143.6 (6)
N3CAiv—Ce2—Clvi149.3 (7)Ce1Civ—Si1A—Ce2xxiv63.96 (19)
O3Civ—Ce2—Clvi149.3 (7)Ce1Axvi—Si1A—Ce2xxiv63.6 (3)
N3BAv—Ce2—Clvi70.9 (10)N3BAxxi—Si1B—O3Bxxi0.0 (7)
O3Bv—Ce2—Clvi70.9 (10)N3BAxxi—Si1B—N1B114 (3)
O2vi—Ce2—Clvi0.0 (7)O3Bxxi—Si1B—N1B114 (3)
N1Bi—Ce2—N1Avii154.5 (16)N3BAxxi—Si1B—N2C104.5 (17)
N3AAii—Ce2—N1Avii91.1 (14)O3Bxxi—Si1B—N2C104.5 (17)
O3Aii—Ce2—N1Avii91.1 (14)N1B—Si1B—N2C100 (2)
N1Ciii—Ce2—N1Avii73.4 (16)N3BAxxi—Si1B—N1Civ106.5 (14)
N3CAiv—Ce2—N1Avii89.9 (13)O3Bxxi—Si1B—N1Civ106.5 (14)
O3Civ—Ce2—N1Avii89.9 (13)N1B—Si1B—N1Civ114 (2)
N3BAv—Ce2—N1Avii124.9 (10)N2C—Si1B—N1Civ117 (3)
O3Bv—Ce2—N1Avii124.9 (10)N3BAxxi—Si1B—Ce1Axxv138.8 (10)
O2vi—Ce2—N1Avii73.9 (8)O3Bxxi—Si1B—Ce1Axxv138.8 (10)
Clvi—Ce2—N1Avii73.9 (8)N1B—Si1B—Ce1Axxv50.5 (17)
N1Bi—Ce2—Si1Ciii121.7 (15)N2C—Si1B—Ce1Axxv54.5 (14)
N3AAii—Ce2—Si1Ciii169.9 (7)N1Civ—Si1B—Ce1Axxv114.7 (11)
O3Aii—Ce2—Si1Ciii169.9 (7)N3BAxxi—Si1B—Ce1Bxxi54.4 (13)
N1Ciii—Ce2—Si1Ciii32.6 (12)O3Bxxi—Si1B—Ce1Bxxi54.4 (13)
N3CAiv—Ce2—Si1Ciii32.1 (6)N1B—Si1B—Ce1Bxxi117.6 (10)
O3Civ—Ce2—Si1Ciii32.1 (6)N2C—Si1B—Ce1Bxxi50.0 (10)
N3BAv—Ce2—Si1Ciii78.4 (6)N1Civ—Si1B—Ce1Bxxi128.2 (19)
O3Bv—Ce2—Si1Ciii78.4 (6)Ce1Axxv—Si1B—Ce1Bxxi95.9 (3)
O2vi—Ce2—Si1Ciii118.2 (3)N3BAxxi—Si1B—Ce2xx56.9 (11)
Clvi—Ce2—Si1Ciii118.2 (3)O3Bxxi—Si1B—Ce2xx56.9 (11)
N1Avii—Ce2—Si1Ciii82.7 (8)N1B—Si1B—Ce2xx139.6 (17)
N3BAviii—Ce1A—O3Bviii0 (2)N2C—Si1B—Ce2xx120.0 (18)
N3BAviii—Ce1A—O1ix81.0 (11)N1Civ—Si1B—Ce2xx50.3 (10)
O3Bviii—Ce1A—O1ix81.0 (11)Ce1Axxv—Si1B—Ce2xx162.2 (6)
N3BAviii—Ce1A—N1Bix80.1 (13)Ce1Bxxi—Si1B—Ce2xx89.6 (3)
O3Bviii—Ce1A—N1Bix80.1 (13)N3BAxxi—Si1B—Ce2xxvi72.2 (16)
O1ix—Ce1A—N1Bix84.8 (16)O3Bxxi—Si1B—Ce2xxvi72.2 (16)
N3BAviii—Ce1A—N2Cix92.7 (13)N1B—Si1B—Ce2xxvi46.0 (13)
O3Bviii—Ce1A—N2Cix92.7 (13)N2C—Si1B—Ce2xxvi92.9 (19)
O1ix—Ce1A—N2Cix149.0 (14)N1Civ—Si1B—Ce2xxvi148 (2)
N1Bix—Ce1A—N2Cix64.3 (18)Ce1Axxv—Si1B—Ce2xxvi74.0 (3)
N3BAviii—Ce1A—N3CAx68.4 (10)Ce1Bxxi—Si1B—Ce2xxvi78.0 (2)
O3Bviii—Ce1A—N3CAx68.4 (10)Ce2xx—Si1B—Ce2xxvi123.8 (4)
O1ix—Ce1A—N3CAx61.7 (11)N3CAxii—Si1C—O3Cxii0.0 (16)
N1Bix—Ce1A—N3CAx136 (2)N3CAxii—Si1C—N1Axxv103 (2)
N2Cix—Ce1A—N3CAx143.2 (10)O3Cxii—Si1C—N1Axxv103 (2)
N3BAviii—Ce1A—O3Cx68.4 (10)N3CAxii—Si1C—N1C104.6 (18)
O3Bviii—Ce1A—O3Cx68.4 (10)O3Cxii—Si1C—N1C104.6 (18)
O1ix—Ce1A—O3Cx61.7 (11)N1Axxv—Si1C—N1C120 (2)
N1Bix—Ce1A—O3Cx136 (2)N3CAxii—Si1C—N2B111.7 (14)
N2Cix—Ce1A—O3Cx143.2 (10)O3Cxii—Si1C—N2B111.7 (14)
N3CAx—Ce1A—O3Cx0 (2)N1Axxv—Si1C—N2B105 (3)
N3BAviii—Ce1A—N2Axi107.3 (12)N1C—Si1C—N2B112 (3)
O3Bviii—Ce1A—N2Axi107.3 (12)N3CAxii—Si1C—Ce1Bxxv46.0 (19)
O1ix—Ce1A—N2Axi146.8 (9)O3Cxii—Si1C—Ce1Bxxv46.0 (19)
N1Bix—Ce1A—N2Axi128.0 (16)N1Axxv—Si1C—Ce1Bxxv57.4 (11)
N2Cix—Ce1A—N2Axi64.0 (15)N1C—Si1C—Ce1Bxxv122.0 (14)
N3CAx—Ce1A—N2Axi90.9 (14)N2B—Si1C—Ce1Bxxv125 (2)
O3Cx—Ce1A—N2Axi90.9 (14)N3CAxii—Si1C—Ce2xxvii53.6 (13)
N3BAviii—Ce1A—O3A132.1 (8)O3Cxii—Si1C—Ce2xxvii53.6 (13)
O3Bviii—Ce1A—O3A132.1 (8)N1Axxv—Si1C—Ce2xxvii121.5 (11)
O1ix—Ce1A—O3A90.1 (12)N1C—Si1C—Ce2xxvii51.3 (10)
N1Bix—Ce1A—O3A146.1 (9)N2B—Si1C—Ce2xxvii133 (2)
N2Cix—Ce1A—O3A115.5 (17)Ce1Bxxv—Si1C—Ce2xxvii80.0 (2)
N3CAx—Ce1A—O3A66.1 (13)N3CAxii—Si1C—Ce1Cxxviii144.9 (14)
O3Cx—Ce1A—O3A66.1 (13)O3Cxii—Si1C—Ce1Cxxviii144.9 (14)
N2Axi—Ce1A—O3A60.2 (11)N1Axxv—Si1C—Ce1Cxxviii62.6 (10)
N3BAviii—Ce1A—Clxii158.6 (11)N1C—Si1C—Ce1Cxxviii110.2 (10)
O3Bviii—Ce1A—Clxii158.6 (11)N2B—Si1C—Ce1Cxxviii50.7 (16)
O1ix—Ce1A—Clxii85.4 (7)Ce1Bxxv—Si1C—Ce1Cxxviii113.7 (6)
N1Bix—Ce1A—Clxii82.3 (9)Ce2xxvii—Si1C—Ce1Cxxviii161.5 (4)
N2Cix—Ce1A—Clxii90.5 (8)N3CAxii—Si1C—Ce1Cxii59.6 (8)
N3CAx—Ce1A—Clxii118.8 (6)O3Cxii—Si1C—Ce1Cxii59.6 (8)
O3Cx—Ce1A—Clxii118.8 (6)N1Axxv—Si1C—Ce1Cxii105.8 (13)
N2Axi—Ce1A—Clxii93.1 (9)N1C—Si1C—Ce1Cxii134.4 (19)
O3A—Ce1A—Clxii63.9 (5)N2B—Si1C—Ce1Cxii53.2 (10)
N3BAviii—Ce1A—O2xii158.6 (11)Ce1Bxxv—Si1C—Ce1Cxii79.7 (3)
O3Bviii—Ce1A—O2xii158.6 (11)Ce2xxvii—Si1C—Ce1Cxii103.3 (3)
O1ix—Ce1A—O2xii85.4 (7)Ce1Cxxviii—Si1C—Ce1Cxii91.9 (2)
N1Bix—Ce1A—O2xii82.3 (9)N3CAxii—Si1C—Ce1Bxxiii114 (2)
N2Cix—Ce1A—O2xii90.5 (8)O3Cxii—Si1C—Ce1Bxxiii114 (2)
N3CAx—Ce1A—O2xii118.8 (6)N1Axxv—Si1C—Ce1Bxxiii141.9 (11)
O3Cx—Ce1A—O2xii118.8 (6)N1C—Si1C—Ce1Bxxiii43.7 (17)
N2Axi—Ce1A—O2xii93.1 (9)N2B—Si1C—Ce1Bxxiii69 (2)
O3A—Ce1A—O2xii63.9 (5)Ce1Bxxv—Si1C—Ce1Bxxiii157.0 (4)
Clxii—Ce1A—O2xii0.0 (3)Ce2xxvii—Si1C—Ce1Bxxiii77.6 (4)
N3CAxiii—Ce1B—O3Cxiii0.0 (16)Ce1Cxxviii—Si1C—Ce1Bxxiii89.4 (3)
N3CAxiii—Ce1B—N1Cxiv130.8 (13)Ce1Cxii—Si1C—Ce1Bxxiii100.1 (5)
O3Cxiii—Ce1B—N1Cxiv130.8 (13)N2Cxviii—Si2—O1113.9 (18)
N3CAxiii—Ce1B—N2Cxv101.5 (18)N2Cxviii—Si2—N2Bix117 (2)
O3Cxiii—Ce1B—N2Cxv101.5 (18)O1—Si2—N2Bix98 (2)
N1Cxiv—Ce1B—N2Cxv122 (2)N2Cxviii—Si2—N2Axiv108 (3)
N3CAxiii—Ce1B—O1xiv63.9 (11)O1—Si2—N2Axiv111.6 (17)
O3Cxiii—Ce1B—O1xiv63.9 (11)N2Bix—Si2—N2Axiv108 (2)
N1Cxiv—Ce1B—O1xiv92.9 (12)N2Cxviii—Si2—Ce1Cxiii132.3 (13)
N2Cxv—Ce1B—O1xiv136.8 (12)O1—Si2—Ce1Cxiii113.8 (17)
N3CAxiii—Ce1B—O3B68.9 (12)N2Bix—Si2—Ce1Cxiii56.5 (10)
O3Cxiii—Ce1B—O3B68.9 (12)N2Axiv—Si2—Ce1Cxiii51.6 (17)
N1Cxiv—Ce1B—O3B148.0 (11)N2Cxviii—Si2—Ce1Axvii54.3 (15)
N2Cxv—Ce1B—O3B64.2 (13)O1—Si2—Ce1Axvii112.9 (13)
O1xiv—Ce1B—O3B72.8 (8)N2Bix—Si2—Ce1Axvii149.2 (17)
N3CAxiii—Ce1B—N1A63.9 (13)N2Axiv—Si2—Ce1Axvii58 (2)
O3Cxiii—Ce1B—N1A63.9 (13)Ce1Cxiii—Si2—Ce1Axvii105.1 (3)
N1Cxiv—Ce1B—N1A82.5 (14)N2Cxviii—Si2—Ce1Civ117.3 (14)
N2Cxv—Ce1B—N1A105.2 (11)O1—Si2—Ce1Civ49.0 (11)
O1xiv—Ce1B—N1A103.3 (10)N2Bix—Si2—Ce1Civ51.3 (15)
O3B—Ce1B—N1A128.0 (16)N2Axiv—Si2—Ce1Civ134 (2)
N3CAxiii—Ce1B—O2xvi134.6 (7)Ce1Cxiii—Si2—Ce1Civ94.5 (6)
O3Cxiii—Ce1B—O2xvi134.6 (7)Ce1Axvii—Si2—Ce1Civ158.4 (3)
N1Cxiv—Ce1B—O2xvi79.0 (10)N2Cxviii—Si2—Ce1Bviii47.2 (12)
N2Cxv—Ce1B—O2xvi79.6 (11)O1—Si2—Ce1Bviii124.8 (8)
O1xiv—Ce1B—O2xvi84.2 (7)N2Bix—Si2—Ce1Bviii69.8 (19)
O3B—Ce1B—O2xvi71.3 (10)N2Axiv—Si2—Ce1Bviii123.4 (16)
N1A—Ce1B—O2xvi160.5 (13)Ce1Cxiii—Si2—Ce1Bviii103.0 (2)
N3CAxiii—Ce1B—Clxvi134.6 (7)Ce1Axvii—Si2—Ce1Bviii94.2 (6)
O3Cxiii—Ce1B—Clxvi134.6 (7)Ce1Civ—Si2—Ce1Bviii90.0 (3)
N1Cxiv—Ce1B—Clxvi79.0 (10)Ce1Cxv—Cl—Ce2xxix129.6 (3)
N2Cxv—Ce1B—Clxvi79.6 (11)Ce1Cxv—Cl—Ce1Axx108.8 (6)
O1xiv—Ce1B—Clxvi84.2 (7)Ce2xxix—Cl—Ce1Axx104.0 (3)
O3B—Ce1B—Clxvi71.3 (10)Ce1Cxv—Cl—Ce1Bxi104.7 (3)
N1A—Ce1B—Clxvi160.5 (13)Ce2xxix—Cl—Ce1Bxi100.3 (6)
O2xvi—Ce1B—Clxvi0.0 (6)Ce1Axx—Cl—Ce1Bxi107.9 (3)
N3CAxiii—Ce1B—Si1Bxv84.1 (7)Si2—O1—Ce1Axxv130.5 (15)
O3Cxiii—Ce1B—Si1Bxv84.1 (7)Si2—O1—Ce1Civ100.4 (10)
N1Cxiv—Ce1B—Si1Bxv145.1 (12)Ce1Axxv—O1—Ce1Civ87.9 (15)
N2Cxv—Ce1B—Si1Bxv32.6 (11)Si2—O1—Ce1Bxxiii125 (2)
O1xiv—Ce1B—Si1Bxv104.3 (6)Ce1Axxv—O1—Ce1Bxxiii96.0 (8)
O3B—Ce1B—Si1Bxv31.6 (6)Ce1Civ—O1—Ce1Bxxiii109.3 (8)
N1A—Ce1B—Si1Bxv121.2 (9)Si1Axi—O3A—Ce1Cx163.5 (17)
O2xvi—Ce1B—Si1Bxv73.0 (4)Si1Axi—O3A—Ce2xxx98 (2)
Clxvi—Ce1B—Si1Bxv73.0 (4)Ce1Cx—O3A—Ce2xxx95.7 (9)
N3CAxiii—Ce1B—Si1Cix31.3 (6)Si1Axi—O3A—Ce1A95.5 (11)
O3Cxiii—Ce1B—Si1Cix31.3 (6)Ce1Cx—O3A—Ce1A83.5 (17)
N1Cxiv—Ce1B—Si1Cix109.7 (10)Ce2xxx—O3A—Ce1A123.7 (9)
N2Cxv—Ce1B—Si1Cix103.8 (13)Si1Bxv—O3B—Ce1Axxxi154 (3)
O1xiv—Ce1B—Si1Cix84.0 (8)Si1Bxv—O3B—Ce1B94.0 (16)
O3B—Ce1B—Si1Cix97.4 (10)Ce1Axxxi—O3B—Ce1B99.0 (8)
N1A—Ce1B—Si1Cix32.6 (12)Si1Bxv—O3B—Ce2xxxii92.1 (14)
O2xvi—Ce1B—Si1Cix165.7 (4)Ce1Axxxi—O3B—Ce2xxxii101.7 (8)
Clxvi—Ce1B—Si1Cix165.7 (4)Ce1B—O3B—Ce2xxxii116.9 (19)
Si1Bxv—Ce1B—Si1Cix102.2 (4)Si1Cxx—O3C—Ce1Bxxii103 (2)
N3AAxvii—Ce1C—O3Axvii0.0 (19)Si1Cxx—O3C—Ce2xviii94.3 (16)
N3AAxvii—Ce1C—N2Axviii80.0 (16)Ce1Bxxii—O3C—Ce2xviii112.5 (12)
O3Axvii—Ce1C—N2Axviii80.0 (16)Si1Cxx—O3C—Ce1Axvii159 (3)
N3AAxvii—Ce1C—O1xviii98.4 (13)Ce1Bxxii—O3C—Ce1Axvii95.7 (13)
O3Axvii—Ce1C—O1xviii98.4 (13)Ce2xviii—O3C—Ce1Axvii87.3 (11)
N2Axviii—Ce1C—O1xviii177.7 (14)Si1Cxx—O3C—Ce1C88.8 (10)
N3AAxvii—Ce1C—N2Bxix120.3 (13)Ce1Bxxii—O3C—Ce1C106.0 (16)
O3Axvii—Ce1C—N2Bxix120.3 (13)Ce2xviii—O3C—Ce1C140 (2)
N2Axviii—Ce1C—N2Bxix118.0 (11)Ce1Axvii—O3C—Ce1C77.0 (6)
O1xviii—Ce1C—N2Bxix61.2 (10)Si1C—N1C—Si1Bxviii117 (4)
N3AAxvii—Ce1C—N2Bxx87.5 (14)Si1C—N1C—Ce1Bxxiii105.9 (15)
O3Axvii—Ce1C—N2Bxx87.5 (14)Si1Bxviii—N1C—Ce1Bxxiii124 (2)
N2Axviii—Ce1C—N2Bxx67.3 (13)Si1C—N1C—Ce2xxvii96.1 (16)
O1xviii—Ce1C—N2Bxx114.5 (12)Si1Bxviii—N1C—Ce2xxvii97.4 (14)
N2Bxix—Ce1C—N2Bxx151.9 (6)Ce1Bxxiii—N1C—Ce2xxvii113 (2)
N3AAxvii—Ce1C—O3C69.0 (14)Si1B—N1B—Si1Axiv120.8 (18)
O3Axvii—Ce1C—O3C69.0 (14)Si1B—N1B—Ce1Axxv96 (3)
N2Axviii—Ce1C—O3C121.6 (13)Si1Axiv—N1B—Ce1Axxv130.4 (17)
O1xviii—Ce1C—O3C59.1 (10)Si1B—N1B—Ce2xxvi103.9 (13)
N2Bxix—Ce1C—O3C120.3 (13)Si1Axiv—N1B—Ce2xxvi97 (3)
N2Bxx—Ce1C—O3C63.2 (8)Ce1Axxv—N1B—Ce2xxvi105.2 (10)
N3AAxvii—Ce1C—O2xxi159.9 (6)Si1Cix—N1A—Si1A122 (3)
O3Axvii—Ce1C—O2xxi159.9 (6)Si1Cix—N1A—Ce1B90.0 (12)
N2Axviii—Ce1C—O2xxi95.6 (13)Si1A—N1A—Ce1B121 (2)
O1xviii—Ce1C—O2xxi86.5 (10)Si1Cix—N1A—Ce1Civ85.5 (17)
N2Bxix—Ce1C—O2xxi79.2 (13)Si1A—N1A—Ce1Civ85.6 (10)
N2Bxx—Ce1C—O2xxi72.8 (14)Ce1B—N1A—Ce1Civ149.9 (11)
O3C—Ce1C—O2xxi97.6 (10)Si1Cix—N1A—Ce2xxiv140.4 (15)
N3AAxvii—Ce1C—Clxxi159.9 (6)Si1A—N1A—Ce2xxiv91 (2)
O3Axvii—Ce1C—Clxxi159.9 (6)Ce1B—N1A—Ce2xxiv90.2 (14)
N2Axviii—Ce1C—Clxxi95.6 (13)Ce1Civ—N1A—Ce2xxiv75.0 (8)
O1xviii—Ce1C—Clxxi86.5 (10)Si2iv—N2C—Si1B141 (3)
N2Bxix—Ce1C—Clxxi79.2 (13)Si2iv—N2C—Ce1Bxxi103 (2)
N2Bxx—Ce1C—Clxxi72.8 (14)Si1B—N2C—Ce1Bxxi97.4 (16)
O3C—Ce1C—Clxxi97.6 (10)Si2iv—N2C—Ce1Axxv93.7 (13)
O2xxi—Ce1C—Clxxi0.0 (4)Si1B—N2C—Ce1Axxv92 (2)
N3AAxvii—Ce1C—N1Axviii97.9 (13)Ce1Bxxi—N2C—Ce1Axxv139 (2)
O3Axvii—Ce1C—N1Axviii97.9 (13)Si2xxv—N2B—Si1C157 (4)
N2Axviii—Ce1C—N1Axviii59.0 (11)Si2xxv—N2B—Ce1Cxxviii96.6 (12)
O1xviii—Ce1C—N1Axviii119.7 (10)Si1C—N2B—Ce1Cxxviii97 (2)
N2Bxix—Ce1C—N1Axviii60.4 (15)Si2xxv—N2B—Ce1Cxii90.1 (13)
N2Bxx—Ce1C—N1Axviii123.9 (11)Si1C—N2B—Ce1Cxii94.6 (14)
O3C—Ce1C—N1Axviii165.7 (12)Ce1Cxxviii—N2B—Ce1Cxii130 (3)
O2xxi—Ce1C—N1Axviii96.5 (10)Si1A—N2A—Si2xxiii135 (2)
Clxxi—Ce1C—N1Axviii96.5 (10)Si1A—N2A—Ce1Civ101 (3)
N3AAxvii—Ce1C—Si2xxii83.5 (8)Si2xxiii—N2A—Ce1Civ95 (2)
O3Axvii—Ce1C—Si2xxii83.5 (8)Si1A—N2A—Ce1Axvi97 (2)
N2Axviii—Ce1C—Si2xxii33.8 (7)Si2xxiii—N2A—Ce1Axvi88 (2)
O1xviii—Ce1C—Si2xxii148.0 (6)Ce1Civ—N2A—Ce1Axvi152 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x1, y1, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1; (v) x, y1, z1; (vi) x1, y1, z1; (vii) x, y1/2, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x+1, y+1/2, z+1/2; (x) x+3/2, y+1, z1/2; (xi) x+1, y, z; (xii) x, y, z1; (xiii) x+1, y+1/2, z+3/2; (xiv) x+1/2, y+1, z+1/2; (xv) x, y+1, z; (xvi) x1, y, z; (xvii) x+3/2, y+1, z+1/2; (xviii) x+1/2, y+1/2, z+1; (xix) x+3/2, y, z+1/2; (xx) x, y, z+1; (xxi) x, y1, z; (xxii) x+1, y1/2, z+3/2; (xxiii) x+1/2, y+1, z1/2; (xxiv) x, y+1/2, z+1/2; (xxv) x+1, y1/2, z+1/2; (xxvi) x+1/2, y, z+1/2; (xxvii) x+1/2, y+1/2, z; (xxviii) x+3/2, y, z1/2; (xxix) x+1, y+1, z+1; (xxx) x+1, y+1, z; (xxxi) x1/2, y+3/2, z+1; (xxxii) x, y+1, z+1.

Experimental details

(3.0GPa)(8.5GPa)(8.6GPa)
Crystal data
Chemical formulaCe4Cl0.92N6.92O3.16Si4Ce4Cl0.93N6.93O3.14Si4Ce4Cl0.93N6.93O3.14Si4
Mr853.05853.28853.28
Crystal system, space groupCubic, P213Cubic, P213Orthorhombic, P212121
Temperature (K)293293293
a, b, c (Å)10.347 (4), 10.347 (4), 10.347 (4)10.223 (3), 10.223 (3), 10.223 (3)10.824 (9), 10.479 (3), 8.967 (3)
α, β, γ (°)90.00 (4), 90.00 (4), 90.00 (4)90.00 (4), 90.00 (4), 90.00 (4)90.00 (4), 90.00 (4), 90.00 (4)
V3)1107.8 (7)1068.4 (5)1017.1 (10)
Z444
Radiation typeSynchrotron, λ = 0.45000 ÅSynchrotron, λ = 0.45000 ÅSynchrotron, λ = 0.45000 Å
µ (mm1)4.484.654.89
Crystal size (mm)0.60 × 0.15 × 0.100.11 × 0.11 × 0.040.11 × 0.10 × 0.04
Data collection
DiffractometerHUBER
diffractometer D3, HASYLAB/DESY
HUBER
diffractometer D3, HASYLAB/DESY
HUBER
diffractometer D3, HASYLAB/DESY
Absorption correctionGaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)

Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.469 0.597

thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1

thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1

No gasket shadowing corrections were made

Gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)

Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.466 0.597

thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1

thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1

No gasket shadowing corrections were made

Gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)

Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.492 0.597

thickness of diamond anvil 1: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0334 mm-1

thickness of diamond anvil 2: 1.300 mm, mu = 0.0958 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0334 mm-1

No gasket shadowing corrections were made

Tmin, Tmax0.360, 0.4820.377, 0.5070.404, 0.503
No. of measured, independent and
observed [I > 2σ(I)] reflections
1712, 476, 471 1557, 535, 510 1726, 823, 663
Rint0.0510.0420.084
θmax (°)14.015.415.0
(sin θ/λ)max1)0.5360.5910.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.02 0.028, 0.070, 1.04 0.054, 0.122, 1.06
No. of reflections476535823
No. of parameters373779
No. of restraints440
w = 1/[σ2(Fo2) + (0.0375P)2 + 16.083P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0449P)2 + 11.8113P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.90, 0.861.35, 1.261.55, 1.98
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.04 (12)0.04 (14)0.2 (2)

Computer programs: DIF4 (Eichhorn, 1987a), REDUCE (Eichhorn, 1987b); AVSORT (Eichhorn, 1978); ABSORB v6.0 (Angel, 2004), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), ATOMS (Dowty, 1999).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds