Download citation
Download citation
link to html
In [Pt(dppe)(NO3)2], where dppe is ethyl­ene-1,2-bis­(di­phenyl­phosphine) (C26H24P2), the Pt atom is coordinated by the two P atoms and by two O atoms of the two nitrate ions. The mol­ecule has a distorted square-planar geometry, with one of the nitrate groups directed on each side of the plane. The cation in cis-[Pt(dppmO-O,P)2](NO3)2·2H2O, where dppmO is bis­(di­phenyl­phosphino­methyl)­di­phenyl­phosphine oxide (C25H22OP2), comprises two five-membered chelate rings, each dppmO ligand being coordinated to platinum through one P atom and the O atom. The larger P-Pt-P angle of 102.25 (4)° is due to steric interactions between the two phenyl groups on each P atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017273/bk1556sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017273/bk1556Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017273/bk1556IIsup3.hkl
Contains datablock II

CCDC references: 162540; 162541

Comment top

The dinitratoplatinum(II) complexes [Pt(NO3)2(P—P)] [P—P is dppm, Ph2PCH2PPh2, or dppe, Ph2P(CH2)2PPh2] are useful intermediates in the synthesis of a wide variety of diphosphineplatinum complexes, since the weakly coordinated nitrates can be replaced easily by other ligands. They can be isolated, or they may be generated in situ and used in further reactions without isolation (De Priest et al., 1997). We prepared [ethylene-1,2-bis(diphenylphosphine)-P,P']dinitratoplatinum(II) [Pt(NO3)2(dppe)], (I), as a precursor to the corresponding ascorbate complex by the reaction of [PtCl2(dppe)] with silver nitrate in acetone solution (Arendse et al., 1999). The only structure of a related platinum complex in the literature is that of cis-[Pt(NO3)2(PMe3)2] (Suzuki et al., 1993).

Mixed phosphine-phosphine oxide ligands have been prepared by the reaction of Ph2P(CH2)nPPh2 with benzyl bromide, followed by aqueous NaOH (Abatjoglou & Kapicek, 1981). Palladium and platinum complexes of the type [M{Ph2P(CH2)nP(O)Ph2—P,O}2]2+ have been reported (Higgins et al., 1987), although the dppmO ligand was reported to be formed in only low yield by the above method. The solid state structure of [Pd(dppeO-P,O)2](BF4)2 has been reported recently by Coyle et al. (1998). We obtained cis-[bis(diphenylphosphinomethyl)diphenylphosphine oxide-O,P]platinum(II) dinitrate dihydrate, cis-[Pt(Ph2PCH2P(O)PPh2)2](NO3)2·2H2O, (II), as an unexpected by-product of the reaction between [PtCl2(dppm)] and silver nitrate in air. \sch

The molecular structure of (I) is shown in Fig. 1. The coordination geometry around the Pt atom is distorted square planar, with P1—Pt—P2, O1—Pt—P1, O4—Pt—P2 and O1—Pt—O4 angles of 85.85 (8), 90.82 (17), 98.15 (17) and 85.4 (2)°, respectively. The Pt—O—N angles are 113.5 (5) and 116.2 (5)°, and the NO2 groups lie on opposite sides of the PtO2P2 plane. This feature was also observed in the structure of cis-[Pt(NO3)2(PMe3)2] (Suzuki et al., 1993). The Pt—P distances of 2.215 (2) and 2.220 (2) Å, and the Pt—O distances of 2.111 (5) and 2.115 (5) Å, are similar to the corresponding distances in cis-[Pt(NO3)2(PMe3)2].

The molecular structure of the cation in (II) is bidentate, coordinating through one P atom and the O atom of the phosphine oxide to form two five-membered chelate rings. The Pt—O distances are 2.089 (2) and 2.094 (2) Å, and the Pt—P distances are 2.2168 (10) and 2.2178 (10) Å. These Pt—O and Pt—P bond lengths are similar to the values of 2.108 (10) Å and 2.213 (4) Å, respectively, found in cis-[Pt{Ph2PNHP(O)Ph2—P,O}2](BF4)2 (Bhattacharyya et al., 1996). The cation in the latter complex is analogous to that in (II), since it is also composed of two five-membered chelate rings. The Ph2PNHP(O)Ph2 ligand is also isoelectronic with dppmO. In the present case, the coordination geometry about the Pt atom is distorted square planar. The O1—Pt—O2, O2—Pt—P3, O1—Pt—P2 and P2—Pt—P3 angles are 87.54 (10), 86.10 (7), 84.09 (7) and 102.25 (4)°, respectively, giving an angle sum of 359.98° around the metal. The larger P—Pt—P angle is due to the greater steric requirements of the phenyl groups on the two P atoms that lie cis to each other. The P—Pt—P angle in (II) is larger than that of 98.5 (2)° found in cis-[Pt{Ph2PNHP(O)Ph2—P,O}2]2+ (Bhattacharyya et al., 1996); it is closer to the values of 103.2 (1) and 103.72 (9)° in the neutral complexes cis-[Pt{Ph2PNP(O)Ph2—P,O}2] (Bhattacharyya et al., 1996) and cis-[Pt{Ph2PCH2C(O)(CF3)2-P,O}2] (Montgomery et al., 1987).

Related literature top

For related literature, see: Abatjoglou & Kapicek (1981); Anderson et al. (1983); Arendse et al. (1999); Bhattacharyya et al. (1996); Coyle et al. (1998); De Priest, Zheng, Woods, Rillema, Mikirova & Zandler (1997); Higgins et al. (1987); Montgomery et al. (1987); Sheldrick (1999); Suzuki et al. (1993).

Experimental top

Compound (I) was synthesized from [PtCl2(dppe)] (Anderson et al., 1983) by halide abstraction with silver nitrate: silver nitrate (0.34 g, 2.0 mmol) in water (5 ml) was added to an acetone solution (40 ml) of [PtCl2(dppe)] (0.66 g, 1.0 mmol). The mixture was stirred for 24 h in the dark at room temperature, and the precipitate of AgCl was collected by filtration through Celite. The filtrate was evaporated under reduced pressure and the products were obtained as a yellow powder (yield 0.40 g, 56%). Crystals suitable for X-ray diffraction were obtained by slow evaporation from CDCl3 solution. Calculated for C26H24N2O6P2Pt: C 43.51, H 3.35, N 3.91%; found: C 43.64, H 3.31, N 3.81%; 31P NMR (CDCl3): δP 33.0, 1JPt,P 3940 Hz. The reaction of [PtCl2(dppm)] (1.30 g, 2 mmol) with 2 equivalents of silver nitrate (0.68 g, 4.0 mmol) in acetone (100 ml) in the presence of air produced a 4:1 mixture of [Pt(NO3)2(dppm)] and cis-[Pt(dppmO-P,O)2]2+, as determined by 31P NMR spectroscopy [δ 4.6 (s, 1JPt—P 3810 Hz), 67.0 (br)]. On standing, crystals of (II) suitable for X-ray diffraction were obtained.

Refinement top

H atoms were treated using appropriate riding models (AFIX = m3 in SHELXTL-Plus; Sheldrick, 1999). The Rint values were calculated for all data to θ = 30°, but the refinement only included data to 25°. In (I), the largest peak in the final difference map is 0.88 Å from C19 and the deepest trough is 0.64 Å from the Pt atom. In (II), the largest peak is 1.67 Å from O6'.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART. Data reduction: SHELXTL-Plus (Sheldrick, 1999) for (I); SAINT (Bruker, 1999) for (II). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); SHELXTL-Plus (Sheldrick, 1999) for (II). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I); SHELXTL-Plus for (II). For both compounds, molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

Figures top
[Figure 1] Fig. 1. The molecular view of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels and H atoms are drawn as small circles of arbitrary radii.
[Figure 2] Fig. 2. The molecular view of (II) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels and H atoms are drawn as small circles of arbitrary radii.
(I) [Ethylene-1,2-bis(diphenylphosphine)-P,P']dinitratoplatinum(II) top
Crystal data top
[Pt(C26H24P2)(NO3)2]F(000) = 1400
Mr = 717.50Dx = 1.820 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 10.4971 (1) ÅCell parameters from 8192 reflections
b = 15.5281 (2) Åθ = 2–26°
c = 16.3930 (2) ŵ = 5.53 mm1
β = 101.51 (1)°T = 223 K
V = 2618.36 (5) Å3Plates, colourless
Z = 40.30 × 0.20 × 0.04 mm
Data collection top
Bruker? CCD area-detector
diffractometer
5137 independent reflections
Radiation source: normal-focus sealed tube4304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.10
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
h = 1212
Tmin = 0.28, Tmax = 0.80k = 1919
25459 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0148P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5137 reflectionsΔρmax = 1.31 e Å3
334 parametersΔρmin = 0.59 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (8)
Crystal data top
[Pt(C26H24P2)(NO3)2]V = 2618.36 (5) Å3
Mr = 717.50Z = 4
Monoclinic, CcMo Kα radiation
a = 10.4971 (1) ŵ = 5.53 mm1
b = 15.5281 (2) ÅT = 223 K
c = 16.3930 (2) Å0.30 × 0.20 × 0.04 mm
β = 101.51 (1)°
Data collection top
Bruker? CCD area-detector
diffractometer
5137 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
4304 reflections with I > 2σ(I)
Tmin = 0.28, Tmax = 0.80Rint = 0.10
25459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.069Δρmax = 1.31 e Å3
S = 1.03Δρmin = 0.59 e Å3
5137 reflectionsAbsolute structure: Flack (1983)
334 parametersAbsolute structure parameter: 0.024 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt1.23803 (3)0.338727 (17)0.24406 (3)0.02642 (8)
P11.17177 (19)0.26002 (13)0.13088 (13)0.0260 (5)
P21.0888 (2)0.26857 (14)0.29683 (13)0.0289 (5)
O11.3891 (5)0.3923 (4)0.1920 (4)0.0350 (14)
O21.2750 (6)0.5094 (4)0.1732 (4)0.0608 (19)
O31.4606 (7)0.5010 (4)0.1362 (4)0.0606 (19)
O41.3048 (6)0.4217 (4)0.3455 (3)0.0388 (15)
O51.4715 (7)0.4505 (6)0.4393 (6)0.100 (3)
O61.4514 (6)0.3259 (4)0.3872 (4)0.0572 (19)
N11.3731 (7)0.4690 (5)0.1669 (5)0.0397 (18)
N21.4114 (7)0.3973 (5)0.3916 (5)0.044 (2)
C11.1387 (7)0.3217 (5)0.0355 (5)0.0252 (18)
C21.0122 (9)0.3410 (6)0.0063 (5)0.041 (2)
H20.94010.31950.01310.050*
C30.9952 (10)0.3923 (6)0.0768 (6)0.052 (3)
H30.91060.40520.10550.062*
C41.0986 (11)0.4242 (6)0.1052 (6)0.055 (3)
H41.08480.45990.15250.066*
C51.2242 (10)0.4047 (7)0.0651 (6)0.052 (3)
H51.29530.42700.08520.062*
C61.2451 (10)0.3521 (6)0.0047 (6)0.041 (2)
H61.33010.33700.03110.050*
C71.2911 (8)0.1796 (5)0.1164 (5)0.0294 (19)
C81.2660 (10)0.1273 (6)0.0475 (6)0.044 (2)
H81.18750.13220.00850.053*
C91.3594 (10)0.0665 (6)0.0365 (6)0.048 (3)
H91.34280.02970.00990.058*
C101.4743 (9)0.0600 (6)0.0924 (6)0.045 (2)
H101.53660.01940.08350.054*
C111.4997 (8)0.1116 (6)0.1608 (6)0.042 (2)
H111.57900.10620.19900.050*
C121.4083 (7)0.1727 (5)0.1745 (5)0.032 (2)
H121.42510.20840.22170.038*
C131.0264 (7)0.2011 (5)0.1419 (5)0.032 (2)
H13A0.94960.23800.12670.038*
H13B1.01490.15060.10530.038*
C141.0438 (8)0.1733 (5)0.2325 (5)0.032 (2)
H14A1.11200.12950.24530.039*
H14B0.96260.14890.24320.039*
C150.9387 (7)0.3288 (5)0.2905 (5)0.0278 (18)
C160.8412 (8)0.2940 (7)0.3272 (6)0.050 (3)
H160.85390.24130.35590.060*
C170.7232 (8)0.3394 (8)0.3202 (6)0.060 (3)
H170.65580.31630.34350.072*
C180.7060 (9)0.4173 (7)0.2796 (7)0.046 (3)
H180.62700.44700.27540.055*
C190.8027 (10)0.4518 (7)0.2451 (7)0.051 (3)
H190.79100.50610.21940.061*
C200.9185 (8)0.4071 (6)0.2480 (6)0.038 (2)
H200.98280.42950.22140.046*
C211.1299 (7)0.2361 (6)0.4051 (5)0.033 (2)
C221.1667 (8)0.2999 (7)0.4650 (5)0.042 (2)
H221.17750.35700.44870.050*
C231.1873 (8)0.2787 (8)0.5492 (6)0.049 (3)
H231.21530.32110.58970.059*
C241.1672 (10)0.1976 (9)0.5724 (6)0.064 (3)
H241.17830.18460.62930.076*
C251.1305 (10)0.1324 (8)0.5144 (7)0.061 (3)
H251.11780.07590.53180.073*
C261.1131 (10)0.1520 (7)0.4316 (6)0.047 (2)
H261.08950.10820.39180.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.02442 (13)0.02645 (14)0.02842 (14)0.0001 (3)0.00537 (9)0.0015 (3)
P10.0262 (12)0.0254 (12)0.0263 (12)0.0008 (9)0.0050 (9)0.0008 (10)
P20.0270 (12)0.0301 (13)0.0305 (13)0.0013 (9)0.0077 (10)0.0044 (10)
O10.027 (3)0.035 (4)0.046 (4)0.006 (3)0.015 (3)0.005 (3)
O20.055 (4)0.041 (4)0.084 (5)0.015 (4)0.010 (4)0.018 (4)
O30.068 (5)0.043 (5)0.074 (5)0.009 (4)0.023 (4)0.012 (4)
O40.039 (4)0.035 (4)0.038 (4)0.008 (3)0.004 (3)0.007 (3)
O50.069 (5)0.103 (7)0.109 (7)0.007 (5)0.030 (5)0.064 (6)
O60.041 (4)0.056 (5)0.072 (5)0.013 (3)0.007 (3)0.009 (4)
N10.039 (5)0.031 (5)0.047 (5)0.000 (4)0.004 (4)0.003 (4)
N20.040 (5)0.045 (6)0.045 (5)0.007 (4)0.004 (4)0.014 (4)
C10.025 (4)0.017 (5)0.030 (4)0.002 (3)0.002 (3)0.004 (3)
C20.049 (5)0.040 (5)0.036 (5)0.003 (5)0.009 (4)0.009 (5)
C30.062 (7)0.048 (7)0.038 (6)0.023 (5)0.008 (5)0.003 (5)
C40.093 (9)0.041 (7)0.034 (6)0.010 (6)0.019 (6)0.012 (5)
C50.058 (7)0.061 (7)0.037 (6)0.001 (5)0.011 (5)0.015 (5)
C60.044 (6)0.045 (7)0.034 (5)0.000 (5)0.007 (4)0.005 (5)
C70.040 (5)0.016 (5)0.033 (5)0.005 (3)0.008 (4)0.003 (4)
C80.047 (6)0.044 (6)0.040 (6)0.010 (5)0.004 (5)0.011 (5)
C90.068 (7)0.035 (6)0.043 (6)0.001 (5)0.013 (5)0.014 (5)
C100.045 (6)0.039 (6)0.053 (6)0.012 (5)0.017 (5)0.002 (5)
C110.032 (5)0.052 (6)0.040 (6)0.006 (4)0.006 (4)0.011 (5)
C120.034 (5)0.033 (5)0.030 (5)0.002 (4)0.008 (4)0.009 (4)
C130.027 (4)0.030 (5)0.038 (5)0.001 (4)0.005 (4)0.000 (4)
C140.037 (5)0.025 (5)0.038 (5)0.000 (4)0.017 (4)0.003 (4)
C150.021 (4)0.033 (5)0.029 (4)0.001 (4)0.004 (3)0.001 (4)
C160.038 (6)0.074 (7)0.043 (6)0.007 (5)0.016 (4)0.016 (5)
C170.026 (5)0.108 (10)0.049 (6)0.007 (6)0.016 (4)0.013 (7)
C180.032 (6)0.057 (8)0.049 (7)0.002 (5)0.004 (5)0.014 (6)
C190.059 (7)0.029 (6)0.059 (8)0.002 (5)0.001 (6)0.002 (5)
C200.025 (5)0.041 (6)0.048 (6)0.007 (4)0.004 (4)0.002 (5)
C210.027 (5)0.045 (6)0.031 (5)0.014 (4)0.014 (4)0.007 (5)
C220.032 (5)0.062 (7)0.032 (6)0.012 (5)0.009 (4)0.003 (5)
C230.038 (6)0.075 (8)0.033 (6)0.017 (5)0.004 (4)0.007 (6)
C240.050 (7)0.113 (11)0.027 (6)0.027 (7)0.006 (5)0.023 (7)
C250.053 (7)0.078 (9)0.054 (7)0.012 (6)0.015 (6)0.037 (7)
C260.056 (6)0.049 (7)0.035 (5)0.017 (5)0.009 (5)0.009 (5)
Geometric parameters (Å, º) top
Pt—O42.111 (5)C5—C61.388 (12)
Pt—O12.115 (5)C7—C81.373 (11)
Pt—P12.215 (2)C7—C121.402 (11)
Pt—P22.220 (2)C8—C91.397 (12)
P1—C11.808 (8)C9—C101.366 (13)
P1—C131.818 (8)C10—C111.361 (12)
P1—C71.818 (8)C11—C121.398 (12)
P2—C211.812 (8)C13—C141.523 (10)
P2—C151.818 (7)C15—C161.395 (11)
P2—C141.824 (8)C15—C201.397 (11)
O1—N11.261 (8)C16—C171.410 (13)
O2—N11.227 (8)C17—C181.375 (14)
O3—N11.236 (8)C18—C191.366 (12)
O4—N21.277 (9)C19—C201.393 (12)
O5—N21.222 (9)C21—C221.394 (13)
O6—N21.194 (9)C21—C261.399 (12)
C1—C61.395 (12)C22—C231.392 (12)
C1—C21.400 (11)C23—C241.345 (14)
C2—C31.386 (12)C24—C251.388 (15)
C3—C41.357 (13)C25—C261.369 (13)
C4—C51.384 (13)
O4—Pt—O185.4 (2)C4—C3—C2121.1 (9)
O4—Pt—P1175.34 (18)C3—C4—C5120.5 (9)
O1—Pt—P190.82 (17)C4—C5—C6120.0 (9)
O4—Pt—P298.15 (17)C5—C6—C1119.4 (9)
O1—Pt—P2173.75 (17)C8—C7—C12120.8 (8)
P1—Pt—P285.85 (8)C8—C7—P1119.3 (7)
C1—P1—C13109.4 (4)C12—C7—P1119.9 (6)
C1—P1—C7105.6 (4)C7—C8—C9118.7 (9)
C13—P1—C7106.3 (4)C10—C9—C8120.8 (9)
C1—P1—Pt114.0 (2)C11—C10—C9120.7 (8)
C13—P1—Pt108.9 (3)C10—C11—C12120.2 (8)
C7—P1—Pt112.3 (3)C11—C12—C7118.7 (8)
C21—P2—C15103.5 (3)C14—C13—P1107.4 (5)
C21—P2—C14108.9 (4)C13—C14—P2107.5 (5)
C15—P2—C14105.2 (4)C16—C15—C20120.1 (7)
C21—P2—Pt118.0 (3)C16—C15—P2118.6 (7)
C15—P2—Pt113.3 (3)C20—C15—P2121.3 (6)
C14—P2—Pt107.1 (3)C15—C16—C17118.6 (9)
N1—O1—Pt116.2 (5)C18—C17—C16120.5 (9)
N2—O4—Pt113.5 (5)C19—C18—C17120.6 (9)
O2—N1—O3122.2 (8)C18—C19—C20120.4 (10)
O2—N1—O1120.9 (7)C19—C20—C15119.7 (8)
O3—N1—O1116.8 (7)C22—C21—C26118.6 (8)
O6—N2—O5121.6 (9)C22—C21—P2118.1 (7)
O6—N2—O4121.2 (8)C26—C21—P2122.9 (7)
O5—N2—O4117.3 (8)C23—C22—C21119.8 (10)
C6—C1—C2120.0 (8)C24—C23—C22119.9 (10)
C6—C1—P1117.5 (6)C23—C24—C25121.8 (10)
C2—C1—P1122.4 (6)C26—C25—C24118.8 (10)
C3—C2—C1118.9 (8)C25—C26—C21121.0 (10)
(II) cis-[Bis(diphenylphosphinomethyl)diphenylphosphine oxide-O,P]platinum(II) dinitrate dihydrate top
Crystal data top
[Pt(C25H22OP)2]·2NO3·2H2OF(000) = 2320
Mr = 1155.87Dx = 1.590 Mg m3
Dm = no Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.9843 (2) ÅCell parameters from 8192 reflections
b = 16.3998 (2) Åθ = 2.2–26.4°
c = 22.6979 (3) ŵ = 3.10 mm1
β = 92.81 (1)°T = 213 K
V = 4827.47 (11) Å3Irregular, light yellow
Z = 40.36 × 0.28 × 0.22 mm
Data collection top
Bruker? CCD area-detector
diffractometer
9898 independent reflections
Radiation source: long-fine-focus sealed tube7985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.06
ϕ and ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
h = 1616
Tmin = 0.37, Tmax = 0.51k = 2020
80352 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0237P)2 + 8.7121P]
where P = (Fo2 + 2Fc2)/3
9898 reflections(Δ/σ)max = 0.001
604 parametersΔρmax = 0.75 e Å3
6 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Pt(C25H22OP)2]·2NO3·2H2OV = 4827.47 (11) Å3
Mr = 1155.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9843 (2) ŵ = 3.10 mm1
b = 16.3998 (2) ÅT = 213 K
c = 22.6979 (3) Å0.36 × 0.28 × 0.22 mm
β = 92.81 (1)°
Data collection top
Bruker? CCD area-detector
diffractometer
9898 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
7985 reflections with I > 2σ(I)
Tmin = 0.37, Tmax = 0.51Rint = 0.06
80352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.09Δρmax = 0.75 e Å3
9898 reflectionsΔρmin = 0.59 e Å3
604 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.182726 (10)0.204725 (9)0.003104 (6)0.02892 (5)
P10.18770 (7)0.01680 (6)0.03614 (5)0.0323 (2)
P20.30255 (7)0.16328 (6)0.06942 (4)0.0307 (2)
P40.03177 (7)0.31332 (6)0.07763 (4)0.0306 (2)
P30.23171 (7)0.33152 (6)0.01454 (4)0.0294 (2)
O10.12074 (18)0.08824 (16)0.01458 (12)0.0355 (6)
O20.0593 (2)0.22744 (16)0.05720 (12)0.0359 (6)
C10.3169 (3)0.0557 (2)0.04889 (19)0.0357 (9)
H1A0.35570.05080.01310.043*
H1B0.35330.02540.08080.043*
C20.1074 (3)0.3829 (2)0.03149 (16)0.0301 (8)
H2A0.07240.39450.00490.036*
H2B0.11810.43430.05230.036*
C30.1823 (3)0.0594 (3)0.02035 (18)0.0364 (9)
C40.2190 (3)0.0392 (3)0.0751 (2)0.0449 (11)
H40.25560.00970.07960.054*
C50.2017 (3)0.0909 (3)0.1227 (2)0.0540 (12)
H50.22530.07700.15990.065*
C60.1488 (3)0.1637 (3)0.1150 (2)0.0533 (12)
H60.13750.19920.14720.064*
C70.1128 (3)0.1846 (3)0.0610 (2)0.0487 (11)
H70.07750.23400.05640.058*
C80.1289 (3)0.1324 (2)0.01336 (19)0.0399 (10)
H80.10380.14610.02350.048*
C90.1436 (3)0.0252 (2)0.10322 (18)0.0358 (9)
C100.0405 (3)0.0169 (3)0.1153 (2)0.0529 (12)
H100.00450.01180.08910.063*
C110.0040 (4)0.0510 (4)0.1662 (2)0.0659 (15)
H110.06620.04620.17380.079*
C120.0686 (4)0.0913 (3)0.2050 (2)0.0566 (13)
H120.04330.11330.23970.068*
C130.1707 (4)0.1001 (3)0.1936 (2)0.0555 (13)
H130.21500.12860.22030.067*
C140.2091 (3)0.0672 (3)0.1429 (2)0.0464 (11)
H140.27920.07330.13530.056*
C150.2530 (3)0.1628 (2)0.14238 (17)0.0338 (9)
C160.1587 (3)0.1993 (3)0.15237 (19)0.0427 (10)
H160.12180.22640.12160.051*
C170.1197 (4)0.1956 (3)0.2079 (2)0.0569 (13)
H170.05630.22050.21490.068*
C180.1733 (4)0.1554 (4)0.2526 (2)0.0615 (14)
H180.14580.15230.29000.074*
C190.2677 (4)0.1194 (3)0.2432 (2)0.0574 (13)
H190.30440.09260.27420.069*
C200.3072 (3)0.1231 (3)0.18804 (19)0.0466 (11)
H200.37100.09860.18130.056*
C210.4310 (3)0.2060 (2)0.07728 (17)0.0347 (8)
C220.4538 (3)0.2624 (3)0.1216 (2)0.0435 (10)
H220.40310.27720.14780.052*
C230.5513 (3)0.2969 (3)0.1275 (2)0.0513 (12)
H230.56670.33530.15740.062*
C240.6254 (3)0.2747 (3)0.0892 (2)0.0515 (12)
H240.69110.29860.09270.062*
C250.6039 (3)0.2180 (3)0.0462 (2)0.0542 (13)
H250.65570.20220.02100.065*
C260.5062 (3)0.1834 (3)0.0392 (2)0.0458 (11)
H260.49140.14510.00920.055*
C270.2946 (3)0.3916 (2)0.04347 (17)0.0340 (9)
C280.2443 (3)0.4043 (3)0.09558 (18)0.0407 (10)
H280.17780.38310.10000.049*
C290.2935 (4)0.4485 (3)0.1407 (2)0.0502 (11)
H290.26020.45730.17600.060*
C300.3907 (4)0.4797 (3)0.1343 (2)0.0523 (12)
H300.42300.51020.16500.063*
C310.4410 (4)0.4662 (3)0.0830 (2)0.0492 (11)
H310.50780.48690.07910.059*
C320.3936 (3)0.4225 (3)0.03731 (18)0.0400 (10)
H320.42780.41370.00230.048*
C330.3046 (3)0.3417 (2)0.08010 (17)0.0331 (9)
C340.3606 (3)0.2762 (3)0.0998 (2)0.0470 (11)
H340.36430.22760.07790.056*
C350.4114 (4)0.2826 (3)0.1521 (2)0.0617 (14)
H350.45030.23840.16520.074*
C360.4048 (4)0.3531 (4)0.1845 (2)0.0598 (14)
H360.43840.35670.22010.072*
C370.3493 (3)0.4189 (3)0.16521 (19)0.0507 (12)
H370.34520.46720.18760.061*
C380.2995 (3)0.4133 (3)0.11276 (18)0.0407 (10)
H380.26220.45810.09920.049*
C390.0620 (3)0.3281 (3)0.15259 (17)0.0355 (9)
C400.1162 (3)0.2691 (3)0.1819 (2)0.0476 (11)
H400.13630.22060.16250.057*
C410.1404 (4)0.2819 (4)0.2398 (2)0.0652 (15)
H410.17720.24210.26000.078*
C420.1107 (4)0.3527 (4)0.2675 (2)0.0648 (16)
H420.12590.36070.30710.078*
C430.0586 (4)0.4128 (3)0.2383 (2)0.0577 (13)
H430.04070.46190.25760.069*
C440.0332 (3)0.4002 (3)0.18068 (19)0.0442 (10)
H440.00340.44020.16060.053*
C450.1037 (3)0.3306 (3)0.07207 (17)0.0358 (9)
C460.1683 (3)0.2804 (3)0.1066 (2)0.0489 (11)
H460.14050.24430.13380.059*
C470.2735 (3)0.2839 (3)0.1009 (2)0.0574 (13)
H470.31740.24920.12350.069*
C480.3138 (4)0.3377 (3)0.0623 (2)0.0591 (13)
H480.38560.34040.05900.071*
C490.2510 (4)0.3878 (3)0.0282 (2)0.0576 (13)
H490.27950.42450.00160.069*
C500.1448 (3)0.3841 (3)0.0330 (2)0.0471 (11)
H500.10130.41820.00970.056*
N10.4261 (4)0.1013 (3)0.3800 (2)0.0706 (14)
O1'0.3394 (3)0.0785 (3)0.3863 (2)0.0986 (15)
O2'0.4521 (6)0.1520 (3)0.3451 (4)0.197 (4)
O3'0.4894 (4)0.0692 (5)0.4115 (2)0.134 (3)
N20.4542 (3)0.0616 (3)0.1235 (2)0.0621 (11)
O4'0.3736 (4)0.0737 (3)0.1525 (2)0.1134 (18)
O5'0.4504 (4)0.0573 (4)0.0712 (2)0.126 (2)
O6'0.5311 (3)0.0467 (4)0.1487 (2)0.1161 (19)
O1S0.2451 (4)0.0921 (3)0.2614 (3)0.1214 (18)
H10.29610.07100.22640.146*
H20.54140.11930.28880.146*
O2S0.6009 (4)0.0920 (4)0.2605 (3)0.152 (3)
H1'0.56560.07770.22010.182*
H2'0.28290.14380.26410.182*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.02579 (7)0.02957 (8)0.03125 (8)0.00202 (7)0.00010 (5)0.00199 (7)
P10.0270 (5)0.0309 (5)0.0391 (6)0.0011 (4)0.0019 (4)0.0033 (4)
P20.0249 (5)0.0329 (5)0.0341 (5)0.0014 (4)0.0007 (4)0.0032 (4)
P40.0307 (5)0.0294 (5)0.0312 (5)0.0025 (4)0.0023 (4)0.0001 (4)
P30.0290 (5)0.0297 (5)0.0295 (5)0.0036 (4)0.0008 (4)0.0003 (4)
O10.0261 (13)0.0312 (15)0.0489 (17)0.0066 (11)0.0021 (12)0.0041 (12)
O20.0368 (14)0.0321 (15)0.0377 (15)0.0044 (11)0.0093 (12)0.0026 (11)
C10.0266 (18)0.034 (2)0.046 (2)0.0007 (16)0.0032 (17)0.0045 (18)
C20.0322 (19)0.032 (2)0.0263 (19)0.0001 (16)0.0007 (15)0.0019 (16)
C30.0276 (18)0.040 (2)0.042 (2)0.0014 (17)0.0027 (17)0.0031 (18)
C40.032 (2)0.047 (3)0.056 (3)0.0006 (19)0.009 (2)0.003 (2)
C50.045 (3)0.071 (4)0.047 (3)0.006 (2)0.011 (2)0.005 (2)
C60.043 (2)0.058 (3)0.058 (3)0.008 (2)0.003 (2)0.018 (3)
C70.042 (2)0.042 (3)0.061 (3)0.0021 (19)0.000 (2)0.008 (2)
C80.035 (2)0.037 (2)0.047 (2)0.0015 (18)0.0000 (18)0.0021 (19)
C90.038 (2)0.029 (2)0.041 (2)0.0048 (17)0.0009 (18)0.0020 (17)
C100.043 (2)0.062 (3)0.054 (3)0.006 (2)0.009 (2)0.014 (2)
C110.057 (3)0.078 (4)0.066 (3)0.004 (3)0.026 (3)0.015 (3)
C120.074 (3)0.057 (3)0.040 (3)0.017 (3)0.009 (2)0.002 (2)
C130.067 (3)0.053 (3)0.044 (3)0.012 (2)0.013 (2)0.009 (2)
C140.042 (2)0.047 (3)0.050 (3)0.003 (2)0.003 (2)0.007 (2)
C150.032 (2)0.036 (2)0.033 (2)0.0054 (17)0.0003 (16)0.0026 (17)
C160.035 (2)0.050 (3)0.043 (2)0.001 (2)0.0059 (17)0.010 (2)
C170.045 (3)0.076 (4)0.051 (3)0.000 (2)0.015 (2)0.008 (3)
C180.060 (3)0.086 (4)0.039 (3)0.012 (3)0.010 (2)0.005 (3)
C190.059 (3)0.074 (4)0.039 (3)0.003 (3)0.007 (2)0.014 (2)
C200.040 (2)0.060 (3)0.039 (2)0.002 (2)0.0042 (19)0.007 (2)
C210.0247 (17)0.036 (2)0.043 (2)0.0022 (17)0.0015 (15)0.0103 (19)
C220.032 (2)0.047 (3)0.051 (3)0.0021 (18)0.0042 (19)0.002 (2)
C230.043 (2)0.045 (3)0.064 (3)0.009 (2)0.015 (2)0.008 (2)
C240.032 (2)0.042 (3)0.079 (4)0.0091 (19)0.005 (2)0.017 (2)
C250.031 (2)0.055 (3)0.077 (3)0.001 (2)0.015 (2)0.008 (3)
C260.035 (2)0.046 (3)0.056 (3)0.0030 (19)0.002 (2)0.003 (2)
C270.039 (2)0.031 (2)0.032 (2)0.0041 (17)0.0045 (17)0.0009 (17)
C280.044 (2)0.038 (2)0.040 (2)0.0030 (18)0.0001 (19)0.0007 (19)
C290.067 (3)0.047 (3)0.036 (2)0.001 (2)0.001 (2)0.006 (2)
C300.064 (3)0.042 (3)0.049 (3)0.008 (2)0.019 (2)0.004 (2)
C310.048 (3)0.048 (3)0.051 (3)0.017 (2)0.009 (2)0.006 (2)
C320.040 (2)0.043 (2)0.037 (2)0.0078 (19)0.0015 (18)0.0054 (19)
C330.0285 (19)0.039 (2)0.032 (2)0.0074 (16)0.0021 (16)0.0013 (17)
C340.042 (2)0.047 (3)0.053 (3)0.0018 (19)0.009 (2)0.004 (2)
C350.054 (3)0.070 (4)0.063 (3)0.007 (3)0.024 (2)0.011 (3)
C360.047 (3)0.088 (4)0.046 (3)0.015 (3)0.018 (2)0.003 (3)
C370.045 (2)0.069 (3)0.038 (2)0.018 (2)0.005 (2)0.009 (2)
C380.039 (2)0.043 (2)0.040 (2)0.0073 (18)0.0028 (18)0.0016 (19)
C390.032 (2)0.041 (2)0.034 (2)0.0079 (17)0.0033 (16)0.0021 (18)
C400.044 (2)0.049 (3)0.049 (3)0.003 (2)0.001 (2)0.011 (2)
C410.056 (3)0.091 (4)0.050 (3)0.006 (3)0.012 (2)0.024 (3)
C420.057 (3)0.103 (5)0.036 (3)0.035 (3)0.009 (2)0.003 (3)
C430.062 (3)0.067 (4)0.043 (3)0.025 (3)0.006 (2)0.014 (2)
C440.044 (2)0.048 (3)0.040 (2)0.007 (2)0.0026 (19)0.002 (2)
C450.035 (2)0.036 (2)0.036 (2)0.0014 (17)0.0019 (17)0.0102 (18)
C460.040 (2)0.055 (3)0.050 (3)0.008 (2)0.004 (2)0.007 (2)
C470.039 (2)0.063 (3)0.070 (3)0.015 (2)0.007 (2)0.006 (3)
C480.036 (2)0.066 (3)0.076 (4)0.004 (2)0.003 (2)0.019 (3)
C490.044 (3)0.056 (3)0.074 (3)0.015 (2)0.009 (2)0.002 (3)
C500.041 (2)0.043 (3)0.057 (3)0.006 (2)0.001 (2)0.001 (2)
N10.073 (3)0.061 (3)0.076 (3)0.015 (3)0.019 (3)0.031 (3)
O1'0.073 (3)0.095 (3)0.127 (4)0.020 (3)0.004 (3)0.022 (3)
O2'0.271 (9)0.056 (3)0.244 (8)0.018 (4)0.178 (7)0.024 (4)
O3'0.073 (3)0.240 (7)0.089 (4)0.008 (4)0.015 (3)0.079 (4)
N20.054 (3)0.077 (3)0.057 (3)0.009 (2)0.011 (2)0.008 (2)
O4'0.072 (3)0.125 (4)0.143 (5)0.014 (3)0.001 (3)0.048 (4)
O5'0.122 (4)0.198 (6)0.061 (3)0.052 (4)0.034 (3)0.039 (3)
O6'0.068 (3)0.207 (6)0.075 (3)0.041 (3)0.022 (2)0.011 (3)
O1S0.095 (3)0.106 (4)0.163 (5)0.017 (3)0.010 (3)0.021 (4)
O2S0.083 (3)0.239 (7)0.132 (5)0.026 (4)0.016 (3)0.096 (5)
Geometric parameters (Å, º) top
Pt—O22.089 (2)C21—C261.385 (6)
Pt—O12.094 (2)C21—C221.388 (6)
Pt—P32.2168 (10)C22—C231.387 (6)
Pt—P22.2178 (10)C23—C241.376 (7)
P1—O11.525 (3)C24—C251.368 (7)
P1—C31.790 (4)C25—C261.392 (6)
P1—C91.791 (4)C27—C281.395 (6)
P1—C11.804 (4)C27—C321.396 (5)
P2—C151.806 (4)C28—C291.386 (6)
P2—C211.810 (4)C29—C301.376 (7)
P2—C11.837 (4)C30—C311.381 (7)
P4—O21.520 (3)C31—C321.380 (6)
P4—C391.781 (4)C33—C341.384 (6)
P4—C451.792 (4)C33—C381.388 (6)
P4—C21.806 (4)C34—C351.388 (6)
P3—C271.807 (4)C35—C361.372 (7)
P3—C331.810 (4)C36—C371.380 (7)
P3—C21.844 (4)C37—C381.385 (6)
C3—C41.392 (6)C39—C401.386 (6)
C3—C81.395 (6)C39—C441.386 (6)
C4—C51.384 (6)C40—C411.381 (7)
C5—C61.393 (7)C41—C421.368 (8)
C6—C71.376 (7)C42—C431.381 (8)
C7—C81.387 (6)C43—C441.381 (6)
C9—C101.386 (6)C45—C501.374 (6)
C9—C141.391 (6)C45—C461.390 (6)
C10—C111.387 (7)C46—C471.379 (6)
C11—C121.358 (7)C47—C481.366 (7)
C12—C131.370 (7)C48—C491.370 (7)
C13—C141.385 (6)C49—C501.389 (6)
C15—C201.386 (5)N1—O2'1.186 (6)
C15—C161.392 (5)N1—O1'1.188 (5)
C16—C171.382 (6)N1—O3'1.233 (7)
C17—C181.371 (7)N2—O5'1.192 (5)
C18—C191.387 (7)N2—O6'1.200 (5)
C19—C201.377 (6)N2—O4'1.225 (5)
O2—Pt—O187.54 (10)C16—C15—P2120.2 (3)
O2—Pt—P386.10 (7)C17—C16—C15119.6 (4)
O1—Pt—P3173.52 (7)C18—C17—C16120.0 (4)
O2—Pt—P2171.61 (7)C17—C18—C19120.8 (4)
O1—Pt—P284.09 (7)C20—C19—C18119.5 (4)
P3—Pt—P2102.25 (4)C19—C20—C15120.2 (4)
O1—P1—C3107.75 (17)C26—C21—C22119.9 (4)
O1—P1—C9111.54 (17)C26—C21—P2120.6 (3)
C3—P1—C9109.73 (19)C22—C21—P2119.5 (3)
O1—P1—C1106.89 (16)C23—C22—C21120.2 (4)
C3—P1—C1111.44 (18)C24—C23—C22119.6 (5)
C9—P1—C1109.46 (19)C25—C24—C23120.4 (4)
C15—P2—C21106.22 (18)C24—C25—C26120.7 (4)
C15—P2—C1105.87 (19)C21—C26—C25119.1 (4)
C21—P2—C1107.04 (18)C28—C27—C32120.2 (4)
C15—P2—Pt110.74 (13)C28—C27—P3119.0 (3)
C21—P2—Pt124.09 (13)C32—C27—P3120.7 (3)
C1—P2—Pt101.45 (13)C29—C28—C27119.1 (4)
O2—P4—C39110.97 (18)C30—C29—C28120.6 (4)
O2—P4—C45109.99 (17)C29—C30—C31120.2 (4)
C39—P4—C45107.98 (18)C32—C31—C30120.4 (4)
O2—P4—C2107.17 (16)C31—C32—C27119.5 (4)
C39—P4—C2109.21 (18)C34—C33—C38119.7 (4)
C45—P4—C2111.55 (19)C34—C33—P3119.9 (3)
C27—P3—C33108.23 (18)C38—C33—P3120.3 (3)
C27—P3—C2105.20 (18)C33—C34—C35119.8 (4)
C33—P3—C2105.90 (17)C36—C35—C34120.1 (5)
C27—P3—Pt120.23 (13)C35—C36—C37120.6 (4)
C33—P3—Pt113.67 (13)C36—C37—C38119.5 (5)
C2—P3—Pt102.12 (12)C37—C38—C33120.2 (4)
P1—O1—Pt121.61 (14)C40—C39—C44120.4 (4)
P4—O2—Pt121.78 (15)C40—C39—P4120.3 (3)
P1—C1—P2106.00 (19)C44—C39—P4119.2 (3)
P4—C2—P3106.15 (19)C41—C40—C39119.7 (5)
C4—C3—C8120.0 (4)C42—C41—C40119.5 (5)
C4—C3—P1118.0 (3)C41—C42—C43121.3 (5)
C8—C3—P1121.3 (3)C42—C43—C44119.5 (5)
C5—C4—C3120.1 (4)C43—C44—C39119.5 (5)
C4—C5—C6119.3 (5)C50—C45—C46119.9 (4)
C7—C6—C5121.0 (4)C50—C45—P4124.1 (3)
C6—C7—C8119.8 (4)C46—C45—P4115.8 (3)
C7—C8—C3119.8 (4)C47—C46—C45119.7 (5)
C10—C9—C14119.1 (4)C48—C47—C46120.0 (5)
C10—C9—P1118.9 (3)C47—C48—C49120.9 (4)
C14—C9—P1122.0 (3)C48—C49—C50119.6 (5)
C9—C10—C11119.9 (4)C45—C50—C49119.8 (4)
C12—C11—C10120.7 (5)O2'—N1—O1'122.5 (8)
C11—C12—C13120.0 (5)O2'—N1—O3'120.7 (7)
C12—C13—C14120.5 (4)O1'—N1—O3'116.8 (6)
C13—C14—C9119.8 (4)O5'—N2—O6'122.6 (5)
C20—C15—C16119.9 (4)O5'—N2—O4'117.9 (5)
C20—C15—P2119.8 (3)O6'—N2—O4'119.1 (5)

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt(C26H24P2)(NO3)2][Pt(C25H22OP)2]·2NO3·2H2O
Mr717.501155.87
Crystal system, space groupMonoclinic, CcMonoclinic, P21/n
Temperature (K)223213
a, b, c (Å)10.4971 (1), 15.5281 (2), 16.3930 (2)12.9843 (2), 16.3998 (2), 22.6979 (3)
β (°) 101.51 (1) 92.81 (1)
V3)2618.36 (5)4827.47 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)5.533.10
Crystal size (mm)0.30 × 0.20 × 0.040.36 × 0.28 × 0.22
Data collection
DiffractometerBruker? CCD area-detector
diffractometer
Bruker? CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Blessing, 1995)
Empirical (using intensity measurements)
(SADABS; Blessing, 1995)
Tmin, Tmax0.28, 0.800.37, 0.51
No. of measured, independent and
observed [I > 2σ(I)] reflections
25459, 5137, 4304 80352, 9898, 7985
Rint0.100.06
(sin θ/λ)max1)0.6170.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.069, 1.03 0.031, 0.069, 1.09
No. of reflections51379898
No. of parameters334604
No. of restraints26
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.590.75, 0.59
Absolute structureFlack (1983)?
Absolute structure parameter0.024 (8)?

Computer programs: SMART (Bruker, 1999), SMART, SHELXTL-Plus (Sheldrick, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus.

Selected geometric parameters (Å, º) for (I) top
Pt—O42.111 (5)O2—N11.227 (8)
Pt—O12.115 (5)O3—N11.236 (8)
Pt—P12.215 (2)O4—N21.277 (9)
Pt—P22.220 (2)O5—N21.222 (9)
O1—N11.261 (8)O6—N21.194 (9)
O4—Pt—O185.4 (2)O2—N1—O3122.2 (8)
O1—Pt—P190.82 (17)O2—N1—O1120.9 (7)
O4—Pt—P298.15 (17)O3—N1—O1116.8 (7)
P1—Pt—P285.85 (8)O6—N2—O5121.6 (9)
N1—O1—Pt116.2 (5)O6—N2—O4121.2 (8)
N2—O4—Pt113.5 (5)O5—N2—O4117.3 (8)
Selected geometric parameters (Å, º) for (II) top
Pt—O22.089 (2)P1—C11.804 (4)
Pt—O12.094 (2)P2—C11.837 (4)
Pt—P32.2168 (10)P4—O21.520 (3)
Pt—P22.2178 (10)P4—C21.806 (4)
P1—O11.525 (3)P3—C21.844 (4)
O2—Pt—O187.54 (10)P3—Pt—P2102.25 (4)
O2—Pt—P386.10 (7)O1—P1—C1106.89 (16)
O1—Pt—P3173.52 (7)C1—P2—Pt101.45 (13)
O2—Pt—P2171.61 (7)P1—O1—Pt121.61 (14)
O1—Pt—P284.09 (7)P1—C1—P2106.00 (19)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds