Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new manganadecaborane has been isolated as a previously unsuspected product from the reaction of [Mn(CO)5Br] with K[B9H14]. The anion of tetra­butyl­ammonium 5-bromo-6,6,6-tri­carbonyl-6-manganadodeca­hydro­decaborate(1-), (C16H36N)­[Mn(B9H12Br)(CO)3], has a nido cage structure. The Mn atom is bonded through three B-Mn bonds of similar length [2.221 (4), 2.224 (3) and 2.236 (3) Å] and two bridging H atoms. The position of the bromo substituent breaks the twofold symmetry of the cage found in simple analogues, and this is reflected in the B-B bond parameters.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019843/bk1569sup1.cif
Contains datablocks III, morsot

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019843/bk1569IIIsup2.hkl
Contains datablock III

CCDC reference: 162555

Comment top

Reactions between [Mn(CO)5Br] and K[B9H14] have been shown to produce a range of nido-metalloboranes including salts of the [6-(CO)3-6-Mn(B9H13)]- anion and the neutral isomeric species [2-(THF)-6-(CO)3-6-Mn(B9H12)], (I), and [5-(THF)-6-(CO)3-6-Mn(B9H12)], (II) (Lott et al., 1973; Lott & Gaines, 1974). In our hands, the reaction also produces the previously unknown bromo-substituted anion [5-Br-6-(CO)3-6-Mn(B9H12)]- which we have isolated and characterized as the tetra-n-butylammonium salt (III). \sch

Crystallographic analysis of the dark red crystals obtained showed (III) to consist of discrete cations and anions which are separated by at least van der Waals distances. Although the n-butyl arms of the cation are rotationally disordered, the metalloborane anion seems to be unaffected. Fig. 1 shows that the coordination geometry about Mn1 is quasi-octahedral with the two bridging H atoms trans to carbonyl ligands. The main distortion from idealized geometry is the C1—Mn1—B2 angle of 161.4 (1)°. The terdentate bonding of the borane cage to manganese through only three boron atoms is relatively unusual and can be described as arising from a formal neutral {Mn(CO)3} vertex which contributes one electron and three orbitals to the cluster bonding (Kennedy, 1986). The only relevant compounds found in a search of the Cambridge Crystallographic Database (Allen & Kennard, 1993) were (I), (II), and the related zwitterion [8-{(C2H5)3N(CH2)4O}-6-(CO)3-6-Mn(B9H12)] (IV) (Gaines et al., 1974), although similar interactions have been proposed for other compounds (see for example Fischer & Gaines, 1979). These three compounds display non-symmetrical bonding to the metal as is shown by both their B5—B2 and B2—B7 distances [1.764 (6) and 1.807 (6) Å for (II), 1.783 (9) and 1.816 (10) Å for (IV)] and by their Mn—B bond lengths [ranges 2.206 (5) to 2.232 (4) and 2.209 (6) to 2.262 (7) Å for (II) and (IV), respectively]. A related Mo compound which also has a five-substituted halogen atom similar to (III), [5-Cl-6-(CO)2-6-(PPhMe2)2-6-Mo(B9H12)] (Greenwood et al., 1986), also shows non-symmetrical bonding. This contrasts with the more symmetrical bonding mode of (III), see Table 1. The B5—Br1 distance of 2.025 (3) Å lies near the upper limit found for B—Br bonds (range 1.881 to 2.052 Å for 3652 fragments), presumably as a consequence of electron withdrawal by the metal. The overall geometry of the boron cage is similar to that of B10H14 (Brill et al., 1971) but the two long B—B bonds B5—B10 and B7—B8 are now different from each other [1.994 (5) and 2.027 (6) Å] due to the unsymmetrical position of the halide substituent. The remaining B—B bond lengths range from 1.713 (5) to 1.801 (5) Å.

Related literature top

For related literature, see: Allen & Kennard (1993); Brill et al. (1971); Fischer & Gaines (1979); Gaines et al. (1974); Greenwood et al. (1986); Kennedy (1986); Lott & Gaines (1974); Lott et al. (1973).

Experimental top

Compound (III) was synthesized by adaption of the method of Lott & Gaines (1974) and recrystallized from a water, ethanol and CH2Cl2 solution by slow evaporation.

Refinement top

the cation dosorder was modelled by treating seven of the C atoms as split across the two sited [occupancy 0.735 (4): 0.265 (4)]. The atoms of the minor component were refined isotropically. H atoms of the borane cage were positioned as found in difference syntheses and were then allowed to ride on their parent B atoms with only their Uiso values refined. H atoms of the cation were placed in calculated positions and in a riding mode for the major disorder component but were omitted from the minor disorder component. The methyl orientations were obtained by refining torsional parameters. The largest residual electron-density peaks all lie in the vicinity of the disordered cation and have values of 1.02, 0.65 and 0.50 e Å-3.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) view of the anion of (III) with non-H atoms as 50% ellipsoids and H atoms as small spheres of arbitary size.
(III) top
Crystal data top
(C16H36N)[Mn(CO)3(B9BrH12)]F(000) = 1192
Mr = 570.72Dx = 1.239 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7469 (1) ÅCell parameters from 34786 reflections
b = 18.2581 (2) Åθ = 1.8–27.5°
c = 14.5558 (1) ŵ = 1.76 mm1
β = 101.352 (1)°T = 150 K
V = 3060.79 (5) Å3Plate, dark red
Z = 40.20 × 0.20 × 0.05 mm
Data collection top
Nonius Kappa CCD
diffractometer
6964 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode5105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ & ω scans to fill Ewald sphereθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(Blessing, 1997)
h = 1515
Tmin = 0.710, Tmax = 0.916k = 2223
34786 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0796P)2 + 1.8574P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6964 reflectionsΔρmax = 1.02 e Å3
353 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (7)
Crystal data top
(C16H36N)[Mn(CO)3(B9BrH12)]V = 3060.79 (5) Å3
Mr = 570.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7469 (1) ŵ = 1.76 mm1
b = 18.2581 (2) ÅT = 150 K
c = 14.5558 (1) Å0.20 × 0.20 × 0.05 mm
β = 101.352 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
6964 independent reflections
Absorption correction: multi-scan
(Blessing, 1997)
5105 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.916Rint = 0.053
34786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.02 e Å3
6964 reflectionsΔρmin = 0.52 e Å3
353 parameters
Special details top

Experimental. Run at EPSRC service, Southampton 1/2000

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.17502 (3)0.445518 (18)0.00657 (2)0.04974 (14)
Mn10.39109 (4)0.30641 (2)0.04172 (3)0.03767 (15)
O10.4786 (3)0.34527 (15)0.21197 (17)0.0660 (7)
O20.1491 (3)0.28921 (15)0.1406 (2)0.0720 (8)
O30.4174 (3)0.14830 (12)0.07128 (19)0.0652 (7)
N10.3917 (3)0.05306 (14)0.21483 (18)0.0460 (6)
C10.4439 (3)0.32939 (17)0.1462 (2)0.0484 (7)
C20.2439 (3)0.29836 (17)0.1031 (2)0.0500 (8)
C30.4085 (3)0.21024 (18)0.0596 (2)0.0502 (8)
C40.5135 (4)0.0819 (2)0.2270 (3)0.0439 (10)0.735 (4)
H4A0.51010.13600.22790.053*0.735 (4)
H4B0.55680.06590.28920.053*0.735 (4)
C50.5819 (4)0.0594 (2)0.1547 (3)0.0636 (10)
H5A0.58550.00520.15280.076*
H5B0.54090.07640.09240.076*
C60.7020 (4)0.0890 (3)0.1730 (4)0.0809 (12)
H6A0.69800.14300.17770.097*
H6B0.74350.07030.23440.097*
C70.7706 (5)0.0703 (3)0.1011 (4)0.0957 (16)
H7A0.77900.01700.09820.144*
H7B0.84760.09290.11770.144*
H7C0.73070.08860.04000.144*
C80.3853 (4)0.0283 (2)0.2023 (3)0.0477 (11)0.735 (4)
H8A0.40540.04060.14120.057*0.735 (4)
H8B0.30410.04410.19990.057*0.735 (4)
C90.4645 (5)0.0722 (2)0.2790 (3)0.0447 (10)0.735 (4)
H9A0.54640.06360.27430.054*0.735 (4)
H9B0.45420.05440.34100.054*0.735 (4)
C100.4401 (4)0.1536 (2)0.2723 (3)0.0770 (12)
H10A0.35780.16190.27610.092*
H10B0.45090.17130.21030.092*
C110.5134 (6)0.1969 (3)0.3448 (4)0.109 (2)
H11A0.59510.18520.34610.163*
H11B0.50000.24910.33120.163*
H11C0.49430.18550.40580.163*
C120.3199 (4)0.0910 (3)0.1272 (3)0.0512 (11)0.735 (4)
H12A0.33640.14410.13380.061*0.735 (4)
H12B0.35130.07400.07250.061*0.735 (4)
C130.1984 (5)0.0829 (3)0.1040 (3)0.0855 (14)
H13A0.16500.10120.15700.103*
H13B0.18000.03010.09670.103*
C140.1396 (6)0.1223 (4)0.0154 (5)0.0765 (17)0.735 (4)
H14A0.16680.17380.02150.092*0.735 (4)
H14B0.17060.10070.03700.092*0.735 (4)
C150.0218 (6)0.1245 (4)0.0123 (4)0.120 (2)
H15A0.01090.07680.00060.181*
H15B0.00160.13580.07930.181*
H15C0.00990.16240.02320.181*
C160.3422 (4)0.0747 (2)0.3011 (3)0.0463 (10)0.735 (4)
H16A0.26640.04970.29560.056*0.735 (4)
H16B0.39430.05360.35660.056*0.735 (4)
C170.3245 (4)0.1500 (2)0.3219 (3)0.0691 (11)
H17A0.26720.17090.26950.083*
H17B0.39860.17640.32430.083*
C180.2837 (5)0.1649 (3)0.4104 (4)0.0584 (13)0.735 (4)
H18A0.21130.13650.40800.070*0.735 (4)
H18B0.34230.14410.46210.070*0.735 (4)
C190.2610 (4)0.2385 (3)0.4364 (3)0.0841 (14)
H19A0.32780.26960.43220.126*
H19B0.24780.23900.50080.126*
H19C0.19190.25720.39390.126*
B10.3694 (3)0.39770 (19)0.1616 (2)0.0443 (8)
H10.30230.41720.18710.054 (10)*
B20.3541 (3)0.31217 (17)0.1022 (2)0.0386 (7)
H20.27820.28570.12070.069 (11)*
B30.4709 (3)0.3269 (2)0.1977 (3)0.0464 (8)
H30.46080.29160.26270.086 (14)*
B40.5142 (4)0.4211 (2)0.2168 (3)0.0526 (9)
H40.53210.44660.29170.060 (11)*
B50.3307 (3)0.39714 (17)0.0401 (2)0.0383 (7)
H50.39320.39880.01700.055 (10)*
B70.4987 (3)0.28217 (19)0.0983 (3)0.0453 (8)
HB7A0.53130.22520.11120.047 (9)*
HB7B0.52540.29930.02810.062 (11)*
B80.6046 (4)0.3556 (2)0.1774 (3)0.0561 (10)
HB8A0.69820.33270.22510.079 (13)*
HB8B0.62590.38690.10640.051 (9)*
B90.5933 (4)0.4469 (2)0.1351 (3)0.0579 (11)
H90.66720.48810.15270.085 (13)*
B100.4420 (3)0.46774 (19)0.1141 (2)0.0453 (8)
HB10A0.51810.45590.05800.066 (11)*
HB10B0.42240.52440.10770.045 (8)*
C410.4742 (14)0.0489 (8)0.1444 (11)0.064 (4)*0.265 (4)
C810.4310 (14)0.0156 (10)0.2847 (11)0.069 (4)*0.265 (4)
C910.414 (2)0.0893 (15)0.2368 (19)0.103 (7)*0.265 (4)
C1210.2699 (11)0.0328 (7)0.1631 (9)0.050 (3)*0.265 (4)
C1410.0977 (12)0.0805 (8)0.0510 (9)0.051 (3)*0.265 (4)
C1610.4066 (11)0.1187 (7)0.2697 (9)0.048 (3)*0.265 (4)
C1810.3429 (14)0.1975 (9)0.3897 (11)0.065 (4)*0.265 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0487 (2)0.0471 (2)0.0531 (2)0.01191 (13)0.00925 (14)0.00721 (13)
Mn10.0456 (3)0.0278 (2)0.0418 (3)0.00217 (17)0.01376 (19)0.00031 (17)
O10.099 (2)0.0572 (15)0.0511 (14)0.0025 (14)0.0363 (14)0.0023 (12)
O20.0655 (18)0.0541 (16)0.087 (2)0.0084 (13)0.0078 (15)0.0170 (14)
O30.104 (2)0.0311 (12)0.0697 (16)0.0108 (12)0.0395 (15)0.0004 (11)
N10.0592 (17)0.0405 (14)0.0419 (14)0.0073 (12)0.0190 (12)0.0028 (11)
C10.061 (2)0.0349 (15)0.0489 (18)0.0050 (14)0.0111 (15)0.0038 (13)
C20.062 (2)0.0341 (16)0.0538 (19)0.0023 (14)0.0110 (16)0.0049 (14)
C30.064 (2)0.0415 (18)0.0502 (18)0.0050 (15)0.0246 (16)0.0030 (14)
C40.058 (3)0.037 (2)0.037 (2)0.0079 (18)0.0096 (18)0.0036 (17)
C50.069 (2)0.053 (2)0.074 (3)0.0042 (17)0.028 (2)0.0005 (18)
C60.077 (3)0.077 (3)0.091 (3)0.006 (2)0.022 (2)0.015 (2)
C70.084 (3)0.106 (4)0.106 (4)0.008 (3)0.041 (3)0.007 (3)
C80.062 (3)0.034 (2)0.049 (2)0.0108 (19)0.014 (2)0.0022 (18)
C90.063 (3)0.034 (2)0.039 (2)0.004 (2)0.015 (2)0.0018 (17)
C100.101 (3)0.044 (2)0.100 (3)0.003 (2)0.054 (3)0.004 (2)
C110.162 (6)0.066 (3)0.100 (4)0.030 (3)0.029 (4)0.014 (3)
C120.069 (3)0.045 (2)0.040 (2)0.008 (2)0.011 (2)0.0013 (18)
C130.101 (4)0.091 (3)0.058 (2)0.021 (3)0.001 (2)0.023 (2)
C140.075 (4)0.072 (4)0.080 (4)0.001 (3)0.008 (3)0.010 (3)
C150.126 (5)0.137 (6)0.094 (4)0.046 (4)0.011 (4)0.015 (4)
C160.061 (3)0.041 (2)0.040 (2)0.0089 (19)0.0188 (19)0.0022 (18)
C170.064 (2)0.085 (3)0.059 (2)0.005 (2)0.0138 (18)0.013 (2)
C180.071 (3)0.048 (3)0.058 (3)0.006 (2)0.017 (2)0.005 (2)
C190.071 (3)0.095 (3)0.086 (3)0.006 (2)0.014 (2)0.033 (3)
B10.058 (2)0.0320 (17)0.0441 (18)0.0035 (15)0.0139 (16)0.0015 (14)
B20.0455 (19)0.0307 (16)0.0426 (17)0.0032 (13)0.0161 (14)0.0030 (13)
B30.058 (2)0.0376 (18)0.0428 (18)0.0022 (16)0.0089 (16)0.0102 (14)
B40.066 (2)0.045 (2)0.0433 (19)0.0134 (18)0.0023 (17)0.0048 (16)
B50.0450 (18)0.0268 (15)0.0444 (17)0.0003 (13)0.0117 (14)0.0012 (13)
B70.053 (2)0.0347 (17)0.0497 (19)0.0060 (15)0.0124 (16)0.0105 (15)
B80.054 (2)0.057 (2)0.053 (2)0.0060 (18)0.0009 (17)0.0184 (18)
B90.059 (2)0.053 (2)0.055 (2)0.0210 (19)0.0053 (18)0.0120 (18)
B100.062 (2)0.0280 (16)0.0432 (18)0.0081 (15)0.0047 (16)0.0001 (14)
Geometric parameters (Å, º) top
Br1—B52.025 (3)C13—C141.519 (8)
Mn1—C21.789 (4)C14—C151.363 (8)
Mn1—C31.793 (3)C16—C171.431 (6)
Mn1—C11.802 (3)C17—C181.484 (6)
Mn1—B72.221 (4)C18—C191.436 (7)
Mn1—B22.224 (3)B1—B51.737 (5)
Mn1—B52.236 (3)B1—B101.753 (5)
O1—C11.149 (4)B1—B31.768 (5)
O2—C21.152 (4)B1—B21.777 (5)
O3—C31.151 (4)B1—B41.785 (6)
N1—C1611.433 (13)B2—B31.771 (5)
N1—C81.497 (5)B2—B51.789 (4)
N1—C41.502 (5)B2—B71.797 (5)
N1—C1211.525 (13)B3—B81.736 (6)
N1—C161.536 (5)B3—B71.748 (5)
N1—C411.546 (15)B3—B41.801 (5)
N1—C121.547 (5)B4—B91.713 (6)
N1—C811.623 (17)B4—B81.769 (7)
C4—C51.502 (6)B4—B101.782 (5)
C5—C61.485 (6)B5—B101.994 (5)
C6—C71.481 (7)B7—B82.027 (6)
C8—C91.531 (7)B8—B91.773 (5)
C9—C101.514 (6)B9—B101.784 (6)
C10—C111.456 (7)C81—C911.51 (3)
C12—C131.408 (7)
C2—Mn1—C388.47 (15)B10—B1—B460.5 (2)
C2—Mn1—C193.30 (16)B3—B1—B460.9 (2)
C3—Mn1—C192.13 (14)B2—B1—B4115.2 (3)
C2—Mn1—B7139.58 (15)B3—B2—B159.8 (2)
C3—Mn1—B782.98 (15)B3—B2—B5106.5 (2)
C1—Mn1—B7126.32 (15)B1—B2—B558.30 (18)
C2—Mn1—B297.18 (14)B3—B2—B758.7 (2)
C3—Mn1—B2103.43 (13)B1—B2—B7106.1 (2)
C1—Mn1—B2161.40 (14)B5—B2—B7107.5 (2)
B7—Mn1—B247.69 (13)B3—B2—Mn1118.8 (2)
C2—Mn1—B587.14 (14)B1—B2—Mn1118.68 (19)
C3—Mn1—B5149.36 (13)B5—B2—Mn166.68 (15)
C1—Mn1—B5118.38 (13)B7—B2—Mn166.06 (15)
B7—Mn1—B580.89 (13)B8—B3—B771.1 (2)
B2—Mn1—B547.30 (12)B8—B3—B1108.0 (3)
C161—N1—C8153.7 (6)B7—B3—B1108.7 (2)
C161—N1—C468.4 (5)B8—B3—B2119.9 (3)
C8—N1—C4112.7 (3)B7—B3—B261.4 (2)
C161—N1—C121118.6 (7)B1—B3—B260.3 (2)
C8—N1—C12171.3 (5)B8—B3—B460.0 (2)
C4—N1—C121157.3 (5)B7—B3—B4118.7 (3)
C161—N1—C1649.7 (5)B1—B3—B460.0 (2)
C8—N1—C16109.7 (3)B2—B3—B4114.7 (2)
C4—N1—C16108.5 (3)B9—B4—B861.2 (2)
C121—N1—C1689.8 (5)B9—B4—B1061.3 (2)
C161—N1—C41112.8 (8)B8—B4—B10105.6 (3)
C8—N1—C4183.9 (6)B9—B4—B1110.6 (3)
C4—N1—C4152.3 (6)B8—B4—B1105.8 (3)
C121—N1—C41108.1 (8)B10—B4—B158.9 (2)
C16—N1—C41160.6 (6)B9—B4—B3109.3 (3)
C161—N1—C1294.1 (5)B8—B4—B358.2 (2)
C8—N1—C12109.8 (3)B10—B4—B3104.7 (2)
C4—N1—C12107.0 (3)B1—B4—B359.1 (2)
C121—N1—C1252.8 (5)B1—B5—B260.49 (19)
C16—N1—C12109.1 (3)B1—B5—B1055.53 (18)
C41—N1—C1277.6 (6)B2—B5—B10105.6 (2)
C161—N1—C81107.9 (8)B1—B5—Br1112.1 (2)
C8—N1—C8146.5 (6)B2—B5—Br1125.9 (2)
C4—N1—C8192.8 (6)B10—B5—Br1110.62 (18)
C121—N1—C81104.3 (8)B1—B5—Mn1120.0 (2)
C16—N1—C8178.0 (6)B2—B5—Mn166.02 (14)
C41—N1—C81103.9 (8)B10—B5—Mn1121.6 (2)
C12—N1—C81154.7 (6)Br1—B5—Mn1120.32 (16)
O1—C1—Mn1178.6 (3)B3—B7—B259.9 (2)
O2—C2—Mn1176.1 (3)B3—B7—B854.2 (2)
O3—C3—Mn1178.7 (3)B2—B7—B8105.0 (2)
C5—C4—N1116.7 (3)B3—B7—Mn1120.1 (2)
C6—C5—C4113.2 (4)B2—B7—Mn166.25 (16)
C7—C6—C5114.8 (4)B8—B7—Mn1124.4 (2)
N1—C8—C9115.0 (4)B3—B8—B461.8 (2)
C10—C9—C8112.8 (4)B3—B8—B9109.6 (3)
C11—C10—C9114.1 (5)B4—B8—B957.8 (2)
C13—C12—N1120.8 (4)B3—B8—B754.7 (2)
C12—C13—C14115.1 (5)B4—B8—B7106.9 (3)
C15—C14—C13122.0 (6)B9—B8—B7115.4 (3)
C17—C16—N1121.0 (3)B4—B9—B861.0 (2)
C16—C17—C18116.4 (4)B4—B9—B1061.2 (2)
C19—C18—C17120.6 (5)B8—B9—B10105.3 (3)
B5—B1—B1069.7 (2)B1—B10—B460.6 (2)
B5—B1—B3108.9 (3)B1—B10—B9108.8 (3)
B10—B1—B3107.4 (3)B4—B10—B957.4 (2)
B5—B1—B261.21 (19)B1—B10—B554.78 (18)
B10—B1—B2117.4 (3)B4—B10—B5107.3 (2)
B3—B1—B260.0 (2)B9—B10—B5118.6 (3)
B5—B1—B4119.6 (3)C91—C81—N1113.7 (14)
C2—Mn1—C1—O1126 (14)B2—B1—B5—Mn130.0 (2)
C3—Mn1—C1—O1146 (14)B4—B1—B5—Mn174.3 (3)
B7—Mn1—C1—O163 (14)B3—B2—B5—B136.9 (2)
B2—Mn1—C1—O11 (15)B7—B2—B5—B198.5 (3)
B5—Mn1—C1—O137 (14)Mn1—B2—B5—B1151.7 (2)
C3—Mn1—C2—O232 (5)B3—B2—B5—B103.3 (3)
C1—Mn1—C2—O2124 (5)B1—B2—B5—B1033.6 (2)
B7—Mn1—C2—O246 (5)B7—B2—B5—B1064.9 (3)
B2—Mn1—C2—O272 (5)Mn1—B2—B5—B10118.1 (2)
B5—Mn1—C2—O2118 (5)B3—B2—B5—Br1134.1 (2)
C2—Mn1—C3—O326 (13)B1—B2—B5—Br197.2 (3)
C1—Mn1—C3—O3119 (13)B7—B2—B5—Br1164.3 (2)
B7—Mn1—C3—O3115 (13)Mn1—B2—B5—Br1111.1 (2)
B2—Mn1—C3—O371 (13)B3—B2—B5—Mn1114.8 (2)
B5—Mn1—C3—O356 (13)B1—B2—B5—Mn1151.7 (2)
C161—N1—C4—C5156.6 (6)B7—B2—B5—Mn153.22 (19)
C8—N1—C4—C551.8 (4)C2—Mn1—B5—B1130.9 (3)
C121—N1—C4—C544.0 (15)C3—Mn1—B5—B148.8 (4)
C16—N1—C4—C5173.5 (3)C1—Mn1—B5—B1136.9 (2)
C41—N1—C4—C510.2 (8)B7—Mn1—B5—B110.3 (2)
C12—N1—C4—C568.9 (4)B2—Mn1—B5—B128.4 (2)
C81—N1—C4—C595.2 (7)C2—Mn1—B5—B2102.49 (18)
N1—C4—C5—C6178.9 (3)C3—Mn1—B5—B220.3 (3)
C4—C5—C6—C7177.7 (4)C1—Mn1—B5—B2165.29 (18)
C161—N1—C8—C933.1 (14)B7—Mn1—B5—B238.76 (17)
C4—N1—C8—C953.8 (4)C2—Mn1—B5—B10163.4 (2)
C121—N1—C8—C9150.2 (6)C3—Mn1—B5—B10114.5 (3)
C16—N1—C8—C967.3 (5)C1—Mn1—B5—B1071.2 (3)
C41—N1—C8—C998.4 (7)B7—Mn1—B5—B1055.3 (2)
C12—N1—C8—C9172.9 (3)B2—Mn1—B5—B1094.1 (3)
C81—N1—C8—C917.3 (8)C2—Mn1—B5—Br116.40 (19)
N1—C8—C9—C10170.2 (3)C3—Mn1—B5—Br198.5 (3)
C8—C9—C10—C11179.5 (4)C1—Mn1—B5—Br175.8 (2)
C161—N1—C12—C13102.9 (6)B7—Mn1—B5—Br1157.65 (19)
C8—N1—C12—C1365.9 (5)B2—Mn1—B5—Br1118.9 (2)
C4—N1—C12—C13171.5 (4)B8—B3—B7—B2141.9 (2)
C121—N1—C12—C1320.3 (7)B1—B3—B7—B238.7 (2)
C16—N1—C12—C1354.3 (5)B4—B3—B7—B2104.1 (3)
C41—N1—C12—C13144.7 (7)B1—B3—B7—B8103.2 (3)
C81—N1—C12—C1348.4 (16)B2—B3—B7—B8141.9 (2)
N1—C12—C13—C14179.2 (4)B4—B3—B7—B837.8 (3)
C12—C13—C14—C15174.8 (6)B8—B3—B7—Mn1112.7 (3)
C161—N1—C16—C1727.1 (7)B1—B3—B7—Mn19.5 (3)
C8—N1—C16—C17172.0 (4)B2—B3—B7—Mn129.2 (2)
C4—N1—C16—C1764.5 (5)B4—B3—B7—Mn174.9 (4)
C121—N1—C16—C17101.9 (6)B1—B2—B7—B337.8 (2)
C41—N1—C16—C1756 (2)B5—B2—B7—B399.0 (2)
C12—N1—C16—C1751.7 (5)Mn1—B2—B7—B3152.6 (2)
C81—N1—C16—C17153.4 (7)B3—B2—B7—B831.2 (2)
N1—C16—C17—C18176.0 (4)B1—B2—B7—B86.6 (3)
C16—C17—C18—C19178.6 (5)B5—B2—B7—B867.8 (3)
B5—B1—B2—B3138.2 (3)Mn1—B2—B7—B8121.4 (2)
B10—B1—B2—B395.1 (3)B3—B2—B7—Mn1152.6 (2)
B4—B1—B2—B326.8 (2)B1—B2—B7—Mn1114.7 (2)
B10—B1—B2—B543.1 (3)B5—B2—B7—Mn153.58 (19)
B3—B1—B2—B5138.2 (3)C2—Mn1—B7—B363.5 (3)
B4—B1—B2—B5111.4 (3)C3—Mn1—B7—B3142.8 (3)
B5—B1—B2—B7100.9 (2)C1—Mn1—B7—B3129.7 (2)
B10—B1—B2—B757.8 (3)B2—Mn1—B7—B327.4 (2)
B3—B1—B2—B737.3 (2)B5—Mn1—B7—B311.0 (2)
B4—B1—B2—B710.5 (3)C2—Mn1—B7—B236.1 (3)
B5—B1—B2—Mn129.7 (2)C3—Mn1—B7—B2115.38 (18)
B10—B1—B2—Mn113.3 (4)C1—Mn1—B7—B2157.14 (17)
B3—B1—B2—Mn1108.5 (2)B5—Mn1—B7—B238.48 (16)
B4—B1—B2—Mn181.7 (3)C2—Mn1—B7—B8128.5 (3)
C2—Mn1—B2—B3176.0 (2)C3—Mn1—B7—B8152.2 (3)
C3—Mn1—B2—B393.9 (2)C1—Mn1—B7—B864.7 (3)
C1—Mn1—B2—B352.2 (5)B2—Mn1—B7—B892.4 (3)
B7—Mn1—B2—B326.7 (2)B5—Mn1—B7—B853.9 (3)
B5—Mn1—B2—B396.6 (3)B7—B3—B8—B4141.6 (3)
C2—Mn1—B2—B1106.7 (3)B1—B3—B8—B437.4 (2)
C3—Mn1—B2—B1163.1 (2)B2—B3—B8—B4102.9 (3)
C1—Mn1—B2—B117.1 (6)B7—B3—B8—B9107.8 (3)
B7—Mn1—B2—B195.9 (3)B1—B3—B8—B93.6 (4)
B5—Mn1—B2—B127.4 (2)B2—B3—B8—B969.1 (4)
C2—Mn1—B2—B579.36 (18)B4—B3—B8—B933.8 (3)
C3—Mn1—B2—B5169.50 (18)B1—B3—B8—B7104.2 (3)
C1—Mn1—B2—B544.4 (5)B2—B3—B8—B738.7 (3)
B7—Mn1—B2—B5123.3 (2)B4—B3—B8—B7141.6 (3)
C2—Mn1—B2—B7157.36 (17)B9—B4—B8—B3141.7 (3)
C3—Mn1—B2—B767.22 (19)B10—B4—B8—B397.9 (3)
C1—Mn1—B2—B778.8 (5)B1—B4—B8—B336.5 (2)
B5—Mn1—B2—B7123.3 (2)B10—B4—B8—B943.9 (2)
B5—B1—B3—B876.6 (3)B1—B4—B8—B9105.2 (3)
B10—B1—B3—B82.7 (3)B3—B4—B8—B9141.7 (3)
B2—B1—B3—B8114.8 (3)B9—B4—B8—B7109.7 (3)
B4—B1—B3—B837.4 (3)B10—B4—B8—B765.9 (3)
B5—B1—B3—B71.1 (3)B1—B4—B8—B74.5 (3)
B10—B1—B3—B772.8 (3)B3—B4—B8—B732.0 (2)
B2—B1—B3—B739.2 (2)B2—B7—B8—B333.6 (2)
B4—B1—B3—B7113.0 (3)Mn1—B7—B8—B3104.8 (3)
B5—B1—B3—B238.1 (2)B3—B7—B8—B434.9 (2)
B10—B1—B3—B2112.1 (3)B2—B7—B8—B41.3 (3)
B4—B1—B3—B2152.2 (3)Mn1—B7—B8—B469.9 (3)
B5—B1—B3—B4114.0 (3)B3—B7—B8—B996.8 (4)
B10—B1—B3—B440.1 (2)B2—B7—B8—B963.2 (4)
B2—B1—B3—B4152.2 (3)Mn1—B7—B8—B98.0 (4)
B1—B2—B3—B894.6 (3)B10—B4—B9—B8130.5 (3)
B5—B2—B3—B858.4 (4)B1—B4—B9—B897.2 (3)
B7—B2—B3—B842.4 (3)B3—B4—B9—B833.9 (3)
Mn1—B2—B3—B813.6 (4)B8—B4—B9—B10130.5 (3)
B1—B2—B3—B7137.0 (2)B1—B4—B9—B1033.3 (3)
B5—B2—B3—B7100.7 (2)B3—B4—B9—B1096.6 (3)
Mn1—B2—B3—B728.7 (2)B3—B8—B9—B435.4 (3)
B5—B2—B3—B136.3 (2)B7—B8—B9—B494.7 (3)
B7—B2—B3—B1137.0 (2)B3—B8—B9—B108.3 (4)
Mn1—B2—B3—B1108.3 (2)B4—B8—B9—B1043.7 (3)
B1—B2—B3—B426.4 (3)B7—B8—B9—B1051.0 (4)
B5—B2—B3—B49.9 (4)B5—B1—B10—B4144.6 (3)
B7—B2—B3—B4110.6 (3)B3—B1—B10—B440.3 (3)
Mn1—B2—B3—B481.9 (3)B2—B1—B10—B4105.0 (3)
B5—B1—B4—B94.4 (4)B5—B1—B10—B9112.3 (3)
B10—B1—B4—B934.3 (3)B3—B1—B10—B98.0 (3)
B3—B1—B4—B9100.7 (3)B2—B1—B10—B972.6 (4)
B2—B1—B4—B974.2 (4)B4—B1—B10—B932.3 (3)
B5—B1—B4—B860.2 (3)B3—B1—B10—B5104.3 (3)
B10—B1—B4—B898.9 (3)B2—B1—B10—B539.6 (2)
B3—B1—B4—B836.1 (2)B4—B1—B10—B5144.6 (3)
B2—B1—B4—B89.6 (3)B9—B4—B10—B1143.1 (3)
B5—B1—B4—B1038.7 (3)B8—B4—B10—B199.3 (3)
B3—B1—B4—B10135.0 (3)B3—B4—B10—B138.8 (2)
B2—B1—B4—B10108.5 (3)B8—B4—B10—B943.8 (3)
B5—B1—B4—B396.4 (3)B1—B4—B10—B9143.1 (3)
B10—B1—B4—B3135.0 (3)B3—B4—B10—B9104.3 (3)
B2—B1—B4—B326.5 (2)B9—B4—B10—B5113.4 (3)
B8—B3—B4—B935.1 (3)B8—B4—B10—B569.6 (3)
B7—B3—B4—B97.0 (4)B1—B4—B10—B529.7 (2)
B1—B3—B4—B9103.0 (3)B3—B4—B10—B59.1 (3)
B2—B3—B4—B976.6 (4)B4—B9—B10—B133.6 (3)
B7—B3—B4—B842.1 (3)B8—B9—B10—B110.0 (4)
B1—B3—B4—B8138.1 (3)B8—B9—B10—B443.6 (3)
B2—B3—B4—B8111.6 (3)B4—B9—B10—B593.1 (3)
B8—B3—B4—B1099.4 (3)B8—B9—B10—B549.5 (4)
B7—B3—B4—B1057.3 (4)B2—B5—B10—B135.7 (2)
B1—B3—B4—B1038.7 (3)Br1—B5—B10—B1103.3 (2)
B2—B3—B4—B1012.2 (4)Mn1—B5—B10—B1106.8 (3)
B8—B3—B4—B1138.1 (3)B1—B5—B10—B431.9 (3)
B7—B3—B4—B196.1 (3)B2—B5—B10—B43.8 (3)
B2—B3—B4—B126.5 (3)Br1—B5—B10—B4135.2 (2)
B10—B1—B5—B2139.7 (3)Mn1—B5—B10—B474.9 (3)
B3—B1—B5—B237.6 (2)B1—B5—B10—B993.7 (3)
B4—B1—B5—B2104.3 (3)B2—B5—B10—B958.0 (3)
B3—B1—B5—B10102.1 (3)Br1—B5—B10—B9163.0 (2)
B2—B1—B5—B10139.7 (3)Mn1—B5—B10—B913.1 (4)
B4—B1—B5—B1035.4 (3)C161—N1—C81—C91177.1 (14)
B10—B1—B5—Br1100.5 (2)C8—N1—C81—C914.4 (11)
B3—B1—B5—Br1157.4 (2)C4—N1—C81—C91114.7 (14)
B2—B1—B5—Br1119.8 (2)C121—N1—C81—C9150.2 (15)
B4—B1—B5—Br1135.9 (3)C16—N1—C81—C91136.9 (14)
B10—B1—B5—Mn1109.7 (2)C41—N1—C81—C9162.9 (15)
B3—B1—B5—Mn17.6 (3)C12—N1—C81—C9127 (2)

Experimental details

Crystal data
Chemical formula(C16H36N)[Mn(CO)3(B9BrH12)]
Mr570.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.7469 (1), 18.2581 (2), 14.5558 (1)
β (°) 101.352 (1)
V3)3060.79 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1997)
Tmin, Tmax0.710, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
34786, 6964, 5105
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.03
No. of reflections6964
No. of parameters353
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.52

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, DENZO and COLLECT, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected bond lengths (Å) top
Br1—B52.025 (3)B2—B51.789 (4)
Mn1—C21.789 (4)B2—B71.797 (5)
Mn1—C31.793 (3)B3—B81.736 (6)
Mn1—C11.802 (3)B3—B71.748 (5)
Mn1—B72.221 (4)B3—B41.801 (5)
Mn1—B22.224 (3)B4—B91.713 (6)
Mn1—B52.236 (3)B4—B81.769 (7)
B1—B51.737 (5)B4—B101.782 (5)
B1—B101.753 (5)B5—B101.994 (5)
B1—B31.768 (5)B7—B82.027 (6)
B1—B21.777 (5)B8—B91.773 (5)
B1—B41.785 (6)B9—B101.784 (6)
B2—B31.771 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds