Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Tribenzo-18-crown-6 binds two aceto­nitrile ligands, i.e. C24H24O6·2C2H3N, one to each face of the crown ring. The crown conformation is relatively low in energy, but does not appear optimized for cation binding. Few significant intermolecular interactions are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016109/bk1618sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016109/bk1618Isup2.hkl
Contains datablock I

CCDC reference: 175116

Comment top

Chemical substitution of the backbone of a crown-ether molecule can dramatically affect its ability to bind specific metal ions (Hay et al., 1996; Sachleben et al., 1996; Tobe et al., 1998, Vögtle & Weber, 1992). As part of our investigations of the steric effects of benzo-substitution on crown ether molecules, we structurally characterized tribenzo-18-crown-6 (Pedersen, 1967; Talanova, et al., 1999).

As illustrated in Fig. 1, the crown ether crystallizes with two molecules of acetonitrile, (I), forming weak hydrogen bonds between the acetonitrile methyl groups and the crown O atoms. The Cmethyl···O separations range from 3.080 (2) (C25···O6) to 3.836 (2) Å (C25···O4) and average about 3.4 Å, which is similar to previously reported results (Sachleben et al., 1997).

The presence of the weakly binding acetonitrile guest molecules suggests that the observed crown-ether conformation could be a relatively low-energy binding mode. A conformer search using computational methods previously described (Bryan et al., 1998) agreed, finding no lower energy conformers. The oxygen dipoles are not oriented towards the center of the crown cavity, inhibiting efficient coordination of a guest species in the center of the cavity. Moreover, only four (O3—O6) of the six dipoles point out one face of the crown cavity, weakening binding to a particular face. Such divergence of the donor groups suggests that this conformation will not efficiently bind a cation (Hay & Hancock, 2001). The conformation of the crown ring can be described in terms of the torsion angles around ring (Dale, 1980), where g and a represent gauche and anti, respectively, 0 represents an aromatic O—C—C—O torsion angle, and a superscript following the g indicates the sign of the angle. Starting with the O1—C1—C2—O2 angle, it is 0aa g+aa 0ag+ g+aa 0aa g-aa, where the spaces indicate O-atom locations.

There are few significant intermolecular interactions in this structure. No π-stacking of arene rings is observed, but one edge–face arene interaction is apparent (C17—C20···C1i—C6i). Two C—H···π interactions are also observed, H7B···C9ii—14ii and H24A···C17iii—22iii [symmetry codes: (i) -x, -y, 1 - z; (ii) -x, -y, -z; (iii) 1 - x, -y, 1 - z].

Related literature top

For related literature, see: Bryan et al. (1998); Dale (1980); Hay & Hancock (2001); Hay et al. (1996); Pedersen (1967); Sachleben et al. (1996, 1997); Talanova et al. (1999); Tobe et al. (1998); Vögtle & Weber (1992).

Experimental top

Tribenzo-18-crown-6 was prepared as described elsewhere (Pedersen, 1967). Crystals were prepared by slow evaporation of an acetonitrile solution.

Refinement top

The crystals slowly desolvate when removed from the mother liquor. Crystals were removed from the mother liquor to paraffin oil, then quickly mounted and placed under the diffractometer's cold stream. A 1.1 mm collimator was used. All H atoms were placed in calculated positions, treated as riding on their attached C atoms, and given an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times the equivalent isotropic displacement parameter of the atom to which they were attached. The C—H distances used depended on the type of C atom: methylene C—H = 0.99 Å and arene C—H = 0.95 Å. The positional parameters of the methyl H atoms were allowed to refine [C—H = 0.92 (2)–1.00 (2) Å.

Computing details top

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids. For clarity, the C atoms are represented by a boundary ellipse, and H atoms, except those on acetonitrile, have been omitted.
2,3,12,15,22,25-hexaoxatetracyclo-[24.4.0.06,11.016,21]triaconta- 6(11),7,9,16 (21),17,19,26 (1),27,29-nonaene acetonitrile disolvate top
Crystal data top
C24H24O6·2C2H3NZ = 2
Mr = 490.5F(000) = 520
Triclinic, P1Dx = 1.29 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.109 (2) ÅCell parameters from 25 reflections
b = 10.883 (3) Åθ = 10.1–15.1°
c = 13.964 (4) ŵ = 0.09 mm1
α = 110.16 (2)°T = 100 K
β = 96.60 (2)°Block, colourless
γ = 98.27 (2)°0.56 × 0.49 × 0.43 mm
V = 1265.7 (6) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 29.0°, θmin = 2.0°
Graphite monochromatorh = 126
ω scansk = 1414
7849 measured reflectionsl = 1819
6714 independent reflections3 standard reflections every 120 min
5308 reflections with I > 2σ(I) intensity decay: 12%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.2556P]
where P = (Fo2 + 2Fc2)/3
6714 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
0 constraints
Crystal data top
C24H24O6·2C2H3Nγ = 98.27 (2)°
Mr = 490.5V = 1265.7 (6) Å3
Triclinic, P1Z = 2
a = 9.109 (2) ÅMo Kα radiation
b = 10.883 (3) ŵ = 0.09 mm1
c = 13.964 (4) ÅT = 100 K
α = 110.16 (2)°0.56 × 0.49 × 0.43 mm
β = 96.60 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
7849 measured reflections3 standard reflections every 120 min
6714 independent reflections intensity decay: 12%
5308 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
6714 reflectionsΔρmin = 0.27 e Å3
343 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05609 (9)0.11117 (8)0.38135 (6)0.0186 (2)
O20.12291 (9)0.08200 (8)0.23342 (6)0.0192 (2)
O30.02536 (9)0.07881 (8)0.13621 (7)0.0203 (2)
O40.31311 (9)0.11543 (8)0.14322 (6)0.0210 (2)
O50.48959 (9)0.16230 (8)0.34147 (6)0.0206 (2)
O60.35578 (9)0.05222 (8)0.45557 (6)0.0183 (2)
C10.04773 (12)0.22320 (11)0.31835 (8)0.0181 (3)
C20.14416 (12)0.20684 (11)0.23912 (8)0.0178 (3)
C30.25265 (13)0.31475 (12)0.17173 (9)0.0220 (3)
C40.26616 (15)0.43861 (13)0.18205 (10)0.0262 (3)
C50.17243 (15)0.45447 (13)0.25964 (10)0.0265 (3)
C60.06243 (14)0.34697 (12)0.32804 (9)0.0224 (3)
C70.18316 (13)0.08118 (12)0.13434 (9)0.0202 (3)
C80.13442 (13)0.05471 (12)0.13071 (9)0.0203 (3)
C90.08811 (13)0.19306 (11)0.12325 (8)0.0192 (3)
C100.24568 (13)0.21391 (11)0.12786 (8)0.0190 (3)
C110.31871 (14)0.32500 (12)0.11254 (9)0.0230 (3)
C120.23673 (16)0.41543 (12)0.09300 (9)0.0256 (3)
C130.08313 (16)0.39590 (13)0.08990 (10)0.0267 (4)
C140.00829 (15)0.28463 (13)0.10523 (9)0.0238 (3)
C150.47462 (13)0.13953 (13)0.16578 (9)0.0216 (3)
C160.53751 (13)0.23140 (12)0.27620 (9)0.0214 (3)
C170.52053 (13)0.23507 (11)0.44631 (9)0.0190 (3)
C180.44695 (12)0.17534 (11)0.50758 (9)0.0185 (3)
C190.46831 (14)0.24354 (13)0.61395 (9)0.0237 (3)
C200.56407 (15)0.36840 (13)0.65968 (10)0.0286 (3)
C210.63902 (15)0.42513 (13)0.60021 (10)0.0282 (3)
C220.61674 (14)0.35873 (12)0.49279 (10)0.0237 (3)
C230.26779 (13)0.00082 (12)0.51737 (8)0.0195 (3)
C240.17051 (13)0.13154 (12)0.45067 (9)0.0195 (3)
N10.06974 (14)0.34722 (14)0.37634 (10)0.0376 (4)
C250.13874 (16)0.21267 (16)0.38968 (11)0.0299 (4)
C260.02294 (14)0.28886 (13)0.38161 (9)0.0244 (3)
N20.39136 (15)0.23808 (13)0.04374 (10)0.0372 (4)
C270.23452 (18)0.15528 (16)0.18940 (12)0.0314 (4)
C280.32199 (14)0.20203 (13)0.10756 (10)0.0256 (3)
H30.318000.304000.118300.0260*
H40.340100.512100.135500.0310*
H50.182400.538800.266800.0320*
H60.002400.358700.381200.0270*
H7A0.294600.104600.122200.0240*
H7B0.147000.148600.079100.0240*
H8A0.185100.058700.065500.0240*
H8B0.162100.123500.189700.0240*
H110.424700.339500.115400.0280*
H120.287000.490700.081800.0310*
H130.028000.458200.077300.0320*
H140.097600.271600.103300.0290*
H15A0.516000.179400.118200.0260*
H15B0.507600.053300.153000.0260*
H16A0.648900.253200.287100.0260*
H16B0.499000.315500.292200.0260*
H190.417600.205100.655700.0280*
H200.577700.414700.732500.0340*
H210.705700.509200.632200.0340*
H220.667400.398200.451600.0280*
H23A0.203800.064300.549400.0230*
H23B0.335500.009700.573600.0230*
H24A0.232600.191000.410600.0230*
H24B0.123300.174500.494600.0230*
H25A0.202 (2)0.2162 (18)0.3421 (15)0.0450*
H25B0.088 (2)0.118 (2)0.3723 (14)0.0450*
H25C0.196 (2)0.2535 (18)0.4591 (15)0.0450*
H27A0.168 (2)0.1038 (19)0.1701 (15)0.0470*
H27B0.181 (2)0.228 (2)0.1985 (15)0.0470*
H27C0.302 (2)0.095 (2)0.2510 (16)0.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0170 (4)0.0206 (4)0.0168 (4)0.0025 (3)0.0012 (3)0.0071 (3)
O20.0214 (4)0.0205 (4)0.0138 (4)0.0009 (3)0.0011 (3)0.0066 (3)
O30.0162 (4)0.0235 (4)0.0231 (4)0.0021 (3)0.0018 (3)0.0120 (3)
O40.0167 (4)0.0239 (4)0.0218 (4)0.0016 (3)0.0002 (3)0.0098 (3)
O50.0220 (4)0.0218 (4)0.0153 (4)0.0004 (3)0.0005 (3)0.0060 (3)
O60.0172 (4)0.0210 (4)0.0139 (4)0.0014 (3)0.0016 (3)0.0042 (3)
C10.0170 (5)0.0214 (5)0.0155 (5)0.0034 (4)0.0050 (4)0.0058 (4)
C20.0174 (5)0.0203 (5)0.0153 (5)0.0018 (4)0.0048 (4)0.0063 (4)
C30.0198 (5)0.0251 (6)0.0180 (5)0.0001 (4)0.0023 (4)0.0063 (4)
C40.0249 (6)0.0223 (6)0.0257 (6)0.0042 (5)0.0049 (5)0.0051 (5)
C50.0284 (6)0.0209 (6)0.0309 (6)0.0024 (5)0.0092 (5)0.0102 (5)
C60.0224 (6)0.0235 (6)0.0234 (6)0.0054 (4)0.0062 (4)0.0102 (5)
C70.0175 (5)0.0260 (6)0.0153 (5)0.0003 (4)0.0017 (4)0.0083 (4)
C80.0153 (5)0.0271 (6)0.0187 (5)0.0033 (4)0.0003 (4)0.0101 (4)
C90.0222 (5)0.0213 (5)0.0127 (5)0.0022 (4)0.0011 (4)0.0061 (4)
C100.0223 (5)0.0208 (5)0.0110 (5)0.0014 (4)0.0006 (4)0.0044 (4)
C110.0242 (6)0.0236 (6)0.0162 (5)0.0027 (5)0.0009 (4)0.0054 (4)
C120.0364 (7)0.0200 (6)0.0168 (5)0.0013 (5)0.0009 (5)0.0063 (4)
C130.0369 (7)0.0239 (6)0.0207 (6)0.0082 (5)0.0028 (5)0.0099 (5)
C140.0257 (6)0.0269 (6)0.0203 (5)0.0067 (5)0.0029 (5)0.0103 (5)
C150.0165 (5)0.0281 (6)0.0199 (5)0.0028 (4)0.0036 (4)0.0088 (5)
C160.0175 (5)0.0248 (6)0.0211 (5)0.0006 (4)0.0017 (4)0.0093 (5)
C170.0168 (5)0.0211 (5)0.0165 (5)0.0053 (4)0.0005 (4)0.0043 (4)
C180.0144 (5)0.0211 (5)0.0165 (5)0.0046 (4)0.0006 (4)0.0033 (4)
C190.0200 (5)0.0296 (6)0.0169 (5)0.0056 (5)0.0018 (4)0.0030 (5)
C200.0264 (6)0.0285 (6)0.0196 (6)0.0046 (5)0.0004 (5)0.0032 (5)
C210.0249 (6)0.0213 (6)0.0281 (6)0.0020 (5)0.0027 (5)0.0004 (5)
C220.0209 (5)0.0216 (6)0.0255 (6)0.0029 (4)0.0002 (4)0.0066 (5)
C230.0178 (5)0.0275 (6)0.0142 (5)0.0056 (4)0.0029 (4)0.0084 (4)
C240.0179 (5)0.0252 (6)0.0177 (5)0.0049 (4)0.0016 (4)0.0111 (4)
N10.0308 (6)0.0509 (8)0.0398 (7)0.0158 (6)0.0061 (5)0.0242 (6)
C250.0253 (6)0.0378 (8)0.0277 (7)0.0113 (6)0.0025 (5)0.0122 (6)
C260.0217 (6)0.0325 (6)0.0205 (6)0.0034 (5)0.0015 (4)0.0131 (5)
N20.0345 (6)0.0383 (7)0.0339 (6)0.0026 (5)0.0136 (5)0.0068 (5)
C270.0334 (7)0.0337 (7)0.0310 (7)0.0088 (6)0.0150 (6)0.0128 (6)
C280.0237 (6)0.0270 (6)0.0249 (6)0.0023 (5)0.0042 (5)0.0092 (5)
Geometric parameters (Å, º) top
O1—C11.3757 (15)C23—C241.4987 (18)
O1—C241.4335 (15)C3—H30.95
O2—C21.3755 (16)C4—H40.95
O2—C71.4321 (15)C5—H50.95
O3—C81.4296 (15)C6—H60.95
O3—C91.3711 (16)C7—H7B0.99
O4—C101.3746 (16)C7—H7A0.99
O4—C151.4346 (15)C8—H8B0.99
O5—C161.4340 (16)C8—H8A0.99
O5—C171.3754 (15)C11—H110.95
O6—C181.3722 (15)C12—H120.95
O6—C231.4363 (15)C13—H130.95
N1—C261.137 (2)C14—H140.95
N2—C281.1434 (19)C15—H15A0.99
C1—C61.3887 (19)C15—H15B0.99
C1—C21.4087 (16)C16—H16B0.99
C2—C31.3899 (17)C16—H16A0.99
C3—C41.394 (2)C19—H190.95
C4—C51.375 (2)C20—H200.95
C5—C61.3991 (19)C21—H210.95
C7—C81.502 (2)C22—H220.95
C9—C141.3872 (19)C23—H23A0.99
C9—C101.4110 (18)C23—H23B0.99
C10—C111.3891 (19)C24—H24B0.99
C11—C121.397 (2)C24—H24A0.99
C12—C131.378 (2)C25—C261.450 (2)
C13—C141.397 (2)C25—H25B1.00 (2)
C15—C161.5082 (17)C25—H25C0.964 (19)
C17—C221.3887 (19)C25—H25A0.935 (19)
C17—C181.4120 (18)C27—C281.458 (2)
C18—C191.3882 (17)C27—H27A0.96 (2)
C19—C201.396 (2)C27—H27B0.92 (2)
C20—C211.378 (2)C27—H27C0.96 (2)
C21—C221.3979 (19)
C1—O1—C24115.99 (10)O3—C8—H8A110.01
C2—O2—C7113.86 (9)O3—C8—H8B110.02
C8—O3—C9116.38 (10)C7—C8—H8A110.04
C10—O4—C15118.21 (10)C7—C8—H8B110.03
C16—O5—C17116.19 (10)H8A—C8—H8B108.44
C18—O6—C23115.26 (9)C10—C11—H11119.89
O1—C1—C2115.59 (11)C12—C11—H11119.91
O1—C1—C6124.89 (10)C11—C12—H12119.89
C2—C1—C6119.52 (11)C13—C12—H12119.85
O2—C2—C1116.55 (10)C12—C13—H13119.95
O2—C2—C3123.88 (10)C14—C13—H13119.93
C1—C2—C3119.57 (12)C9—C14—H14119.89
C2—C3—C4120.42 (12)C13—C14—H14119.93
C3—C4—C5120.03 (13)O4—C15—H15A109.09
C4—C5—C6120.31 (14)O4—C15—H15B109.07
C1—C6—C5120.16 (12)C16—C15—H15A109.12
O2—C7—C8109.81 (10)C16—C15—H15B109.09
O3—C8—C7108.30 (10)H15A—C15—H15B107.86
O3—C9—C10115.34 (11)O5—C16—H16A110.28
O3—C9—C14124.91 (11)O5—C16—H16B110.35
C10—C9—C14119.75 (12)C15—C16—H16A110.36
O4—C10—C9115.03 (11)C15—C16—H16B110.29
O4—C10—C11125.43 (11)H16A—C16—H16B108.61
C9—C10—C11119.48 (12)C18—C19—H19119.90
C10—C11—C12120.20 (12)C20—C19—H19119.94
C11—C12—C13120.26 (13)C19—C20—H20119.67
C12—C13—C14120.12 (13)C21—C20—H20119.71
C9—C14—C13120.18 (13)C20—C21—H21120.01
O4—C15—C16112.50 (10)C22—C21—H21120.08
O5—C16—C15106.96 (11)C17—C22—H22120.02
O5—C17—C18115.34 (11)C21—C22—H22120.01
O5—C17—C22124.58 (11)O6—C23—H23A109.70
C18—C17—C22120.09 (11)O6—C23—H23B109.73
O6—C18—C17116.27 (10)C24—C23—H23A109.74
O6—C18—C19124.50 (11)C24—C23—H23B109.71
C17—C18—C19119.22 (12)H23A—C23—H23B108.23
C18—C19—C20120.16 (12)O1—C24—H24A109.92
C19—C20—C21120.61 (12)O1—C24—H24B109.89
C20—C21—C22119.91 (13)C23—C24—H24A109.89
C17—C22—C21119.98 (12)C23—C24—H24B109.92
O6—C23—C24109.71 (9)H24A—C24—H24B108.24
O1—C24—C23108.97 (11)N1—C26—C25178.51 (16)
C2—C3—H3119.78C26—C25—H25A109.2 (12)
C4—C3—H3119.81C26—C25—H25B108.0 (11)
C3—C4—H4120.02C26—C25—H25C107.5 (12)
C5—C4—H4119.95H25A—C25—H25B109.3 (16)
C4—C5—H5119.84H25A—C25—H25C109.5 (16)
C6—C5—H5119.86H25B—C25—H25C113.2 (16)
C1—C6—H6119.92N2—C28—C27179.57 (15)
C5—C6—H6119.91C28—C27—H27A108.8 (12)
O2—C7—H7A109.67C28—C27—H27B109.1 (12)
O2—C7—H7B109.70C28—C27—H27C108.6 (11)
C8—C7—H7A109.74H27A—C27—H27B110.9 (17)
C8—C7—H7B109.71H27A—C27—H27C106.1 (18)
H7A—C7—H7B108.19H27B—C27—H27C113.1 (18)
C24—O1—C1—C2169.94 (10)C3—C4—C5—C60.5 (2)
C24—O1—C1—C610.08 (16)C4—C5—C6—C10.4 (2)
C1—O1—C24—C23176.70 (9)O2—C7—C8—O366.12 (12)
C7—O2—C2—C1159.27 (10)C10—C9—C14—C131.11 (17)
C7—O2—C2—C320.27 (15)O3—C9—C14—C13177.99 (11)
C2—O2—C7—C8171.50 (10)O3—C9—C10—C11178.11 (10)
C9—O3—C8—C7173.57 (9)C14—C9—C10—O4178.29 (10)
C8—O3—C9—C10179.33 (10)O3—C9—C10—O40.90 (14)
C8—O3—C9—C140.20 (16)C14—C9—C10—C111.07 (16)
C15—O4—C10—C9169.91 (9)C9—C10—C11—C120.16 (17)
C15—O4—C10—C1113.06 (15)O4—C10—C11—C12177.07 (10)
C10—O4—C15—C1676.59 (13)C10—C11—C12—C130.71 (18)
C17—O5—C16—C15172.70 (10)C11—C12—C13—C140.67 (19)
C16—O5—C17—C18167.73 (10)C12—C13—C14—C90.24 (18)
C16—O5—C17—C2212.49 (17)O4—C15—C16—O565.78 (13)
C23—O6—C18—C17172.59 (10)O5—C17—C18—C19178.18 (11)
C23—O6—C18—C196.31 (17)C22—C17—C18—O6179.01 (11)
C18—O6—C23—C24178.30 (10)C22—C17—C18—C192.03 (18)
C6—C1—C2—O2179.57 (10)O5—C17—C18—O60.79 (16)
C6—C1—C2—C30.00 (17)O5—C17—C22—C21179.25 (12)
O1—C1—C6—C5179.88 (11)C18—C17—C22—C210.98 (19)
O1—C1—C2—O20.45 (14)O6—C18—C19—C20179.76 (12)
O1—C1—C2—C3180.00 (10)C17—C18—C19—C201.37 (19)
C2—C1—C6—C50.10 (19)C18—C19—C20—C210.3 (2)
C1—C2—C3—C40.13 (17)C19—C20—C21—C221.4 (2)
O2—C2—C3—C4179.40 (11)C20—C21—C22—C170.7 (2)
C2—C3—C4—C50.39 (19)O6—C23—C24—O169.35 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.503.293 (2)141
C16—H16A···N1ii0.992.613.561 (2)162
C25—H25B···O11.00 (2)2.52 (2)3.455 (2)156.0 (14)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H24O6·2C2H3N
Mr490.5
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.109 (2), 10.883 (3), 13.964 (4)
α, β, γ (°)110.16 (2), 96.60 (2), 98.27 (2)
V3)1265.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.49 × 0.43
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7849, 6714, 5308
Rint0.016
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.06
No. of reflections6714
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CAD-4-PC (Enraf-Nonius, 1993), CAD-4-PC, XCAD4 (Harms, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C11.3757 (15)O4—C151.4346 (15)
O1—C241.4335 (15)O5—C161.4340 (16)
O2—C21.3755 (16)O5—C171.3754 (15)
O2—C71.4321 (15)O6—C181.3722 (15)
O3—C81.4296 (15)O6—C231.4363 (15)
O3—C91.3711 (16)N1—C261.137 (2)
O4—C101.3746 (16)N2—C281.1434 (19)
N1—C26—C25178.51 (16)N2—C28—C27179.57 (15)
C24—O1—C1—C2169.94 (10)C16—O5—C17—C18167.73 (10)
C1—O1—C24—C23176.70 (9)C23—O6—C18—C17172.59 (10)
C7—O2—C2—C1159.27 (10)C18—O6—C23—C24178.30 (10)
C2—O2—C7—C8171.50 (10)O1—C1—C2—O20.45 (14)
C9—O3—C8—C7173.57 (9)O2—C7—C8—O366.12 (12)
C8—O3—C9—C10179.33 (10)O3—C9—C10—O40.90 (14)
C15—O4—C10—C9169.91 (9)O4—C15—C16—O565.78 (13)
C10—O4—C15—C1676.59 (13)O5—C17—C18—O60.79 (16)
C17—O5—C16—C15172.70 (10)O6—C23—C24—O169.35 (12)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds