Download citation
Download citation
link to html
The crystal structure of (4,4′-di­methyl-2,2′-bipyridyl)­tris­[3,3,3-tri­fluoro-1-(2-thenoyl)propan-2-onato]­europium(III), or more commonly (4,4′-dimethyl-2,2′-bipyridyl)tris(2-thenoyltrifluoro­acetonato)europium(III), [Eu(C8H4F3O2S)3(C12H12N2)], has been determined. Crystals of the complex emit vivid red light when scratched or fractured. This triboluminescent activity seems to correlate with the non-centrosymmetric crystal structure and disorder of the thienyl rings and CF3 groups which is present here and in similar compounds. While modeling the thienyl-ring disorder, it was noted that the bond angle at the C atom replaced by S is a sensitive sign of even small rotational ring disorder. The coordination geometry of the EuIII ion can be described as square antiprismatic, with coordination by the six O atoms of the three chelating β-diketonate ligands and the two N atoms of the neutral bipyridyl ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016432/bk1611sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016432/bk1611Isup2.hkl
Contains datablock I

CCDC reference: 180144

Comment top

Triboluminescence, the process whereby certain materials emit light when they are fractured, has been known for nearly 400 years (Walton, 1977). Although it remains an obscure phenomenon, the effect is generally explained in terms of excitation of the molecule by an electric discharge between the surfaces of the fractured crystals and subsequent fluorescence (Sweeting et al., 1997). Recently, a novel and potentially important application of the phenomenon has been proposed for the development of real-time damage sensors in composite materials (Sage et al., 1999). Specifically, the idea is built on the observation that light emission occurs when a composite material containing the triboluminescent molecule is damaged. Monitoring the wavelength and measuring the amount of emission would then yield the information on the location and extent of the damage, respectively. Preliminary experiments have demonstrated the validity of such a concept.

In the course of our studies of lanthanide phosphors for organic electroluminescence applications (Wang et al., 2001), we synthesized a europium(III) complex, namely (4,4'-dimethyl-2,2'-bipyridyl)tris[3,3,3-trifluoro-1-(2-thenoyl)acetonato]- europium(III) [Eu(TTA)3(DMDPY), (I)] and inadvertently observed its triboluminescence. Brilliant red sparks were displayed when crystals of the complex were cut or crushed, even with room illumination on. We report herein the solid-state structure of this complex, which has been important in understanding the observed triboluminescence. A literature search for related compounds indicates that the synthesis (Shang et al., 1997; Chen et al., 1998), triboluminescent property (Chen et al., 1999) and crystal structure (Chen et al., 1999) of a closely related compound, the 2,2'-bipyridyl adduct of tri(2-thenoyltrifluoroacetonato)europate(III), (II), have recently been reported.

Compound (I) crystallizes in the polar space group Pca21 with four molecules in the unit cell. The asymmetric unit contains only one molecule whose displacement ellipsoid plot is shown in Fig. 1. The EuIII ion is eight-coordinated, by six O atoms of the three chelating β-diketonate ligands and by two N atoms of a 4,4'-dimethyl-2,2'-bipyridyl ligand. The coordination polyhedron can be best described as being square antiprismatic. The two square planes with respective deviations of 0.0486 (14) and 0.0972 (13) Å are O11/O21/N14/N124 and O12/O22/O13/O23. Corresponding values (0.0458 and 0.0124 Å, respectively) of this structural parameter are somewhat smaller in the structure of (II) (Chen et al., 1999). It appears that the methyl substituents on the 4,4'-dimethyl-2,2'-bipyridyl ligand cause the square antiprism to distort slightly. The distance from the metal ion to the 11/O21/N14/N124 plane is 1.4198 (14) Å, which is significantly longer than that to the other plane, O12/O22/O13/O23, of 1.2116 (13) Å. The dihedral angle between the two planes is 3.65 (7)°, which is somewhat larger than that (2.6°) found in the structure of (II). All observed bond lengths and angles are normal. The average Eu—O and Eu—N bond lengths are 2.37 (2) and 2.582 (8) Å, respectively. These values are unremarkably similar to those found for (II) (2.352 and 2.578 Å, respectively). The mean O—Eu—O angle within the chelate rings is 71.9 (7)°, which is close to that found in (II) (72.1°).

The observed triboluminescent activity of (I) is in line with the commonly accepted mechanism for triboluminescence, the first step being charge separation due to piezoelectricity which occurs when the non-centrosymmetric crystal is deformed or fractured (Longchambon, 1923). In this context, it is worth noting that complex (II), different from (I) only in the absence of two methyl substituents on the bipyridyl ligand, is also triboluminescent, but crystallizes in a monoclinic centrosymmetric space group P21/n (Chen et al., 1999). The authors ascribe the observed triboluminescence to the disorder of the thienyl rings and CF3 groups of the β-diketonate ligands. Impurities have also been suggested to play important roles in the triboluminescent activity of some centrosymmetric materials (Rheingold & Sweeting, 1987; Sweeting et al., 1997). Both the structural disorder and impurities in crystals are believed to create the localized asymmetry that is essential to support charge separation, and could therefore explain why materials that are symmetric overall can still exhibit triboluminescence.

These facts led us to examine the disorder present in (I) very carefully. The CF3 groups are slightly disordered in (I) due to rotation about the C—C bond. Such distortions are commonly observed in β-diketonates substituted with CF3 groups even at reduced temparatures and are well modeled using anisotropic displacement parameters. In addition, two of the three thienyl rings show apparent disorders. For ring 3, this was evidenced, before disorder modeling, by an abnormally large S-atom displacement parameter (Uiso = 0.075 Å2) and an abnormally small (Uiso = 0.032 Å2) ortho-C-atom displacement parameter. In ring 2, the difference in displacement parameters was much smaller (Uiso = 0.056 and 0.050 Å2) and disorder was not obvious until the bond distances and angles in the ring fragments were examined and a marked difference in geometry of rings 2 and 1 was noticed. In particular, the C3—C4—C5 angle in ring (I) measured 113.7 (5)° while that in ring 2 measured 111.5 (5)°. In clearly disordered ring 3, the C3—C4—C5 angle was 98.4 (4)°. The displacement paramters of all five atoms in ring 1 ranged from Uiso = 0.042 Å2 to Uiso = 0.057 Å2, with a difference of Uiso = 0.005 Å2 between the S and ortho-C atom. Abnormal displacement parameters alone are not sufficient to reveal all cases of disorder.

We conducted a search of the Cambridge Structure Database (CSD; Allen & Kennard, 1993) for thiophene rings substituted at the 5 position (by our numbering). We found 378 entries containing 613 of these pendant thienyl groups, of which 130 entries (232 fragments) have a disorder flag which ususally, but not necessarily, involves the thienyl ring. In either case, we found the distributions of bond lengths and angles to be very broad and in general bimodal. This was most evident for the entries without disorder flags when looking at the bond angle at C4, the ortho-C atom, which would be substituted by S in the case of ring rotation. The distribution ranged from 91.0 to 123.0° in a roughly Gaussian shape (11° FWHM) peaking at 109° and included a sharp (2° FWHM) spike at 112.5° with over twice the intensity of the Gaussian peak. Closer examination of a few randomly selected entries revealed that most of those within the spike had little or no signs of thienyl disorder, while those with angles below 109° showed abnormal displacement parameters, increased R values and/or other abnormal bonding parameters which could indicate rotational ring disorder. Our ring 1 compared favorably with those chosen from within the spike and was declared disorder free and fit to be used as a good restraint model for the two disordered rings. If it holds true that undisordered thienyl rings have a mean ortho-C angle of 112.5° then approximatedly half of the CSD entries with a thienyl ring within the molecule have unresolved disorder. This unresolved disorder might explain some mysterious cases of triboluminescence or provide new compounds to examine in the search for further triboluminescent compounds.

Experimental top

To a solution prepared from KOtBu (1.12 g, 10.0 mmol) in H2O (20 ml) was added TTA (2.20 g, 9.9 mmol). The clear mixture was added to an aqueous solution of EuCl3·6H2O (1.20 g, 3.3 mmol in 20 ml H2O) to yield a white precipitate. The mixture was stirred at 333 K for 20 min and then for 3 h at room temperature. The precipitate was filtered off, washed with water (2 × 50 ml), and dried at 313 K under vacuum for 12 h. The aqua complex of tri(2-thenoyltrifluoroacetonato)europate(III) was obtained as colorless crystals after recrystallization from acetone (2.38 g, 85% yield). Following the procedure developed by Melby (Melby et al., 1964), complex (I) was prepared by substituting the coordinated water molecule in the aqua complex with 4,4'-dimethyl-2,2'-bipyridyl as the neutral ligand. Characterization data for (I), 1H NMR (250 MHz, CD3Cl, δ, p.p.m.): 3.32 (s, 3H, TTA), 4.68 (s, 6H, CH3), 6.11 (s, 3H, TTA), 6.50 (s, 3H, TTA), 7.35 (s, 2H, DMDPY), 8.50 (s, 2H, DMDPY), 9.20 (s, 2H, DMDPY), 14.8 (s, 3H, CH). FAB-MS: 1001.76 [M+H]+, 779.6 [M-TTA]+. Analysis calculated for C36H24EuF9N2O6S3: C 43.24, H 2.42, N 2.80%; found: C 43.04, H 2.28, N 2.81%.

Refinement top

H atoms were added at idealized positions, constrained to ride on the atom to which they are bonded (C—H = 0.95 or 0.98 Å) and given displacement parameters equal to 1.2 or 1.5 times Uiso of the bonded atom. Two of the three thienyl rings showed rotational disorder and were modeled as two overlapping fragments. The refined populations of the major fragments were 0.713 (4) and 0.968 (4) for rings 3 and 2, respectively. To prevent ring deformations and account for large correlations in atomic positions of overlapping sites, the split rings were restrained to have approximately the same geometry as the single ordered ring, ring 1, in the structure. Overlapping atoms were restrained to have similar displacement parameters. The eight largest residual peaks in the final difference map (0.69–0.50 e Å-3) were located less than 1.0 Å from the Eu atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Please provide figure cation with ellispoid probability level.
(4,4'-dimethyl-2,2'-bipyridyl)tris[3,3,3-trifluoro-1-(2-thenoyl)acetonato]- europium(III) top
Crystal data top
[Eu(C8H4F3O2S)3(C12H12N2)]Dx = 1.673 Mg m3
Mr = 999.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 5605 reflections
a = 20.781 (2) Åθ = 2.1–29.6°
b = 10.7159 (12) ŵ = 1.83 mm1
c = 17.8255 (19) ÅT = 170 K
V = 3969.6 (7) Å3Block, light orange
Z = 40.30 × 0.30 × 0.20 mm
F(000) = 1976
Data collection top
Bruker CCD area-detector
diffractometer
9109 independent reflections
Radiation source: fine-focus sealed tube7963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(Sheldrick, 2000)
h = 2626
Tmin = 0.610, Tmax = 0.712k = 1313
47819 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0226P)2 + 1.4129P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
9109 reflectionsΔρmax = 0.69 e Å3
588 parametersΔρmin = 0.41 e Å3
530 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (7)
Crystal data top
[Eu(C8H4F3O2S)3(C12H12N2)]V = 3969.6 (7) Å3
Mr = 999.71Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 20.781 (2) ŵ = 1.83 mm1
b = 10.7159 (12) ÅT = 170 K
c = 17.8255 (19) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker CCD area-detector
diffractometer
9109 independent reflections
Absorption correction: multi-scan
(Sheldrick, 2000)
7963 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.712Rint = 0.035
47819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.69 e Å3
S = 1.12Δρmin = 0.41 e Å3
9109 reflectionsAbsolute structure: Flack (1983)
588 parametersAbsolute structure parameter: 0.020 (7)
530 restraints
Special details top

Experimental. The structure was solved using SHELXS in the Bruker SHELXTL software package. Refinements were performed using SHELXL and illustrations were made using XP. Solution was achieved utilizing direct methods followed by Fourier synthesis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu0.112627 (6)0.209028 (12)0.08773 (4)0.03152 (4)
S1_10.02018 (5)0.05269 (10)0.09221 (7)0.0538 (3)
C2_10.07264 (18)0.0835 (3)0.1638 (2)0.0559 (10)
H2A_10.08850.16450.17510.067*
C3_10.08884 (18)0.0199 (4)0.20225 (19)0.0563 (11)
H3A_10.11790.02030.24340.068*
C4_10.05799 (17)0.1274 (3)0.17471 (18)0.0467 (9)
H4A_10.06380.20840.19540.056*
C5_10.01870 (15)0.1029 (2)0.11492 (16)0.0399 (8)
C6_10.02317 (16)0.1865 (3)0.07155 (18)0.0364 (7)
C7_10.02940 (17)0.3118 (3)0.0939 (2)0.0400 (8)
H7A_10.00600.34030.13630.048*
C8_10.06836 (16)0.3943 (3)0.05609 (19)0.0349 (7)
C9_10.08066 (19)0.5242 (3)0.0907 (2)0.0470 (9)
F1_10.04129 (14)0.5500 (2)0.14797 (16)0.0736 (7)
F2_10.07324 (13)0.6145 (2)0.04122 (16)0.0678 (7)
F3_10.14097 (14)0.5315 (3)0.11521 (19)0.0794 (9)
O1_10.05298 (12)0.1383 (2)0.01716 (14)0.0424 (6)
O2_10.09858 (12)0.3789 (2)0.00433 (16)0.0430 (6)
S1A_20.04488 (5)0.24921 (9)0.13568 (8)0.0481 (3)0.968 (4)
C2A_20.00621 (19)0.3667 (3)0.1609 (4)0.0619 (13)0.968 (4)
H2AA_20.00580.45220.16250.074*0.968 (4)
C3A_20.06534 (19)0.3246 (3)0.1781 (4)0.0682 (14)0.968 (4)
H3AA_20.09970.37710.19350.082*0.968 (4)
C4A_20.0706 (2)0.1942 (4)0.1708 (6)0.0556 (15)0.968 (4)
H4AA_20.10890.14900.18120.067*0.968 (4)
C5A_20.01458 (13)0.1395 (2)0.14714 (19)0.0396 (8)0.968 (4)
C5B_20.01458 (13)0.1395 (2)0.14714 (19)0.0396 (8)0.032
C4B_20.0334 (10)0.227 (2)0.151 (6)0.043 (6)0.032 (4)
H4BB_20.07780.20800.14460.052*0.032 (4)
C3B_20.010 (2)0.348 (3)0.164 (10)0.057 (7)0.032 (4)
H3BB_20.03620.42040.16570.068*0.032 (4)
C2B_20.054 (2)0.350 (3)0.175 (9)0.064 (8)0.032 (4)
H2BB_20.07830.42360.18440.077*0.032 (4)
S1B_20.0876 (12)0.204 (3)0.170 (5)0.055 (7)0.032 (4)
C6_20.00001 (16)0.0073 (3)0.13583 (18)0.0355 (7)
C7_20.05096 (16)0.0807 (3)0.1372 (2)0.0418 (8)
H7B_20.09390.05040.13910.050*
C8_20.04145 (17)0.2072 (3)0.1359 (2)0.0396 (7)
C9_20.09943 (19)0.2945 (4)0.1419 (3)0.0573 (11)
F1_20.15569 (10)0.2379 (2)0.1314 (2)0.0727 (7)
F2_20.10184 (14)0.3494 (3)0.2083 (2)0.0974 (11)
F3_20.09553 (11)0.3854 (3)0.0921 (3)0.1014 (11)
O1_20.05815 (10)0.0229 (2)0.12620 (13)0.0356 (5)
O2_20.01104 (11)0.2676 (2)0.13139 (17)0.0464 (6)
S1A_30.26730 (17)0.0474 (2)0.2386 (2)0.0559 (6)0.713 (4)
C2A_30.3306 (5)0.0787 (5)0.2971 (8)0.062 (2)0.713 (4)
H2AC_30.35050.15820.30120.074*0.713 (4)
C3A_30.3491 (5)0.0222 (6)0.3365 (7)0.059 (2)0.713 (4)
H3AC_30.38390.02210.37090.070*0.713 (4)
C4A_30.3110 (7)0.1277 (7)0.3211 (8)0.0502 (19)0.713 (4)
H4AC_30.31650.20600.34520.060*0.713 (4)
C5A_30.26525 (15)0.1052 (2)0.26741 (17)0.0409 (8)0.713 (4)
C5B_30.26525 (15)0.1052 (2)0.26741 (17)0.0409 (8)0.287
C4B_30.2716 (12)0.0191 (8)0.2508 (13)0.047 (4)0.287 (4)
H4BD_30.24860.05960.21170.056*0.287 (4)
C3B_30.3159 (15)0.0800 (9)0.2980 (18)0.064 (5)0.287 (4)
H3BD_30.32490.16680.29560.077*0.287 (4)
C2B_30.3441 (15)0.0016 (10)0.3469 (17)0.065 (6)0.287 (4)
H2BD_30.37400.02730.38420.079*0.287 (4)
S1B_30.3199 (5)0.1495 (7)0.3345 (6)0.0566 (15)0.287 (4)
C6_30.21914 (17)0.1881 (3)0.2319 (2)0.0405 (8)
C7_30.2191 (2)0.3166 (4)0.2504 (2)0.0560 (11)
H7C_30.24920.34610.28640.067*
C8_30.1778 (2)0.3993 (4)0.2185 (3)0.0570 (11)
C9_30.1820 (3)0.5367 (5)0.2427 (4)0.0941 (19)
F1_30.2318 (2)0.5613 (3)0.2867 (3)0.162 (2)
F2_30.1293 (2)0.5705 (4)0.2783 (3)0.1294 (16)
F3_30.1868 (2)0.6129 (3)0.1854 (3)0.1242 (14)
O1_30.18061 (10)0.1394 (2)0.18551 (13)0.0365 (5)
O2_30.13579 (14)0.3809 (3)0.16853 (16)0.0492 (6)
N1_40.22399 (13)0.2751 (3)0.03832 (17)0.0371 (6)
C2_40.24148 (18)0.3959 (3)0.0419 (2)0.0474 (9)
H2_40.21130.45500.06030.057*
C3_40.30138 (19)0.4374 (4)0.0200 (2)0.0528 (10)
H3_40.31140.52380.02250.063*
C4_40.34688 (19)0.3539 (4)0.0056 (2)0.0531 (10)
C5_40.32873 (19)0.2297 (4)0.0092 (2)0.0546 (10)
H5_40.35860.16900.02640.066*
C6_40.26744 (16)0.1929 (3)0.0120 (2)0.0366 (7)
C7_40.24603 (16)0.0606 (3)0.00579 (19)0.0373 (7)
C8_40.2839 (2)0.0305 (4)0.0258 (2)0.0487 (9)
H8_40.32610.01040.04250.058*
C9_40.2612 (2)0.1509 (4)0.0333 (2)0.0527 (9)
C10_40.2000 (2)0.1761 (4)0.0067 (2)0.0547 (10)
H10_40.18290.25820.00940.066*
C11_40.1646 (2)0.0812 (3)0.0236 (2)0.0498 (9)
H11_40.12260.10030.04120.060*
N12_40.18505 (14)0.0375 (3)0.03029 (16)0.0380 (6)
C13_40.3020 (3)0.2488 (4)0.0718 (3)0.0745 (15)
H13A_40.27870.32830.07290.112*
H13B_40.34240.25950.04430.112*
H13C_40.31140.22210.12330.112*
C14_40.4134 (2)0.3934 (5)0.0298 (3)0.0854 (18)
H14A_40.43770.32000.04620.128*
H14B_40.43560.43300.01250.128*
H14C_40.41000.45290.07130.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu0.02751 (7)0.03397 (7)0.03309 (7)0.00574 (5)0.00421 (9)0.00092 (10)
S1_10.0554 (6)0.0535 (6)0.0526 (6)0.0235 (5)0.0092 (5)0.0050 (5)
C2_10.053 (2)0.067 (3)0.048 (2)0.027 (2)0.0040 (19)0.0110 (19)
C3_10.042 (2)0.087 (3)0.040 (2)0.014 (2)0.0027 (17)0.014 (2)
C4_10.042 (2)0.064 (2)0.0337 (18)0.0025 (18)0.0068 (15)0.0030 (17)
C5_10.0328 (17)0.054 (2)0.0325 (17)0.0072 (15)0.0001 (13)0.0026 (15)
C6_10.0341 (17)0.0445 (18)0.0307 (16)0.0052 (14)0.0006 (13)0.0022 (14)
C7_10.0402 (19)0.0447 (19)0.0351 (17)0.0009 (15)0.0052 (15)0.0054 (15)
C8_10.0312 (16)0.0365 (17)0.0372 (17)0.0011 (13)0.0049 (13)0.0030 (14)
C9_10.043 (2)0.042 (2)0.056 (2)0.0014 (16)0.0028 (18)0.0125 (17)
F1_10.0927 (19)0.0586 (15)0.0696 (16)0.0042 (14)0.0192 (15)0.0268 (13)
F2_10.0859 (18)0.0393 (12)0.0783 (17)0.0030 (12)0.0011 (14)0.0018 (12)
F3_10.0553 (16)0.0724 (18)0.110 (3)0.0050 (14)0.0301 (16)0.0333 (17)
O1_10.0479 (14)0.0400 (13)0.0392 (13)0.0120 (11)0.0144 (11)0.0041 (10)
O2_10.0438 (14)0.0362 (13)0.0489 (15)0.0083 (11)0.0105 (12)0.0057 (11)
S1A_20.0515 (6)0.0372 (5)0.0556 (7)0.0005 (4)0.0076 (5)0.0018 (4)
C2A_20.079 (3)0.035 (2)0.072 (3)0.010 (2)0.018 (3)0.001 (2)
C3A_20.076 (3)0.044 (2)0.084 (3)0.019 (2)0.024 (3)0.008 (3)
C4A_20.050 (3)0.045 (2)0.071 (3)0.014 (2)0.018 (4)0.003 (3)
C5A_20.0422 (19)0.0391 (17)0.0376 (18)0.0069 (14)0.0037 (14)0.0008 (15)
C5B_20.0422 (19)0.0391 (17)0.0376 (18)0.0069 (14)0.0037 (14)0.0008 (15)
C4B_20.051 (10)0.038 (9)0.041 (15)0.006 (8)0.016 (15)0.009 (15)
C3B_20.070 (12)0.038 (8)0.063 (14)0.015 (10)0.015 (14)0.001 (14)
C2B_20.072 (13)0.047 (10)0.074 (18)0.026 (11)0.019 (17)0.002 (17)
S1B_20.044 (10)0.053 (11)0.069 (17)0.032 (8)0.003 (15)0.019 (13)
C6_20.0356 (17)0.0414 (16)0.0294 (16)0.0059 (13)0.0012 (13)0.0015 (14)
C7_20.0317 (16)0.0430 (18)0.051 (2)0.0050 (14)0.0013 (15)0.0066 (16)
C8_20.0355 (17)0.0434 (18)0.0399 (19)0.0023 (14)0.0003 (15)0.0040 (16)
C9_20.038 (2)0.048 (2)0.086 (3)0.0030 (16)0.004 (2)0.015 (2)
F1_20.0319 (11)0.0591 (14)0.127 (2)0.0005 (10)0.0016 (13)0.0108 (14)
F2_20.0705 (19)0.082 (2)0.140 (3)0.0235 (16)0.0074 (18)0.044 (2)
F3_20.0517 (12)0.0805 (17)0.172 (3)0.0088 (12)0.003 (3)0.065 (3)
O1_20.0306 (11)0.0389 (12)0.0373 (12)0.0036 (9)0.0004 (10)0.0033 (10)
O2_20.0343 (13)0.0402 (13)0.0648 (17)0.0038 (10)0.0028 (12)0.0033 (12)
S1A_30.0574 (13)0.0578 (11)0.0526 (13)0.0199 (10)0.0107 (9)0.0074 (9)
C2A_30.040 (5)0.084 (4)0.061 (5)0.025 (3)0.000 (4)0.009 (4)
C3A_30.038 (4)0.097 (5)0.041 (4)0.000 (4)0.007 (3)0.013 (4)
C4A_30.044 (5)0.074 (4)0.033 (6)0.007 (4)0.008 (3)0.001 (3)
C5A_30.0335 (17)0.059 (2)0.0300 (16)0.0010 (15)0.0016 (13)0.0058 (15)
C5B_30.0335 (17)0.059 (2)0.0300 (16)0.0010 (15)0.0016 (13)0.0058 (15)
C4B_30.044 (8)0.060 (6)0.037 (9)0.004 (7)0.001 (6)0.006 (7)
C3B_30.052 (11)0.081 (7)0.059 (9)0.019 (7)0.006 (8)0.013 (7)
C2B_30.050 (10)0.102 (8)0.045 (10)0.007 (9)0.006 (8)0.024 (8)
S1B_30.037 (3)0.095 (4)0.038 (3)0.002 (3)0.0173 (18)0.002 (2)
C6_30.0327 (17)0.054 (2)0.0344 (17)0.0009 (15)0.0003 (14)0.0031 (15)
C7_30.053 (2)0.058 (2)0.057 (3)0.0033 (18)0.023 (2)0.0212 (19)
C8_30.054 (2)0.053 (2)0.063 (3)0.0076 (18)0.023 (2)0.025 (2)
C9_30.097 (4)0.068 (3)0.117 (5)0.030 (3)0.055 (4)0.046 (3)
F1_30.161 (4)0.088 (2)0.237 (5)0.043 (2)0.131 (4)0.098 (3)
F2_30.140 (3)0.106 (3)0.142 (4)0.057 (3)0.025 (3)0.074 (3)
F3_30.141 (3)0.0477 (17)0.184 (4)0.0061 (19)0.050 (3)0.030 (2)
O1_30.0326 (12)0.0421 (13)0.0347 (12)0.0033 (10)0.0061 (9)0.0015 (10)
O2_30.0428 (14)0.0488 (15)0.0560 (16)0.0038 (13)0.0096 (14)0.0126 (12)
N1_40.0327 (14)0.0340 (15)0.0447 (16)0.0084 (11)0.0026 (12)0.0025 (12)
C2_40.0385 (19)0.0375 (19)0.066 (3)0.0059 (15)0.0004 (18)0.0013 (18)
C3_40.049 (2)0.042 (2)0.067 (3)0.0186 (17)0.0014 (19)0.0024 (19)
C4_40.046 (2)0.057 (2)0.056 (2)0.0232 (18)0.0082 (18)0.0110 (19)
C5_40.045 (2)0.056 (2)0.063 (3)0.0113 (17)0.016 (2)0.019 (2)
C6_40.0352 (17)0.0393 (17)0.0351 (17)0.0096 (13)0.0000 (14)0.0007 (14)
C7_40.0413 (18)0.0376 (17)0.0332 (17)0.0057 (14)0.0024 (14)0.0007 (14)
C8_40.048 (2)0.047 (2)0.051 (2)0.0018 (16)0.0101 (19)0.0041 (18)
C9_40.066 (3)0.044 (2)0.048 (2)0.0023 (19)0.0124 (19)0.0001 (17)
C10_40.073 (3)0.038 (2)0.052 (2)0.0099 (18)0.017 (2)0.0045 (17)
C11_40.060 (2)0.045 (2)0.045 (2)0.0155 (17)0.0162 (18)0.0037 (16)
N12_40.0423 (16)0.0376 (14)0.0343 (14)0.0090 (12)0.0045 (12)0.0049 (11)
C13_40.092 (4)0.042 (2)0.089 (4)0.005 (2)0.031 (3)0.002 (2)
C14_40.063 (3)0.086 (4)0.107 (4)0.037 (3)0.042 (3)0.029 (3)
Geometric parameters (Å, º) top
Eu—O2_22.336 (2)S1A_3—C5A_31.714 (3)
Eu—O1_32.364 (2)C2A_3—C3A_31.345 (4)
Eu—O1_12.368 (2)C2A_3—H2AC_30.9500
Eu—O2_12.369 (3)C3A_3—C4A_31.407 (5)
Eu—O2_32.387 (3)C3A_3—H3AC_30.9500
Eu—O1_22.394 (2)C4A_3—C5A_31.370 (4)
Eu—N1_42.575 (3)C4A_3—H4AC_30.9500
Eu—N12_42.587 (3)C5A_3—C6_31.452 (4)
S1_1—C2_11.711 (3)C4B_3—C3B_31.408 (5)
S1_1—C5_11.716 (2)C4B_3—H4BD_30.9500
C2_1—C3_11.346 (4)C3B_3—C2B_31.345 (4)
C2_1—H2A_10.9500C3B_3—H3BD_30.9500
C3_1—C4_11.407 (4)C2B_3—S1B_31.710 (4)
C3_1—H3A_10.9500C2B_3—H2BD_30.9500
C4_1—C5_11.368 (4)C6_3—O1_31.264 (4)
C4_1—H4A_10.9500C6_3—C7_31.416 (5)
C5_1—C6_11.469 (4)C7_3—C8_31.359 (6)
C6_1—O1_11.261 (4)C7_3—H7C_30.9500
C6_1—C7_11.407 (5)C8_3—O2_31.263 (5)
C7_1—C8_11.375 (5)C8_3—C9_31.537 (6)
C7_1—H7A_10.9500C9_3—F3_31.312 (8)
C8_1—O2_11.258 (4)C9_3—F2_31.318 (8)
C8_1—C9_11.544 (5)C9_3—F1_31.325 (6)
C9_1—F2_11.318 (5)N1_4—C2_41.346 (4)
C9_1—F3_11.330 (5)N1_4—C6_41.346 (4)
C9_1—F1_11.338 (5)C2_4—C3_41.378 (5)
S1A_2—C2A_21.707 (3)C2_4—H2_40.9500
S1A_2—C5A_21.718 (2)C3_4—C4_41.379 (6)
C2A_2—C3A_21.345 (4)C3_4—H3_40.9500
C2A_2—H2AA_20.9500C4_4—C5_41.385 (6)
C3A_2—C4A_21.408 (4)C4_4—C14_41.508 (5)
C3A_2—H3AA_20.9500C5_4—C6_41.386 (5)
C4A_2—C5A_21.370 (4)C5_4—H5_40.9500
C4A_2—H4AA_20.9500C6_4—C7_41.490 (4)
C5A_2—C6_21.463 (4)C7_4—N12_41.363 (4)
C4B_2—C3B_21.408 (5)C7_4—C8_41.375 (5)
C4B_2—H4BB_20.9500C8_4—C9_41.381 (5)
C3B_2—C2B_21.345 (4)C8_4—H8_40.9500
C3B_2—H3BB_20.9500C9_4—C10_41.383 (6)
C2B_2—S1B_21.710 (4)C9_4—C13_41.515 (6)
C2B_2—H2BB_20.9500C10_4—C11_41.367 (5)
C6_2—O1_21.263 (4)C10_4—H10_40.9500
C6_2—C7_21.418 (5)C11_4—N12_41.345 (4)
C7_2—C8_21.370 (5)C11_4—H11_40.9500
C7_2—H7B_20.9500C13_4—H13A_40.9800
C8_2—O2_21.271 (4)C13_4—H13B_40.9800
C8_2—C9_21.529 (5)C13_4—H13C_40.9800
C9_2—F3_21.320 (5)C14_4—H14A_40.9800
C9_2—F2_21.323 (6)C14_4—H14B_40.9800
C9_2—F1_21.330 (5)C14_4—H14C_40.9800
S1A_3—C2A_31.711 (3)
O2_2—Eu—O1_3112.28 (9)F3_2—C9_2—C8_2110.9 (4)
O2_2—Eu—O1_182.88 (9)F2_2—C9_2—C8_2111.4 (4)
O1_3—Eu—O1_1142.54 (8)F1_2—C9_2—C8_2113.8 (3)
O2_2—Eu—O2_183.75 (9)C6_2—O1_2—Eu134.8 (2)
O1_3—Eu—O2_1141.17 (8)C8_2—O2_2—Eu131.3 (2)
O1_1—Eu—O2_171.70 (8)C2A_3—S1A_3—C5A_391.36 (15)
O2_2—Eu—O2_376.93 (9)C3A_3—C2A_3—S1A_3112.3 (3)
O1_3—Eu—O2_371.23 (9)C3A_3—C2A_3—H2AC_3123.8
O1_1—Eu—O2_3146.00 (9)S1A_3—C2A_3—H2AC_3123.8
O2_1—Eu—O2_379.08 (8)C2A_3—C3A_3—C4A_3112.6 (3)
O2_2—Eu—O1_272.60 (8)C2A_3—C3A_3—H3AC_3123.7
O1_3—Eu—O1_278.95 (7)C4A_3—C3A_3—H3AC_3123.7
O1_1—Eu—O1_273.25 (8)C5A_3—C4A_3—C3A_3112.6 (3)
O2_1—Eu—O1_2139.64 (8)C5A_3—C4A_3—H4AC_3123.7
O2_3—Eu—O1_2124.43 (9)C3A_3—C4A_3—H4AC_3123.7
O2_2—Eu—N1_4148.44 (8)C4A_3—C5A_3—C6_3130.9 (3)
O1_3—Eu—N1_478.58 (9)C4A_3—C5A_3—S1A_3111.1 (2)
O1_1—Eu—N1_4106.76 (9)C6_3—C5A_3—S1A_3118.0 (2)
O2_1—Eu—N1_471.62 (9)C3B_3—C4B_3—H4BD_3123.7
O2_3—Eu—N1_479.22 (10)C2B_3—C3B_3—C4B_3112.5 (3)
O1_2—Eu—N1_4138.77 (8)C2B_3—C3B_3—H3BD_3123.7
O2_2—Eu—N12_4148.06 (8)C4B_3—C3B_3—H3BD_3123.7
O1_3—Eu—N12_473.73 (8)C3B_3—C2B_3—S1B_3112.3 (3)
O1_1—Eu—N12_476.38 (9)C3B_3—C2B_3—H2BD_3123.8
O2_1—Eu—N12_4111.69 (9)S1B_3—C2B_3—H2BD_3123.8
O2_3—Eu—N12_4132.04 (9)O1_3—C6_3—C7_3123.6 (3)
O1_2—Eu—N12_478.26 (8)O1_3—C6_3—C5A_3116.8 (3)
N1_4—Eu—N12_462.44 (9)C7_3—C6_3—C5A_3119.6 (3)
C2_1—S1_1—C5_191.32 (14)C8_3—C7_3—C6_3122.5 (3)
C3_1—C2_1—S1_1112.4 (2)C8_3—C7_3—H7C_3118.7
C3_1—C2_1—H2A_1123.8C6_3—C7_3—H7C_3118.7
S1_1—C2_1—H2A_1123.8O2_3—C8_3—C7_3129.1 (4)
C2_1—C3_1—C4_1112.5 (3)O2_3—C8_3—C9_3112.8 (4)
C2_1—C3_1—H3A_1123.7C7_3—C8_3—C9_3118.1 (4)
C4_1—C3_1—H3A_1123.7F3_3—C9_3—F2_3105.4 (5)
C5_1—C4_1—C3_1112.7 (3)F3_3—C9_3—F1_3106.2 (6)
C5_1—C4_1—H4A_1123.6F2_3—C9_3—F1_3108.1 (5)
C3_1—C4_1—H4A_1123.6F3_3—C9_3—C8_3112.4 (5)
C4_1—C5_1—C6_1130.3 (3)F2_3—C9_3—C8_3110.6 (6)
C4_1—C5_1—S1_1111.1 (2)F1_3—C9_3—C8_3113.7 (4)
C6_1—C5_1—S1_1118.6 (2)C6_3—O1_3—Eu136.9 (2)
O1_1—C6_1—C7_1124.3 (3)C8_3—O2_3—Eu133.3 (3)
O1_1—C6_1—C5_1116.4 (3)C2_4—N1_4—C6_4117.7 (3)
C7_1—C6_1—C5_1119.2 (3)C2_4—N1_4—Eu119.4 (2)
C8_1—C7_1—C6_1121.9 (3)C6_4—N1_4—Eu122.8 (2)
C8_1—C7_1—H7A_1119.0N1_4—C2_4—C3_4122.7 (4)
C6_1—C7_1—H7A_1119.0N1_4—C2_4—H2_4118.6
O2_1—C8_1—C7_1129.0 (3)C3_4—C2_4—H2_4118.6
O2_1—C8_1—C9_1112.2 (3)C2_4—C3_4—C4_4120.2 (4)
C7_1—C8_1—C9_1118.8 (3)C2_4—C3_4—H3_4119.9
F2_1—C9_1—F3_1106.7 (3)C4_4—C3_4—H3_4119.9
F2_1—C9_1—F1_1106.7 (3)C3_4—C4_4—C5_4116.9 (3)
F3_1—C9_1—F1_1108.3 (4)C3_4—C4_4—C14_4122.7 (4)
F2_1—C9_1—C8_1112.1 (3)C5_4—C4_4—C14_4120.4 (4)
F3_1—C9_1—C8_1109.9 (3)C4_4—C5_4—C6_4120.7 (4)
F1_1—C9_1—C8_1113.0 (3)C4_4—C5_4—H5_4119.6
C6_1—O1_1—Eu137.1 (2)C6_4—C5_4—H5_4119.6
C8_1—O2_1—Eu134.4 (2)N1_4—C6_4—C5_4121.7 (3)
C2A_2—S1A_2—C5A_291.49 (14)N1_4—C6_4—C7_4116.6 (3)
C3A_2—C2A_2—S1A_2112.4 (2)C5_4—C6_4—C7_4121.7 (3)
C3A_2—C2A_2—H2AA_2123.8N12_4—C7_4—C8_4122.3 (3)
S1A_2—C2A_2—H2AA_2123.8N12_4—C7_4—C6_4115.3 (3)
C2A_2—C3A_2—C4A_2112.5 (3)C8_4—C7_4—C6_4122.3 (3)
C2A_2—C3A_2—H3AA_2123.8C7_4—C8_4—C9_4120.5 (4)
C4A_2—C3A_2—H3AA_2123.8C7_4—C8_4—H8_4119.7
C5A_2—C4A_2—C3A_2112.8 (3)C9_4—C8_4—H8_4119.7
C5A_2—C4A_2—H4AA_2123.6C8_4—C9_4—C10_4117.6 (4)
C3A_2—C4A_2—H4AA_2123.6C8_4—C9_4—C13_4120.0 (4)
C4A_2—C5A_2—C6_2129.3 (3)C10_4—C9_4—C13_4122.3 (4)
C4A_2—C5A_2—S1A_2110.8 (2)C11_4—C10_4—C9_4119.0 (4)
C6_2—C5A_2—S1A_2119.8 (2)C11_4—C10_4—H10_4120.5
C3B_2—C4B_2—H4BB_2123.7C9_4—C10_4—H10_4120.5
C2B_2—C3B_2—C4B_2112.5 (3)N12_4—C11_4—C10_4124.6 (4)
C2B_2—C3B_2—H3BB_2123.7N12_4—C11_4—H11_4117.7
C4B_2—C3B_2—H3BB_2123.7C10_4—C11_4—H11_4117.7
C3B_2—C2B_2—S1B_2112.3 (3)C11_4—N12_4—C7_4115.9 (3)
C3B_2—C2B_2—H2BB_2123.8C11_4—N12_4—Eu121.5 (2)
S1B_2—C2B_2—H2BB_2123.8C7_4—N12_4—Eu122.6 (2)
O1_2—C6_2—C7_2123.1 (3)C9_4—C13_4—H13A_4109.5
O1_2—C6_2—C5A_2117.7 (3)C9_4—C13_4—H13B_4109.5
C7_2—C6_2—C5A_2119.1 (3)H13A_4—C13_4—H13B_4109.5
C8_2—C7_2—C6_2123.4 (3)C9_4—C13_4—H13C_4109.5
C8_2—C7_2—H7B_2118.3H13A_4—C13_4—H13C_4109.5
C6_2—C7_2—H7B_2118.3H13B_4—C13_4—H13C_4109.5
O2_2—C8_2—C7_2129.0 (3)C4_4—C14_4—H14A_4109.5
O2_2—C8_2—C9_2111.6 (3)C4_4—C14_4—H14B_4109.5
C7_2—C8_2—C9_2119.4 (3)H14A_4—C14_4—H14B_4109.5
F3_2—C9_2—F2_2106.0 (4)C4_4—C14_4—H14C_4109.5
F3_2—C9_2—F1_2107.2 (4)H14A_4—C14_4—H14C_4109.5
F2_2—C9_2—F1_2107.1 (4)H14B_4—C14_4—H14C_4109.5
C5_1—S1_1—C2_1—C3_10.9 (3)C4A_3—C5A_3—C6_3—C7_32.4 (13)
S1_1—C2_1—C3_1—C4_10.8 (5)S1A_3—C5A_3—C6_3—C7_3175.5 (4)
C2_1—C3_1—C4_1—C5_10.2 (5)O1_3—C6_3—C7_3—C8_31.0 (7)
C3_1—C4_1—C5_1—C6_1178.0 (4)C5A_3—C6_3—C7_3—C8_3179.2 (4)
C3_1—C4_1—C5_1—S1_10.4 (4)C6_3—C7_3—C8_3—O2_32.1 (8)
C2_1—S1_1—C5_1—C4_10.7 (3)C6_3—C7_3—C8_3—C9_3180.0 (5)
C2_1—S1_1—C5_1—C6_1177.9 (3)O2_3—C8_3—C9_3—F3_350.0 (7)
C4_1—C5_1—C6_1—O1_1178.0 (4)C7_3—C8_3—C9_3—F3_3128.3 (5)
S1_1—C5_1—C6_1—O1_13.7 (4)O2_3—C8_3—C9_3—F2_367.6 (7)
C4_1—C5_1—C6_1—C7_14.1 (6)C7_3—C8_3—C9_3—F2_3114.2 (5)
S1_1—C5_1—C6_1—C7_1174.2 (3)O2_3—C8_3—C9_3—F1_3170.6 (6)
O1_1—C6_1—C7_1—C8_11.6 (6)C7_3—C8_3—C9_3—F1_37.6 (9)
C5_1—C6_1—C7_1—C8_1179.3 (3)C7_3—C6_3—O1_3—Eu18.3 (6)
C6_1—C7_1—C8_1—O2_16.9 (6)C5A_3—C6_3—O1_3—Eu161.9 (2)
C6_1—C7_1—C8_1—C9_1170.9 (3)O2_2—Eu—O1_3—C6_387.0 (3)
O2_1—C8_1—C9_1—F2_149.3 (4)O1_1—Eu—O1_3—C6_3164.7 (3)
C7_1—C8_1—C9_1—F2_1132.6 (3)O2_1—Eu—O1_3—C6_321.8 (4)
O2_1—C8_1—C9_1—F3_169.2 (4)O2_3—Eu—O1_3—C6_320.4 (3)
C7_1—C8_1—C9_1—F3_1109.0 (4)O1_2—Eu—O1_3—C6_3152.8 (3)
O2_1—C8_1—C9_1—F1_1169.8 (3)N1_4—Eu—O1_3—C6_362.0 (3)
C7_1—C8_1—C9_1—F1_112.0 (5)N12_4—Eu—O1_3—C6_3126.3 (3)
C7_1—C6_1—O1_1—Eu14.8 (5)C7_3—C8_3—O2_3—Eu10.7 (8)
C5_1—C6_1—O1_1—Eu167.4 (2)C9_3—C8_3—O2_3—Eu167.3 (4)
O2_2—Eu—O1_1—C6_172.1 (3)O2_2—Eu—O2_3—C8_3135.2 (4)
O1_3—Eu—O1_1—C6_1170.1 (3)O1_3—Eu—O2_3—C8_315.8 (4)
O2_1—Eu—O1_1—C6_113.6 (3)O1_1—Eu—O2_3—C8_3169.7 (4)
O2_3—Eu—O1_1—C6_118.5 (4)O2_1—Eu—O2_3—C8_3138.8 (4)
O1_2—Eu—O1_1—C6_1146.1 (3)O1_2—Eu—O2_3—C8_377.3 (4)
N1_4—Eu—O1_1—C6_177.1 (3)N1_4—Eu—O2_3—C8_365.6 (4)
N12_4—Eu—O1_1—C6_1132.3 (3)N12_4—Eu—O2_3—C8_329.3 (4)
C7_1—C8_1—O2_1—Eu2.7 (6)O2_2—Eu—N1_4—C2_410.4 (4)
C9_1—C8_1—O2_1—Eu175.3 (2)O1_3—Eu—N1_4—C2_4103.8 (3)
O2_2—Eu—O2_1—C8_179.9 (3)O1_1—Eu—N1_4—C2_4114.4 (3)
O1_3—Eu—O2_1—C8_1161.9 (3)O2_1—Eu—N1_4—C2_450.9 (3)
O1_1—Eu—O2_1—C8_14.7 (3)O2_3—Eu—N1_4—C2_431.0 (3)
O2_3—Eu—O2_1—C8_1157.7 (3)O1_2—Eu—N1_4—C2_4162.0 (2)
O1_2—Eu—O2_1—C8_126.3 (4)N12_4—Eu—N1_4—C2_4178.7 (3)
N1_4—Eu—O2_1—C8_1120.1 (3)O2_2—Eu—N1_4—C6_4172.9 (2)
N12_4—Eu—O2_1—C8_171.2 (3)O1_3—Eu—N1_4—C6_472.9 (3)
C5A_2—S1A_2—C2A_2—C3A_20.8 (5)O1_1—Eu—N1_4—C6_468.8 (3)
S1A_2—C2A_2—C3A_2—C4A_20.3 (7)O2_1—Eu—N1_4—C6_4132.4 (3)
C2A_2—C3A_2—C4A_2—C5A_20.6 (9)O2_3—Eu—N1_4—C6_4145.7 (3)
C3A_2—C4A_2—C5A_2—C6_2177.3 (5)O1_2—Eu—N1_4—C6_414.7 (3)
C3A_2—C4A_2—C5A_2—S1A_21.2 (9)N12_4—Eu—N1_4—C6_44.6 (2)
C2A_2—S1A_2—C5A_2—C4A_21.1 (6)C6_4—N1_4—C2_4—C3_40.1 (6)
C2A_2—S1A_2—C5A_2—C6_2177.7 (3)Eu—N1_4—C2_4—C3_4176.8 (3)
C4B_2—C3B_2—C2B_2—S1B_21 (9)N1_4—C2_4—C3_4—C4_41.3 (7)
C4A_2—C5A_2—C6_2—O1_2168.0 (7)C2_4—C3_4—C4_4—C5_41.2 (6)
S1A_2—C5A_2—C6_2—O1_27.9 (4)C2_4—C3_4—C4_4—C14_4179.5 (5)
C4A_2—C5A_2—C6_2—C7_211.2 (8)C3_4—C4_4—C5_4—C6_40.2 (6)
S1A_2—C5A_2—C6_2—C7_2173.0 (3)C14_4—C4_4—C5_4—C6_4179.2 (5)
O1_2—C6_2—C7_2—C8_26.9 (6)C2_4—N1_4—C6_4—C5_41.5 (5)
C5A_2—C6_2—C7_2—C8_2172.2 (3)Eu—N1_4—C6_4—C5_4175.2 (3)
C6_2—C7_2—C8_2—O2_22.1 (6)C2_4—N1_4—C6_4—C7_4177.7 (3)
C6_2—C7_2—C8_2—C9_2176.6 (4)Eu—N1_4—C6_4—C7_45.5 (4)
O2_2—C8_2—C9_2—F3_246.1 (5)C4_4—C5_4—C6_4—N1_41.6 (6)
C7_2—C8_2—C9_2—F3_2135.0 (4)C4_4—C5_4—C6_4—C7_4177.6 (4)
O2_2—C8_2—C9_2—F2_271.7 (4)N1_4—C6_4—C7_4—N12_42.2 (5)
C7_2—C8_2—C9_2—F2_2107.2 (4)C5_4—C6_4—C7_4—N12_4178.5 (3)
O2_2—C8_2—C9_2—F1_2167.1 (4)N1_4—C6_4—C7_4—C8_4174.7 (3)
C7_2—C8_2—C9_2—F1_214.0 (6)C5_4—C6_4—C7_4—C8_44.5 (6)
C7_2—C6_2—O1_2—Eu11.8 (5)N12_4—C7_4—C8_4—C9_40.5 (6)
C5A_2—C6_2—O1_2—Eu169.1 (2)C6_4—C7_4—C8_4—C9_4177.2 (4)
O2_2—Eu—O1_2—C6_221.3 (3)C7_4—C8_4—C9_4—C10_41.3 (6)
O1_3—Eu—O1_2—C6_2139.1 (3)C7_4—C8_4—C9_4—C13_4176.8 (4)
O1_1—Eu—O1_2—C6_266.3 (3)C8_4—C9_4—C10_4—C11_41.8 (6)
O2_1—Eu—O1_2—C6_235.7 (3)C13_4—C9_4—C10_4—C11_4176.3 (4)
O2_3—Eu—O1_2—C6_281.1 (3)C9_4—C10_4—C11_4—N12_40.5 (7)
N1_4—Eu—O1_2—C6_2162.9 (3)C10_4—C11_4—N12_4—C7_41.2 (6)
N12_4—Eu—O1_2—C6_2145.5 (3)C10_4—C11_4—N12_4—Eu179.4 (3)
C7_2—C8_2—O2_2—Eu21.2 (6)C8_4—C7_4—N12_4—C11_41.7 (5)
C9_2—C8_2—O2_2—Eu160.0 (3)C6_4—C7_4—N12_4—C11_4178.7 (3)
O1_3—Eu—O2_2—C8_294.6 (3)C8_4—C7_4—N12_4—Eu178.9 (3)
O1_1—Eu—O2_2—C8_249.9 (3)C6_4—C7_4—N12_4—Eu2.0 (4)
O2_1—Eu—O2_2—C8_2122.1 (3)O2_2—Eu—N12_4—C11_49.0 (4)
O2_3—Eu—O2_2—C8_2157.7 (3)O1_3—Eu—N12_4—C11_497.2 (3)
O1_2—Eu—O2_2—C8_224.8 (3)O1_1—Eu—N12_4—C11_460.0 (3)
N1_4—Eu—O2_2—C8_2160.5 (3)O2_1—Eu—N12_4—C11_4123.6 (3)
N12_4—Eu—O2_2—C8_20.3 (4)O2_3—Eu—N12_4—C11_4141.6 (3)
C5A_3—S1A_3—C2A_3—C3A_30.1 (11)O1_2—Eu—N12_4—C11_415.4 (3)
S1A_3—C2A_3—C3A_3—C4A_31.2 (17)N1_4—Eu—N12_4—C11_4177.4 (3)
C2A_3—C3A_3—C4A_3—C5A_32 (2)O2_2—Eu—N12_4—C7_4171.7 (2)
C3A_3—C4A_3—C5A_3—C6_3175.8 (9)O1_3—Eu—N12_4—C7_482.1 (3)
C3A_3—C4A_3—C5A_3—S1A_32.2 (17)O1_1—Eu—N12_4—C7_4120.7 (3)
C2A_3—S1A_3—C5A_3—C4A_31.3 (11)O2_1—Eu—N12_4—C7_457.1 (3)
C2A_3—S1A_3—C5A_3—C6_3177.0 (6)O2_3—Eu—N12_4—C7_437.7 (3)
C4B_3—C3B_3—C2B_3—S1B_32 (4)O1_2—Eu—N12_4—C7_4163.9 (3)
C4A_3—C5A_3—C6_3—O1_3177.4 (12)N1_4—Eu—N12_4—C7_43.3 (2)
S1A_3—C5A_3—C6_3—O1_34.7 (5)

Experimental details

Crystal data
Chemical formula[Eu(C8H4F3O2S)3(C12H12N2)]
Mr999.71
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)170
a, b, c (Å)20.781 (2), 10.7159 (12), 17.8255 (19)
V3)3969.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Sheldrick, 2000)
Tmin, Tmax0.610, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
47819, 9109, 7963
Rint0.035
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.12
No. of reflections9109
No. of parameters588
No. of restraints530
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.41
Absolute structureFlack (1983)
Absolute structure parameter0.020 (7)

Computer programs: SMART (Bruker, 1997), SMART, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds