Download citation
Download citation
link to html
2-Pyridone (2-oxo­pyrimidine) forms hydrogen-bonded com­plexes with di­carboxyl­ic acids, the molar ratio of 2-pyridone/di­carboxyl­ic acid being 2:1 for the complexes with oxalic acid (ethanedioic acid), 2C5H5NO·C2H2O4, (I), and trans-β-hydro­muconic acid (trans-hex-3-enedioic acid), 2C5H5NO·C6H8O4, (II), and 1:1 for the complexes with trans-glutaconic acid (trans-pent-2-enedioic acid), C5H5NO·C5H6O4, (III), and L-­tartaric acid (L-2,3-di­hydroxy­butane­dioic acid), C5H5NO·C4H6O6·H2O, (IV). Common features in the hydrogen-bonding patterns were found for the centrosymmetric and non-centrosymmetric acids, respectively. The 2-pyridone mol­ecule takes the lactam form in these crystals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101002839/bk1582sup1.cif
Contains datablocks General, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002839/bk1582Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002839/bk1582IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002839/bk1582IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002839/bk1582IVsup5.hkl
Contains datablock IV

CCDC references: 164675; 164676; 164677; 164678

Comment top

2-Pyridone has been extensively studied because it exhibits lactam-lactim tautomerism, and the lactam group can be regarded as a model of cis-peptides and of the purine and pyrimidine bases of nucleic acids (Yang & Craven, 1998; Field & Hillier, 1987). The crystal structure of 2-pyridone has been determined from high-resolution X-ray data at 123 K, and the molecule is in the lactam form (Yang & Craven, 1998). In the present study, the title complexes, (I)-(IV), have been prepared under the expectation that the lactam group of 2-pyridone could be a building unit of a supramolecular synthon, and the patterns characteristic of the hydrogen-bonding and the geometries of the 2-pyridone moiety in the complexes have been elucidated. \sch

The hydrogen-bond patterns in (I) and (II) are shown in Figs. 1 and 2, respectively. In the crystals of (I) and (II), a molecule of the acid has a centre of symmetry. Two molecules of 2-pyridone related by an inversion centre form a dimer via an N—H···O hydrogen bond. The dimeric unit and the acid molecule are connected by an O—H···O hydrogen bond between the carboxyl group and the O atom of 2-pyridone, to form a chain (Figs. 1 and 2; Tables 2 and 4). In (I), the chains are arranged side by side to form a sheet on (111). The sheets are stacked along the c axis with short contacts O3···C7ii 3.302 (2) and O3···C7iii 3.307 (2) Å [symmetry codes: (ii) 1 - x, - y, - z - 1; (iii) x, y, z - 1]. In the chain of (II), a C—H···O interaction is observed (Table 4). The chains are arranged around the twofold screw axis with normal van der Waals contacts and no sheet structure is formed. In spite of difference in the packing mode of the chains in (I) and (II), the patterns of the hydrogen bonds in the chains show a common feature in these crystals. Thus, the hydrogen-bond scheme, (1), as found in (I) and (II), can be recognized as the supramolecular synthon (Desiraju, 1995) possible in complexes of 2-pyridone/centrosymmetric dicarboxylic acid in the ratio 2:1.

The molecules of the acids in (III) and (IV) have no centre of symmetry (Figs. 3 and 4). In both crystals, one carboxyl group forms an O—H···O and an N—H···O hydrogen bond with a 2-pyridone molecule (Tables 6 and 8). The O2—H10···O1 hydrogen bond in (IV) is short, the O2—H10 bond length being elongated, as found for a short noncentrosymmetric O—H···O hydrogen bond in ammonium hydrogen tartronate [O—H 1.18 (3) and O···O 2.443 (2) Å; Taka et al., 1998]. It could not be confirmed whether atom H10 is disordered, because the difference Fourier map drawn by H10 showed a single peak. In (III), the other carboxyl group forms an O—H···O hydrogen bond with a 2-pyridone molecule at (x - 1, 1/2 - y, 1/2 + z) to form a zigzag chain, and the chains form a sheet on (102) with C—H···O interactions (Fig. 5 and Table 6). The other carboxyl group in (IV) forms a hydrogen bond with a water molecule. The water molecule forms bifurcated hydrogen bonds with the acid molecules related by a translation along a and by the twofold screw axes along the a axis, forming a sheet developed parallel to (040) (Fig. 6 and Table 8). Between the sheets related by the twofold screw axes along the c axis, there are a C—H···O interaction and some short contacts between overlapped molecules of 2-pyridone: C9—H7 0.976 (12), H7···O1v 2.563 (13) and C9···O1v 3.255 (2) Å, and C9—H7···O1v 127.9 (10)°; O3···C4vi 3.186 (3), O1···C6vii 3.373 (3), N1···C6vii 3.280 (3) and C2···C6vii 3.302 Å [symmetry codes: (v) 1/2 - x, 1 - y, z + 1/2; (vi) 3/2 - x, 1 - y, z - 1/2; (vii) 3/2 - x, 1 - y, 1/2 + z]. Because the hydrogen-bond scheme, (2), is found in both (III) and (IV), it can be recognized as the supramolecular synthon possible in complexes of 2-pyridone/noncentrosymmetric dicarboxylic acid in the ratio 1:1.

The geometries of the 2-pyridone moieties observed in compounds (I)-(IV) (Tables 1, 3, 5 and 7) show a common feature characteristic of the lactam form, as found in the crystal of 2-pyridone (Yang & Craven, 1998). The C—C distance [1.544 (2) Å] of oxalic acid in (I) is rather long for the Csp2—Csp2 bond, as observed in dimorphs of oxalic acid [1.537 (1) Å; Derissen & Smit, 1974], and close to that determined for oxalic acid dihydrate at 15 K [1.5423 (5) Å; Zobel et al., 1992].

Related literature top

For related literature, see: Derissen & Smit (1974); Desiraju (1995); Field & Hillier (1987); Taka et al. (1998); Yang & Craven (1998); Zobel et al. (1992).

Experimental top

Crystals of the four compounds were grown by slow evaporation from ethanol solutions of 2-pyridone and the respective dicarboxylic acid, with molar ratios of 1:1. Commercially available L-tartaric acid (Aldrich) was used for the preparation of (IV).

Refinement top

All H atoms were located from difference Fourier maps and refined isotropically. The ranges of the Uiso values for the H atoms were 0.051 (3)–0.084 (4) Å2 for (I), 0.054 (3)–0.085 (4) Å2 for (II), 0.055 (5)–0.154 (10) Å2 for (III) and 0.015 (3)–0.146 (10) Å2 for (IV). The values larger than 0.1 Å2 were observed for H10 and H11 in (III), and H9, H10 and H12 in (IV). The least-squares refinement of (IV) was carried out by assuming the chirality of L-tartaric acid and removing redundant diffraction data. The calculations were performed at the Centre of Instrumental Analysis, Okayama University.

Computing details top

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN for Windows; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. The molecular view of (I) showing the hydrogen-bonding pattern and the atomic numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The molecular view of (II) showing the hydrogen-bonding pattern and the atomic numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. The molecular view of (III) showing the hydrogen-bonding pattern and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 4] Fig. 4. The molecular view of (IV) showing the hydrogen-bonding pattern and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 5] Fig. 5. The molecular arrangement in (201) of (III), viewed down the c axis. The a axis points towards the right and the b axis points upwards. Hydrogen bonds are shown by dashed lines. Symmetry codes: (i) x - 1, 1/2 - y, 1/2 + z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) - x, 1 - y, 1 - z; (iv) 1 + x, 1/2 - y, z - 1/2; (v) 1 - x, y - 1/2, 1/2 - z.
[Figure 6] Fig. 6. A view down the c axis showing the formation of a double layer in (IV) through the hydrogen bonds involving water molecules. The a axis points towards the right and the b axis points upwards. Hydrogen bonds are shown by dashed lines. Symmetry codes: (i) x - 1, y, z; (iii) x - 1/2, 3/2 - y, 1 - z; (iv) 1/2 + x, 3/2 - y, 1 - z.
(I) top
Crystal data top
2C5H5NO·C2H2O4Z = 1
Mr = 280.24F(000) = 146
Triclinic, P1Dx = 1.493 Mg m3
a = 9.162 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.898 (3) ÅCell parameters from 18 reflections
c = 3.7672 (17) Åθ = 9.4–11.5°
α = 98.86 (4)°µ = 0.12 mm1
β = 97.66 (3)°T = 298 K
γ = 109.61 (3)°Prismatic, colourless
V = 311.6 (2) Å30.50 × 0.38 × 0.35 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.006
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 2.2°
Graphite monochromatorh = 1111
ω/2θ scansk = 1212
1645 measured reflectionsl = 04
1428 independent reflections3 standard reflections every 97 reflections
1336 reflections with I > 0.1σ(I) intensity decay: <0.9%
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.059All H-atom parameters refined
wR(F2) = 0.098Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00031|Fo|2]
S = 1.96(Δ/σ)max = 0.001
1336 reflectionsΔρmax = 0.24 e Å3
115 parametersΔρmin = 0.22 e Å3
Crystal data top
2C5H5NO·C2H2O4γ = 109.61 (3)°
Mr = 280.24V = 311.6 (2) Å3
Triclinic, P1Z = 1
a = 9.162 (3) ÅMo Kα radiation
b = 9.898 (3) ŵ = 0.12 mm1
c = 3.7672 (17) ÅT = 298 K
α = 98.86 (4)°0.50 × 0.38 × 0.35 mm
β = 97.66 (3)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.006
1645 measured reflections3 standard reflections every 97 reflections
1428 independent reflections intensity decay: <0.9%
1336 reflections with I > 0.1σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.96Δρmax = 0.24 e Å3
1336 reflectionsΔρmin = 0.22 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80311 (7)0.41104 (7)0.0347 (2)0.04484 (18)
O20.56467 (8)0.19067 (7)0.0910 (2)0.0542 (2)
O30.67367 (8)0.04132 (7)0.1697 (2)0.0561 (2)
N10.95991 (8)0.64707 (8)0.2854 (2)0.03573 (19)
C20.81684 (9)0.53621 (9)0.2102 (2)0.0324 (2)
C30.69251 (10)0.57249 (10)0.3352 (3)0.0394 (2)
C40.71801 (12)0.71081 (11)0.5140 (3)0.0428 (3)
C50.86907 (12)0.82065 (10)0.5837 (3)0.0443 (3)
C60.98733 (11)0.78527 (10)0.4669 (3)0.0427 (3)
C70.57155 (9)0.06303 (9)0.0288 (3)0.0370 (2)
H11.0371 (15)0.6232 (12)0.194 (3)0.053 (3)*
H20.5883 (14)0.4935 (12)0.284 (3)0.051 (3)*
H30.6346 (15)0.7365 (13)0.596 (3)0.060 (3)*
H40.8863 (13)0.9167 (13)0.716 (3)0.057 (3)*
H51.0942 (15)0.8534 (12)0.501 (3)0.059 (3)*
H60.6554 (18)0.2687 (17)0.058 (4)0.084 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (3)0.0275 (3)0.0682 (4)0.0092 (3)0.0244 (3)0.0033 (3)
O20.0458 (4)0.0289 (3)0.0893 (6)0.0096 (3)0.0380 (4)0.0050 (3)
O30.0412 (4)0.0401 (4)0.0894 (6)0.0118 (3)0.0376 (4)0.0060 (4)
N10.0302 (4)0.0318 (4)0.0476 (4)0.0124 (3)0.0140 (3)0.0077 (3)
C20.0312 (4)0.0304 (4)0.0389 (5)0.0120 (3)0.0129 (3)0.0098 (3)
C30.0320 (4)0.0397 (5)0.0499 (5)0.0129 (4)0.0184 (4)0.0104 (4)
C40.0463 (5)0.0464 (5)0.0479 (5)0.0260 (4)0.0227 (4)0.0130 (4)
C50.0545 (6)0.0334 (5)0.0480 (5)0.0187 (4)0.0174 (4)0.0045 (4)
C60.0382 (5)0.0330 (5)0.0534 (6)0.0089 (4)0.0121 (4)0.0062 (4)
C70.0309 (4)0.0316 (4)0.0469 (5)0.0095 (3)0.0143 (4)0.0026 (4)
Geometric parameters (Å, º) top
O1—C21.2683 (15)C4—H30.955 (18)
N1—C21.3573 (16)C5—C61.3507 (19)
N1—C61.3554 (17)C5—H40.953 (16)
N1—H10.908 (19)C6—H50.963 (17)
C2—C31.4191 (16)O2—C71.2996 (15)
C3—C41.3573 (19)O2—H60.96 (2)
C3—H20.981 (16)O3—C71.1983 (15)
C4—C51.404 (2)C7—C7i1.544 (2)
O3···C7ii3.302 (2)O3···C5iv3.3588 (19)
O3···C7iii3.307 (2)O3···H4iv2.679 (17)
C2—N1—C6123.88 (11)C5—C4—H3118.1 (11)
C2—N1—H1114.7 (10)C4—C5—C6118.39 (12)
C6—N1—H1121.3 (10)C4—C5—H4119.7 (10)
O1—C2—N1118.99 (10)C6—C5—H4121.8 (10)
O1—C2—C3125.19 (11)N1—C6—C5120.53 (12)
N1—C2—C3115.81 (11)N1—C6—H5115.3 (10)
C2—C3—C4120.89 (12)C5—C6—H5124.1 (10)
C2—C3—H2116.9 (9)C7—O2—H6111.1 (12)
C4—C3—H2122.2 (9)O2—C7—O3125.93 (11)
C3—C4—C5120.49 (12)O2—C7—C7i111.68 (12)
C3—C4—H3121.4 (11)O3—C7—C7i122.39 (14)
O1—C2—N1—C6179.19 (12)C2—C3—C4—C50.9 (2)
O1—C2—C3—C4178.48 (12)C3—C2—N1—C60.15 (18)
N1—C2—C3—C40.81 (19)C3—C4—C5—C60.3 (2)
N1—C6—C5—C40.3 (2)O2—C7—C7i—O3i0.4 (3)
C2—N1—C6—C50.4 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x, y, z1; (iv) x, y1, z1.
(II) top
Crystal data top
2C5H5NO·C6H8O4F(000) = 352
Mr = 334.33Dx = 1.330 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.824 (3) ÅCell parameters from 25 reflections
b = 5.5720 (17) Åθ = 10–11°
c = 15.556 (5) ŵ = 0.10 mm1
β = 101.31 (3)°T = 298 K
V = 835.0 (5) Å3Prismatic, colourless
Z = 20.43 × 0.35 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.009
Radiation source: Rigaku rotating anodeθmax = 30.0°, θmin = 2.1°
Graphite monochromatorh = 013
ω/2θ scansk = 07
2802 measured reflectionsl = 2121
2429 independent reflections3 standard reflections every 97 reflections
2187 reflections with I > 0.1σ(I) intensity decay: <0.1%
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.059Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00022|Fo|2]
wR(F2) = 0.102(Δ/σ)max = 0.010
S = 1.89Δρmax = 0.26 e Å3
2187 reflectionsΔρmin = 0.30 e Å3
146 parametersExtinction correction: Zachariasen (1967), equ(3), Acta Cryst. (1968). A24, p213.
0 restraintsExtinction coefficient: 1.6 (4) × 10-6
Crystal data top
2C5H5NO·C6H8O4V = 835.0 (5) Å3
Mr = 334.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.824 (3) ŵ = 0.10 mm1
b = 5.5720 (17) ÅT = 298 K
c = 15.556 (5) Å0.43 × 0.35 × 0.20 mm
β = 101.31 (3)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.009
2802 measured reflections3 standard reflections every 97 reflections
2429 independent reflections intensity decay: <0.1%
2187 reflections with I > 0.1σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.102All H-atom parameters refined
S = 1.89Δρmax = 0.26 e Å3
2187 reflectionsΔρmin = 0.30 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42044 (7)0.13718 (12)0.07540 (4)0.05736 (19)
O20.26139 (7)0.46278 (13)0.12498 (4)0.0566 (2)
O30.21963 (9)0.56938 (15)0.01457 (4)0.0768 (3)
N10.55942 (7)0.18999 (13)0.10368 (5)0.04455 (19)
C20.47795 (9)0.01743 (15)0.13013 (5)0.0422 (2)
C30.46415 (10)0.02961 (17)0.21914 (5)0.0508 (3)
C40.52890 (11)0.20255 (18)0.27268 (6)0.0554 (3)
C50.61049 (11)0.37510 (19)0.24190 (6)0.0560 (3)
C60.62347 (10)0.36531 (17)0.15700 (6)0.0509 (3)
C70.20316 (9)0.59895 (16)0.05882 (5)0.0447 (2)
C80.11163 (10)0.79070 (17)0.08523 (6)0.0470 (2)
C90.06462 (9)0.97199 (16)0.01504 (5)0.0427 (2)
H10.5684 (9)0.1862 (17)0.0456 (6)0.054 (3)*
H20.4087 (10)0.0918 (19)0.2374 (6)0.060 (3)*
H30.5158 (11)0.207 (2)0.3317 (7)0.070 (3)*
H40.6525 (12)0.502 (2)0.2755 (7)0.077 (4)*
H50.6743 (10)0.4714 (17)0.1293 (6)0.054 (3)*
H60.0333 (11)0.7090 (19)0.0999 (6)0.061 (3)*
H70.1626 (10)0.867 (2)0.1389 (7)0.064 (3)*
H80.1336 (10)1.0497 (18)0.0066 (6)0.054 (3)*
H90.3205 (13)0.357 (2)0.1031 (8)0.085 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0710 (4)0.0600 (4)0.0411 (3)0.0280 (3)0.0109 (3)0.0047 (3)
O20.0685 (4)0.0580 (4)0.0432 (3)0.0257 (3)0.0108 (3)0.0052 (3)
O30.1102 (6)0.0810 (5)0.0445 (4)0.0425 (5)0.0282 (4)0.0073 (4)
N10.0496 (4)0.0496 (4)0.0353 (3)0.0100 (3)0.0105 (3)0.0005 (3)
C20.0459 (4)0.0442 (5)0.0356 (4)0.0061 (4)0.0057 (3)0.0026 (3)
C30.0629 (6)0.0535 (5)0.0371 (4)0.0119 (5)0.0127 (4)0.0048 (4)
C40.0716 (6)0.0602 (6)0.0350 (4)0.0055 (5)0.0123 (4)0.0020 (4)
C50.0677 (6)0.0526 (5)0.0464 (5)0.0119 (5)0.0082 (4)0.0101 (4)
C60.0559 (5)0.0490 (5)0.0481 (5)0.0134 (4)0.0110 (4)0.0001 (4)
C70.0493 (5)0.0441 (5)0.0406 (4)0.0064 (4)0.0087 (3)0.0001 (4)
C80.0516 (5)0.0503 (5)0.0400 (4)0.0123 (4)0.0110 (4)0.0034 (4)
C90.0471 (4)0.0409 (4)0.0419 (4)0.0048 (4)0.0127 (4)0.0024 (4)
Geometric parameters (Å, º) top
O1—C21.2639 (13)C6—H50.933 (14)
N1—C21.3652 (15)O2—C71.3158 (14)
N1—C61.3540 (16)O2—H90.937 (19)
N1—H10.925 (13)O3—C71.1954 (14)
C2—C31.4191 (16)C7—C81.5046 (17)
C3—C41.3488 (18)C8—C91.4927 (16)
C3—H20.947 (14)C8—H60.959 (14)
C4—C51.395 (2)C8—H70.982 (15)
C4—H30.952 (14)C9—C9i1.302 (2)
C5—C61.3526 (19)C9—H80.921 (14)
C5—H40.925 (15)
C6···O3ii3.1492 (19)H5···O3ii2.301 (14)
C7—O2—H9106.5 (10)N1—C6—C5120.38 (12)
C2—N1—C6123.57 (10)N1—C6—H5113.6 (8)
C2—N1—H1116.9 (8)C5—C6—H5126.0 (8)
C6—N1—H1119.5 (8)O2—C7—O3123.23 (11)
O1—C2—N1119.22 (10)O2—C7—C8112.79 (10)
O1—C2—C3125.04 (10)O3—C7—C8123.97 (11)
N1—C2—C3115.74 (10)C7—C8—C9113.36 (10)
C2—C3—C4120.86 (11)C7—C8—H6106.2 (9)
C2—C3—H2115.4 (8)C7—C8—H7107.9 (8)
C4—C3—H2123.7 (8)C9—C8—H6110.3 (8)
C3—C4—C5120.90 (11)C9—C8—H7111.2 (9)
C3—C4—H3118.6 (9)H6—C8—H7107.7 (11)
C5—C4—H3120.5 (9)C8—C9—C9124.41 (15)
C4—C5—C6118.54 (12)C8—C9—H8116.2 (8)
C4—C5—H4123.6 (10)C9—C9i—H8i119.4 (8)
C6—C5—H4117.8 (10)
O1—C2—N1—C6178.90 (12)C3—C2—N1—C60.56 (17)
O1—C2—C3—C4179.54 (13)C3—C4—C5—C60.0 (2)
N1—C2—C3—C40.12 (18)O2—C7—C8—C9170.00 (11)
N1—C6—C5—C40.6 (2)O3—C7—C8—C911.4 (2)
C2—N1—C6—C51.0 (2)C7—C8—C9—C9i125.59 (17)
C2—C3—C4—C50.4 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z.
(III) top
Crystal data top
C5H5NO·C5H6O4F(000) = 472
Mr = 225.20Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.889 (3) ÅCell parameters from 25 reflections
b = 16.839 (10) Åθ = 10.8–11.4°
c = 8.288 (2) ŵ = 0.11 mm1
β = 100.49 (3)°T = 298 K
V = 1082.5 (7) Å3Prismatic, colourless
Z = 40.43 × 0.40 × 0.27 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.016
Radiation source: Rigaku rotating anodeθmax = 26.0°, θmin = 2.4°
Graphite monochromatorh = 09
ω/2θ scansk = 020
2298 measured reflectionsl = 1010
2128 independent reflections3 standard reflections every 97 reflections
1848 reflections with I > 0.1σ(I) intensity decay: <0.3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.079All H-atom parameters refined
wR(F2) = 0.088Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00022|Fo|2]
S = 1.47(Δ/σ)max = 0.010
1848 reflectionsΔρmax = 0.19 e Å3
189 parametersΔρmin = 0.25 e Å3
Crystal data top
C5H5NO·C5H6O4V = 1082.5 (7) Å3
Mr = 225.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.889 (3) ŵ = 0.11 mm1
b = 16.839 (10) ÅT = 298 K
c = 8.288 (2) Å0.43 × 0.40 × 0.27 mm
β = 100.49 (3)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.016
2298 measured reflections3 standard reflections every 97 reflections
2128 independent reflections intensity decay: <0.3%
1848 reflections with I > 0.1σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 1.47Δρmax = 0.19 e Å3
1848 reflectionsΔρmin = 0.25 e Å3
189 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58952 (13)0.41995 (6)0.25918 (14)0.0590 (4)
O20.32107 (16)0.36545 (7)0.37827 (16)0.0671 (4)
O30.21697 (15)0.48751 (7)0.33856 (17)0.0821 (5)
O40.29487 (14)0.21882 (7)0.69388 (15)0.0623 (4)
O50.09776 (14)0.17391 (6)0.55638 (15)0.0676 (4)
N10.50970 (17)0.54898 (8)0.23311 (17)0.0530 (4)
C20.61778 (18)0.48915 (9)0.20861 (18)0.0466 (5)
C30.7527 (2)0.50969 (11)0.1264 (2)0.0551 (5)
C40.7700 (2)0.58583 (12)0.0771 (2)0.0641 (6)
C50.6560 (2)0.64483 (12)0.1079 (3)0.0681 (7)
C60.5276 (2)0.62513 (10)0.1852 (2)0.0625 (6)
C70.20371 (19)0.42006 (10)0.3849 (2)0.0532 (5)
C80.0546 (2)0.39462 (11)0.4550 (2)0.0574 (6)
C90.0403 (2)0.32930 (11)0.5340 (2)0.0538 (5)
C100.1076 (3)0.31216 (11)0.6188 (3)0.0611 (6)
C110.16296 (19)0.22764 (9)0.61704 (19)0.0474 (5)
H10.409 (2)0.5304 (10)0.285 (2)0.089 (6)*
H20.8302 (19)0.4711 (9)0.1102 (18)0.055 (5)*
H30.869 (2)0.5988 (10)0.028 (2)0.085 (6)*
H40.674 (2)0.6959 (12)0.078 (2)0.089 (7)*
H50.441 (2)0.6641 (11)0.215 (2)0.092 (6)*
H60.030 (2)0.4344 (10)0.447 (2)0.084 (6)*
H70.129 (2)0.2915 (10)0.5470 (19)0.064 (5)*
H80.198 (2)0.3466 (11)0.582 (2)0.079 (6)*
H90.071 (2)0.3287 (10)0.739 (2)0.092 (6)*
H100.406 (3)0.3904 (13)0.341 (3)0.116 (8)*
H110.311 (3)0.1652 (16)0.709 (3)0.154 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (7)0.0403 (6)0.0893 (9)0.0025 (5)0.0378 (6)0.0005 (6)
O20.0631 (8)0.0507 (8)0.0988 (10)0.0032 (6)0.0449 (8)0.0089 (6)
O30.0765 (9)0.0530 (8)0.1337 (12)0.0071 (7)0.0637 (9)0.0200 (8)
O40.0589 (7)0.0448 (7)0.0947 (9)0.0043 (6)0.0443 (7)0.0040 (6)
O50.0773 (8)0.0478 (7)0.0903 (9)0.0038 (6)0.0490 (7)0.0040 (6)
N10.0495 (8)0.0446 (8)0.0701 (9)0.0021 (7)0.0246 (7)0.0019 (7)
C20.0432 (9)0.0442 (9)0.0545 (10)0.0018 (7)0.0150 (8)0.0065 (8)
C30.0455 (10)0.0564 (11)0.0688 (12)0.0037 (9)0.0244 (9)0.0081 (9)
C40.0565 (11)0.0715 (13)0.0688 (13)0.0197 (10)0.0234 (10)0.0004 (10)
C50.0714 (13)0.0525 (12)0.0821 (14)0.0101 (10)0.0184 (11)0.0076 (10)
C60.0646 (11)0.0474 (11)0.0780 (13)0.0023 (9)0.0199 (10)0.0048 (9)
C70.0518 (10)0.0490 (10)0.0654 (11)0.0018 (8)0.0283 (9)0.0013 (9)
C80.0550 (10)0.0525 (10)0.0722 (12)0.0011 (9)0.0316 (9)0.0039 (9)
C90.0556 (10)0.0478 (10)0.0647 (12)0.0044 (9)0.0285 (9)0.0050 (9)
C100.0681 (12)0.0493 (11)0.0767 (14)0.0123 (10)0.0417 (11)0.0071 (10)
C110.0460 (9)0.0471 (9)0.0531 (10)0.0015 (7)0.0200 (8)0.0005 (8)
Geometric parameters (Å, º) top
O1—C21.271 (2)O2—H100.89 (3)
N1—C21.359 (2)O3—C71.209 (2)
N1—C61.357 (3)O4—C111.324 (2)
N1—H11.02 (2)O4—H110.92 (3)
C2—C31.407 (2)O5—C111.196 (2)
C3—C41.360 (3)C7—C81.468 (3)
C3—H20.919 (18)C8—C91.296 (3)
C4—C51.395 (3)C8—H60.94 (2)
C4—H30.97 (2)C9—C101.496 (3)
C5—C61.335 (3)C9—H70.938 (17)
C5—H40.91 (2)C10—C111.488 (3)
C6—H51.01 (2)C10—H80.93 (2)
O2—C71.313 (2)C10—H91.03 (2)
C4···O5i3.339 (3)H5···O4ii2.47 (2)
H3···O5i2.41 (2)C3···O5iii3.397 (3)
C6···O4ii3.457 (3)H2···O5iii2.565 (15)
C2—N1—C6123.72 (17)C11—O4—H11108.5 (19)
C2—N1—H1113.2 (12)O2—C7—O3122.82 (16)
C6—N1—H1123.0 (12)O2—C7—C8115.73 (19)
O1—C2—N1118.53 (15)O3—C7—C8121.44 (18)
O1—C2—C3125.31 (17)C7—C8—C9126.7 (2)
N1—C2—C3116.13 (17)C7—C8—H6111.8 (13)
C2—C3—C4120.25 (19)C9—C8—H6121.2 (13)
C2—C3—H2118.6 (11)C8—C9—C10123.3 (2)
C4—C3—H2121.1 (11)C8—C9—H7120.1 (12)
C3—C4—C5120.8 (2)C10—C9—H7116.5 (12)
C3—C4—H3118.1 (13)C9—C10—C11115.62 (17)
C5—C4—H3120.8 (13)C9—C10—H8110.1 (13)
C4—C5—C6118.9 (2)C9—C10—H9107.4 (12)
C4—C5—H4118.9 (14)C11—C10—H8112.9 (14)
C6—C5—H4122.2 (14)C11—C10—H9107.4 (12)
N1—C6—C5120.2 (2)H8—C10—H9102.4 (18)
N1—C6—H5115.6 (12)O4—C11—O5123.60 (17)
C5—C6—H5124.2 (13)O4—C11—C10110.95 (16)
C7—O2—H10105.2 (17)O5—C11—C10125.45 (16)
O1—C2—N1—C6179.68 (19)C3—C4—C5—C60.8 (4)
O1—C2—C3—C4179.7 (2)O2—C7—C8—C912.1 (3)
N1—C2—C3—C40.3 (3)O3—C7—C8—C9167.0 (2)
N1—C6—C5—C40.3 (4)O4—C11—C10—C9179.7 (2)
C2—N1—C6—C50.6 (3)O5—C11—C10—C91.1 (4)
C2—C3—C4—C50.5 (3)C7—C8—C9—C10172.5 (2)
C3—C2—N1—C60.9 (3)C8—C9—C10—C11145.6 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1/2, z1/2.
(IV) top
Crystal data top
C5H5NO·C4H6O6·H2ODx = 1.516 Mg m3
Mr = 263.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 8.528 (5) Åθ = 10.8–11.5°
b = 20.668 (8) ŵ = 0.14 mm1
c = 6.5438 (15) ÅT = 295 K
V = 1153.4 (7) Å3Prismatic, colourless
Z = 40.53 × 0.28 × 0.20 mm
F(000) = 552
Data collection top
Rigaku AFC-5R
diffractometer
2064 reflections with I > 0.1σ(I)
Radiation source: Rigaku rotating anodeRint = 0.011
Graphite monochromatorθmax = 32.0°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: ψ scans
(North et al., 1968)
k = 030
Tmin = 0.952, Tmax = 0.999l = 19
2660 measured reflections3 standard reflections every 97 reflections
2303 independent reflections intensity decay: <0.5%
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.044Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00001|Fo|2]
wR(F2) = 0.044(Δ/σ)max = 0.010
S = 1.80Δρmax = 0.32 e Å3
2064 reflectionsΔρmin = 0.31 e Å3
216 parametersExtinction correction: Zachariasen (1967), equ(3), Acta Cryst. (1968). A24, p213.
0 restraintsExtinction coefficient: 1.68 × 10 (12)-6
Crystal data top
C5H5NO·C4H6O6·H2OV = 1153.4 (7) Å3
Mr = 263.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.528 (5) ŵ = 0.14 mm1
b = 20.668 (8) ÅT = 295 K
c = 6.5438 (15) Å0.53 × 0.28 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
2064 reflections with I > 0.1σ(I)
Absorption correction: ψ scans
(North et al., 1968)
Rint = 0.011
Tmin = 0.952, Tmax = 0.9993 standard reflections every 97 reflections
2660 measured reflections intensity decay: <0.5%
2303 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.044All H-atom parameters refined
S = 1.80Δρmax = 0.32 e Å3
2064 reflectionsΔρmin = 0.31 e Å3
216 parameters
Special details top

Geometry. The O2—H10 length, 1.20 (2) Å, is elongated in the short O—H···O hydrogen bond.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49399 (12)0.43810 (5)0.25423 (17)0.0541 (3)
O20.31341 (10)0.53184 (5)0.21738 (18)0.0558 (3)
O30.51062 (10)0.60285 (4)0.19044 (15)0.0467 (3)
O40.31260 (12)0.70141 (5)0.13139 (18)0.0496 (3)
O50.25390 (12)0.66734 (5)0.53540 (15)0.0458 (3)
O60.09014 (13)0.66162 (5)0.22679 (19)0.0556 (4)
O70.01411 (11)0.73370 (4)0.46179 (16)0.0540 (3)
O80.34509 (12)0.73051 (6)0.1702 (2)0.0470 (3)
N10.72157 (13)0.49451 (6)0.2167 (2)0.0423 (4)
C20.64150 (17)0.43759 (7)0.2387 (2)0.0431 (4)
C30.73498 (19)0.38140 (7)0.2403 (3)0.0488 (5)
C40.89252 (18)0.38451 (8)0.2219 (3)0.0548 (6)
C50.96815 (19)0.44382 (9)0.2021 (3)0.0518 (5)
C60.88088 (19)0.49770 (8)0.1992 (3)0.0490 (5)
C70.37157 (17)0.58980 (7)0.1943 (2)0.0409 (4)
C80.24346 (17)0.64044 (6)0.1745 (2)0.0375 (4)
C90.15579 (16)0.64452 (7)0.3785 (2)0.0369 (4)
C100.00891 (16)0.68594 (7)0.3606 (2)0.0406 (4)
H10.6595 (14)0.5334 (6)0.211 (2)0.059 (5)*
H20.6820 (14)0.3442 (5)0.2578 (19)0.041 (4)*
H30.9538 (16)0.3431 (6)0.227 (2)0.070 (5)*
H41.0811 (15)0.4476 (6)0.178 (2)0.062 (5)*
H50.9227 (12)0.5395 (5)0.1839 (19)0.033 (4)*
H60.1714 (12)0.6266 (5)0.0702 (17)0.027 (4)*
H70.1185 (11)0.6012 (4)0.4129 (15)0.015 (3)*
H80.2600 (17)0.7179 (7)0.045 (3)0.077 (7)*
H90.318 (2)0.7022 (8)0.491 (3)0.145 (9)*
H100.4094 (19)0.4904 (8)0.246 (3)0.101 (6)*
H110.1720 (17)0.6843 (7)0.219 (3)0.073 (6)*
H120.427 (2)0.7064 (10)0.156 (4)0.146 (10)*
H130.3645 (19)0.7532 (7)0.266 (2)0.074 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0408 (6)0.0429 (6)0.0786 (8)0.0001 (5)0.0053 (6)0.0040 (6)
O20.0380 (5)0.0405 (5)0.0889 (8)0.0019 (5)0.0013 (6)0.0001 (6)
O30.0329 (5)0.0459 (6)0.0611 (7)0.0000 (5)0.0045 (6)0.0007 (6)
O40.0455 (6)0.0484 (6)0.0549 (8)0.0049 (5)0.0052 (6)0.0161 (6)
O50.0402 (6)0.0524 (6)0.0449 (6)0.0019 (6)0.0059 (6)0.0039 (6)
O60.0415 (6)0.0569 (7)0.0685 (8)0.0114 (6)0.0137 (7)0.0156 (7)
O70.0478 (6)0.0416 (6)0.0726 (8)0.0073 (5)0.0033 (6)0.0165 (6)
O80.0369 (6)0.0577 (7)0.0464 (7)0.0031 (6)0.0040 (6)0.0055 (6)
N10.0451 (8)0.0398 (7)0.0419 (8)0.0001 (6)0.0015 (7)0.0043 (7)
C20.0485 (9)0.0408 (8)0.0400 (9)0.0027 (8)0.0031 (8)0.0066 (8)
C30.0556 (10)0.0349 (8)0.0560 (11)0.0006 (8)0.0042 (10)0.0054 (8)
C40.0541 (10)0.0549 (11)0.0552 (12)0.0102 (9)0.0008 (10)0.0073 (10)
C50.0432 (10)0.0602 (11)0.0521 (11)0.0012 (9)0.0038 (9)0.0028 (10)
C60.0542 (10)0.0519 (10)0.0408 (10)0.0121 (9)0.0020 (9)0.0009 (9)
C70.0425 (8)0.0455 (9)0.0347 (9)0.0005 (7)0.0022 (8)0.0010 (8)
C80.0349 (7)0.0386 (8)0.0391 (9)0.0038 (7)0.0040 (8)0.0028 (7)
C90.0324 (8)0.0320 (7)0.0464 (10)0.0044 (7)0.0008 (8)0.0012 (7)
C100.0350 (8)0.0398 (8)0.0471 (10)0.0031 (7)0.0038 (9)0.0039 (7)
Geometric parameters (Å, º) top
O1—C21.262 (2)O4—C81.419 (2)
N1—C21.368 (2)O4—H80.80 (2)
N1—C61.365 (3)O5—C91.406 (2)
N1—H10.962 (16)O5—H90.95 (2)
C2—C31.409 (3)O6—C101.316 (2)
C3—C41.350 (3)O6—H110.842 (19)
C3—H20.900 (15)O7—C101.205 (2)
C4—C51.391 (3)C7—C81.518 (3)
C4—H31.003 (17)C8—C91.532 (3)
C5—C61.340 (3)C8—H60.962 (15)
C5—H40.979 (16)C9—C101.522 (3)
C6—H50.941 (14)C9—H70.976 (12)
O2—C71.305 (2)O8—H120.86 (3)
O2—H101.20 (2)O8—H130.798 (19)
O3—C71.216 (2)
C9···O1i3.255 (2)O1···C6iii3.373 (3)
H7···O1i2.563 (13)N1···C6iii3.280 (3)
O3···C4ii3.186 (3)C2···C6iii3.302 (3)
C2—N1—C6123.18 (19)C10—O6—H11111.1 (14)
C2—N1—H1116.6 (10)O2—C7—O3125.19 (18)
C6—N1—H1120.2 (10)O2—C7—C8111.66 (17)
O1—C2—N1119.92 (18)O3—C7—C8123.15 (17)
O1—C2—C3124.78 (19)O4—C8—C7109.27 (16)
N1—C2—C3115.30 (18)O4—C8—C9109.09 (15)
C2—C3—C4121.5 (2)O4—C8—H6112.8 (9)
C2—C3—H2115.0 (10)C7—C8—C9108.33 (16)
C4—C3—H2123.5 (10)C7—C8—H6108.4 (9)
C3—C4—C5120.8 (2)C9—C8—H6108.8 (9)
C3—C4—H3118.4 (11)O5—C9—C8111.36 (15)
C5—C4—H3120.9 (11)O5—C9—C10110.93 (16)
C4—C5—C6118.4 (2)O5—C9—H7109.4 (8)
C4—C5—H4122.7 (10)C8—C9—C10111.46 (16)
C6—C5—H4118.6 (10)C8—C9—H7108.0 (8)
N1—C6—C5120.8 (2)C10—C9—H7105.4 (8)
N1—C6—H5115.5 (9)O6—C10—O7125.02 (18)
C5—C6—H5123.7 (9)O6—C10—C9111.38 (17)
C7—O2—H10114.5 (9)O7—C10—C9123.57 (19)
C8—O4—H8106.7 (15)H12—O8—H13105 (2)
C9—O5—H9112.1 (17)
O1—C2—N1—C6180.0 (2)O2—C7—C8—C966.5 (2)
O1—C2—C3—C4179.6 (2)O3—C7—C8—O45.8 (3)
N1—C2—C3—C40.2 (4)O3—C7—C8—C9112.9 (2)
N1—C6—C5—C40.5 (4)O4—C8—C9—O553.87 (19)
C2—N1—C6—C50.2 (4)O4—C8—C9—C1070.59 (19)
C2—C3—C4—C50.5 (4)O5—C9—C8—C765.0 (2)
C3—C2—N1—C60.6 (3)O5—C9—C10—O6174.34 (15)
C3—C4—C5—C60.8 (4)O5—C9—C10—O73.6 (3)
C7—C8—C9—C10170.56 (15)O6—C10—C9—C861.0 (2)
O2—C7—C8—O4174.75 (17)O7—C10—C9—C8121.1 (2)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2; (iii) x+3/2, y+1, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula2C5H5NO·C2H2O42C5H5NO·C6H8O4C5H5NO·C5H6O4C5H5NO·C4H6O6·H2O
Mr280.24334.33225.20263.20
Crystal system, space groupTriclinic, P1Monoclinic, P21/nMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)298298298295
a, b, c (Å)9.162 (3), 9.898 (3), 3.7672 (17)9.824 (3), 5.5720 (17), 15.556 (5)7.889 (3), 16.839 (10), 8.288 (2)8.528 (5), 20.668 (8), 6.5438 (15)
α, β, γ (°)98.86 (4), 97.66 (3), 109.61 (3)90, 101.31 (3), 9090, 100.49 (3), 9090, 90, 90
V3)311.6 (2)835.0 (5)1082.5 (7)1153.4 (7)
Z1244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.100.110.14
Crystal size (mm)0.50 × 0.38 × 0.350.43 × 0.35 × 0.200.43 × 0.40 × 0.270.53 × 0.28 × 0.20
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scans
(North et al., 1968)
Tmin, Tmax0.952, 0.999
No. of measured, independent and
observed [I > 0.1σ(I)] reflections
1645, 1428, 1336 2802, 2429, 2187 2298, 2128, 1848 2660, 2303, 2064
Rint0.0060.0090.0160.011
(sin θ/λ)max1)0.6500.7030.6170.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.098, 1.96 0.059, 0.102, 1.89 0.079, 0.088, 1.47 0.044, 0.044, 1.80
No. of reflections1336218718482064
No. of parameters115146189216
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.220.26, 0.300.19, 0.250.32, 0.31

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1993), TEXSAN for Windows, ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) for (I) top
O1—C21.2683 (15)C3—C41.3573 (19)
N1—C21.3573 (16)C4—C51.404 (2)
N1—C61.3554 (17)C5—C61.3507 (19)
C2—C31.4191 (16)
C2—N1—C6123.88 (11)C2—C3—C4120.89 (12)
O1—C2—N1118.99 (10)C3—C4—C5120.49 (12)
O1—C2—C3125.19 (11)C4—C5—C6118.39 (12)
N1—C2—C3115.81 (11)N1—C6—C5120.53 (12)
Selected geometric parameters (Å, º) for (II) top
O1—C21.2639 (13)C3—C41.3488 (18)
N1—C21.3652 (15)C4—C51.395 (2)
N1—C61.3540 (16)C5—C61.3526 (19)
C2—C31.4191 (16)
C2—N1—C6123.57 (10)C2—C3—C4120.86 (11)
O1—C2—N1119.22 (10)C3—C4—C5120.90 (11)
O1—C2—C3125.04 (10)C4—C5—C6118.54 (12)
N1—C2—C3115.74 (10)N1—C6—C5120.38 (12)
Selected geometric parameters (Å, º) for (III) top
O1—C21.271 (2)C3—C41.360 (3)
N1—C21.359 (2)C4—C51.395 (3)
N1—C61.357 (3)C5—C61.335 (3)
C2—C31.407 (2)
C2—N1—C6123.72 (17)C3—C4—C5120.8 (2)
O1—C2—N1118.53 (15)C4—C5—C6118.9 (2)
N1—C2—C3116.13 (17)N1—C6—C5120.2 (2)
C2—C3—C4120.25 (19)
Selected geometric parameters (Å, º) for (IV) top
O1—C21.262 (2)C3—C41.350 (3)
N1—C21.368 (2)C4—C51.391 (3)
N1—C61.365 (3)C5—C61.340 (3)
C2—C31.409 (3)
C2—N1—C6123.18 (19)C2—C3—C4121.5 (2)
O1—C2—N1119.92 (18)C3—C4—C5120.8 (2)
O1—C2—C3124.78 (19)C4—C5—C6118.4 (2)
N1—C2—C3115.30 (18)N1—C6—C5120.8 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds