Download citation
Download citation
link to html
In the structure of the title compound, [Mn2(C7H3NO4)2(H2O)6]·2C7H5NO4, a centrosymmetric dinuclear complex, hexaa­aqua­bis­(pyri­dine-2,6-di­carboxyl­ato)­dimanganese(II) and free pyri­dine-2,6-di­carboxyl­ic acid are present in a 1:2 ratio. In the complex, each Mn2+ ion is coordinated by three O atoms and one N atom from the pyridine-2,6-di­carboxyl­ate ligands and by three water O atoms, resulting in a distorted pentagonal bipyramidal coordination. Within the centrosymmetric dinuclear complex, two Mn2+ ions are bridged by two carboxyl­ate O atoms. The crystal structure is stabilized by hydrogen bonds involving all the H atoms of the water ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012786/bk1553sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012786/bk1553IIsup2.hkl
Contains datablock II

CCDC reference: 156139

Comment top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid), (I), is present in large amounts in bacterial spores (Powell, 1953; Church & Halvorson, 1959). This compound is the main component of bacterial spores, in which it forms a metal complex with divalent metal ions, especially with the calcium ion. The Mn2+ ion appeared to substitute for the Ca2+ ion to some degree in conferring heat resistance (Chung et al., 1971). It also has biological activity, such as inhibition of the zinc enzyme, bovine carbonic anhydrase (Pocker & Fong, 1980) or E. coli dihydrodipicolinate reductase (Scapin et al., 1997), or selective activation of the metalloenzyme calmodulin-activated protein phosphatase calcineurin (Martin, 1997). The selective activation of calcineurin by pyridine-2,6-dicarboxylic acid is reduced by the Mn2+ ion, which may be explained by the formation of a manganese–pyridine-2,6-dicarboxylic acid complex (Martin, 1997). We have analyzed the title complex, (II), in order to confirm the coordination mode of a manganese–pyridine-2,6-dicarboxylic acid complex.

Crystals of (II) were obtained as a 1:2 mixture of the dinuclear metal complex and free pyridine-2,6-dicarboxylic acid (see Fig. 1 and Table 1). The dinuclear complex sits on a crystallographic inversion center. Each Mn2+ ion is coordinated by two O atoms and one N atom from one pyridine-2,6-dicarboxylic acid ligand, one carboxylate O atom of the second pyridine-2,6-dicarboxylic acid ligand and by three water O atoms. In each dinuclear complex, the carboxylate group and the N atom form a five-membered chelate ring with the Mn2+ ion (N1/C1/C6/O2/Mn1 and N1/C5/C7/O4/Mn1), and two Mn2+ ions are bridged by two bifurcated coordination bonds of two carboxylate O atoms [O2 and O2i; symmetry code: (i) −x, −y, 1 − z]. Each Mn2+ ion has seven coordinate bonds forming a distorted pentagonal bipyramid, in which the N1, O2, O2i, O9 and O4 atoms form the distorted pentagonal plane. The pentagonal bipyramidal coordination of the d3sp3 hybrid orbital of Mn2+ ion seems to be rare, since it usually forms an octahedral d2sp3 hybrid orbital consisting of six coordination bonds. The planar conformation of the free pyridine-2,6-dicarboxylic acid molecules cocrystallized with the chelate complex in (II) resembles the crystal structure of pyridine-2,6-dicarboxylic acid itself (Takusagawa et al., 1973).

Up until now, many crystal structures of chelate compounds of pyridine-2,6-dicarboxylic acid with various metal ions have been determined: Ca2+ (Strahs & Dickerson, 1968), Ag2+ (Drew et al., 1969, 1970), Ti2+ (Schwarzenbach, 1970), Sr2+ (Palmer et al., 1972), Ni2+ (Quaglieri et al., 1972), Fe2+ (Lainé, Gourdon & Launay, 1995; Lainé, Gourdon, Launay & Tuchagues, 1995), and Cu2+ and Zn2+ (Okabe & Oya, 2000). In most of these crystal structures, the pyridine-2,6-dicarboxylic acid ligand is coordinated to a mononuclear metal ion and acts as a terdentate ligand, in which the central metal ion is bonded to two N and four O atoms of two ligand molecules. But the Ti5+ (Schwarzenbach, 1970), Fe2+ (Lainé, Gourdon, Launay & Tuchagues, 1995) and Ca2+ complexes (Strahs & Dickerson, 1968) are dinuclear, and the Sr2+ complex is polynuclear. Among these, the structure of the Fe2+ complex is isomorphous with the Mn2+ complex. Not only do these structures have the same geometry, but they also have the same space group and similar cell constants. Each metal has three bonds to one ligand molecule, one to the second ligand molecule and three to water molecules. Substitution of the Mn2+ ion for Ca2+ in bacterial spores in conferring heat resistance (Chung et al., 1971) may be caused by the similarities of the coordination polyhedron of the dinuclear octacoordinated Ca2+ and the dinuclear heptacoordinated Mn2+ complexes.

In the crystal structure of (II), the complex molecules and free ligand molecules are connected by all available hydrogen bonds through the hydrated water molecules (Table 2). There are π-stacking interactions between the pyridine rings both in the metal complexes and in the free ligand along the a axis

Experimental top

The colorless pillar-shaped crystal used for analysis was obtained by slow evapolation from a 50% ethanol–water solution of pyridine-2,6-dicarboxylic acid and manganese chloride tetrahydrate in a 10:1 molar ratio at room temperature.

Refinement top

The H atoms were located from difference Fourier maps.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1992b); program(s) used to solve structure: SAPI91 (Fan, 1991) and DIRDIF (Beurskens et al., 1994); program(s) used to refine structure: TEXSAN LS; molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (II) with the atomic numbering scheme. Another free ligand molecule located centrosymmetrically has been omitted. Ellipsoids for non-H atoms correspond to 50% probability.
Bis(µ-pyridine-2,6-carboxylato-N,O,O':O)bis[triaquamanganese(II)]– pyridine-2,6-dicarboxylic acid (1/2) top
Crystal data top
[Mn2(C7H3NO4)2(H2O)6]·2C7H5NO4Dx = 1.811 Mg m3
Mr = 882.42Mo Kα radiation, λ = 0.71069 Å
Monoclinic, P21/cCell parameters from 25 reflections
a = 9.166 (3) Åθ = 14.6–15.0°
b = 14.603 (3) ŵ = 0.89 mm1
c = 12.192 (3) ÅT = 296 K
β = 97.43 (2)°Pillar, colorless
V = 1618.2 (7) Å30.60 × 0.30 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.023
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 011
Tmin = 0.816, Tmax = 0.915k = 018
4093 measured reflectionsl = 1515
3711 independent reflections3 standard reflections every 150 reflections
2524 reflections with F2 > 2.0σ(F2) intensity decay: 0.4%
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.037w = 1/[σ2(Fo2) + {0.06000[Max(Fo2,0) + 2Fc2]/3}2]
wR(F2) = 0.122(Δ/σ)max = 0.003
S = 1.10Δρmax = 0.58 e Å3
3711 reflectionsΔρmin = 0.67 e Å3
253 parameters
Crystal data top
[Mn2(C7H3NO4)2(H2O)6]·2C7H5NO4V = 1618.2 (7) Å3
Mr = 882.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.166 (3) ŵ = 0.89 mm1
b = 14.603 (3) ÅT = 296 K
c = 12.192 (3) Å0.60 × 0.30 × 0.10 mm
β = 97.43 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
2524 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.816, Tmax = 0.9153 standard reflections every 150 reflections
4093 measured reflections intensity decay: 0.4%
3711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037253 parameters
wR(F2) = 0.122H-atom parameters not refined
S = 1.10Δρmax = 0.58 e Å3
3711 reflectionsΔρmin = 0.67 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted

R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are

based on F. The threshold expression of F2 > 2.0 σ(F2) is used only

for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.08193 (5)0.08403 (3)0.40568 (3)0.0232 (1)
O10.2031 (2)0.1409 (1)0.6562 (2)0.0328 (5)
O20.0740 (2)0.0672 (1)0.5390 (1)0.0242 (5)
O30.1370 (2)0.3563 (1)0.2437 (2)0.0302 (5)
O40.1482 (2)0.2075 (1)0.2831 (2)0.0319 (5)
O50.6277 (3)0.3966 (2)0.2210 (2)0.0465 (7)
O60.5763 (2)0.4257 (1)0.0496 (2)0.0377 (6)
O70.2985 (3)0.0729 (1)0.0930 (2)0.0462 (7)
O80.3021 (3)0.2214 (1)0.1282 (2)0.0427 (7)
O90.2510 (2)0.0325 (1)0.3119 (2)0.0350 (6)
O100.0898 (2)0.0402 (1)0.2742 (2)0.0306 (5)
O110.2742 (2)0.0962 (1)0.5468 (2)0.0287 (5)
N10.0162 (2)0.2227 (1)0.4421 (2)0.0203 (5)
N20.4542 (2)0.2589 (1)0.0362 (2)0.0236 (5)
C10.0992 (3)0.2279 (2)0.5242 (2)0.0215 (6)
C20.1576 (3)0.3090 (2)0.5566 (2)0.0288 (7)
C30.1304 (4)0.3887 (2)0.5014 (2)0.0335 (8)
C40.0452 (3)0.3842 (2)0.4156 (2)0.0287 (7)
C50.0104 (3)0.3000 (2)0.3885 (2)0.0226 (6)
C60.1282 (3)0.1381 (2)0.5787 (2)0.0222 (6)
C70.1055 (3)0.2888 (2)0.2973 (2)0.0238 (6)
C80.5279 (3)0.2767 (2)0.1221 (2)0.0265 (7)
C90.5600 (3)0.2108 (2)0.1972 (2)0.0343 (8)
C100.5170 (4)0.1215 (2)0.1827 (3)0.0378 (8)
C110.4437 (3)0.1011 (2)0.0938 (2)0.0324 (7)
C120.4140 (3)0.1721 (2)0.0232 (2)0.0247 (6)
C130.5806 (3)0.3731 (2)0.1362 (2)0.0319 (7)
C140.3316 (3)0.1509 (2)0.0724 (2)0.0267 (7)
H10.21570.31040.61580.0340
H20.17010.44520.52160.0397
H30.02520.43790.37610.0345
H40.60960.22710.25820.0412
H50.53750.07480.23290.0455
H60.41390.04000.08070.0385
H70.61200.47970.06970.0439
H80.23020.20480.17740.0439
H90.26320.05160.24980.0439
H100.25960.02880.32280.0439
H110.09650.01900.27870.0439
H120.18670.05650.28160.0439
H130.33190.13790.52690.0439
H140.23560.11810.60150.0439
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0303 (2)0.0196 (2)0.0219 (2)0.0019 (2)0.0116 (2)0.0002 (2)
O10.047 (1)0.0245 (10)0.033 (1)0.0054 (8)0.0274 (9)0.0031 (8)
O20.034 (1)0.0189 (9)0.0225 (9)0.0033 (7)0.0159 (8)0.0014 (7)
O30.040 (1)0.0235 (10)0.031 (1)0.0017 (8)0.0174 (9)0.0078 (8)
O40.046 (1)0.0227 (9)0.032 (1)0.0028 (8)0.0232 (9)0.0033 (8)
O50.055 (1)0.049 (1)0.040 (1)0.016 (1)0.021 (1)0.009 (1)
O60.046 (1)0.031 (1)0.039 (1)0.0069 (9)0.0152 (10)0.0005 (9)
O70.078 (2)0.027 (1)0.040 (1)0.010 (1)0.031 (1)0.0009 (9)
O80.071 (2)0.024 (1)0.042 (1)0.0006 (10)0.040 (1)0.0015 (9)
O90.050 (1)0.027 (1)0.033 (1)0.0073 (9)0.0241 (10)0.0086 (8)
O100.037 (1)0.026 (1)0.0295 (10)0.0005 (8)0.0084 (8)0.0005 (8)
O110.037 (1)0.0248 (10)0.0274 (10)0.0040 (8)0.0147 (8)0.0030 (7)
N10.026 (1)0.021 (1)0.0162 (10)0.0015 (8)0.0082 (8)0.0024 (8)
N20.024 (1)0.025 (1)0.023 (1)0.0002 (9)0.0090 (9)0.0026 (8)
C10.027 (1)0.018 (1)0.020 (1)0.0009 (10)0.0073 (10)0.0009 (9)
C20.041 (2)0.024 (1)0.025 (1)0.005 (1)0.015 (1)0.000 (1)
C30.051 (2)0.019 (1)0.033 (1)0.009 (1)0.017 (1)0.001 (1)
C40.042 (2)0.019 (1)0.027 (1)0.003 (1)0.014 (1)0.005 (1)
C50.030 (1)0.020 (1)0.019 (1)0.0006 (10)0.0084 (10)0.0005 (9)
C60.029 (1)0.021 (1)0.019 (1)0.0010 (10)0.0095 (10)0.0003 (9)
C70.026 (1)0.025 (1)0.020 (1)0.0002 (10)0.005 (1)0.0020 (10)
C80.024 (1)0.032 (1)0.025 (1)0.000 (1)0.010 (1)0.003 (1)
C90.037 (2)0.038 (2)0.030 (1)0.005 (1)0.018 (1)0.002 (1)
C100.048 (2)0.035 (2)0.034 (2)0.007 (1)0.018 (1)0.007 (1)
C110.040 (2)0.025 (1)0.034 (1)0.002 (1)0.011 (1)0.002 (1)
C120.026 (1)0.026 (1)0.023 (1)0.002 (1)0.007 (1)0.0014 (10)
C130.028 (1)0.035 (2)0.035 (1)0.002 (1)0.009 (1)0.008 (1)
C140.033 (1)0.027 (1)0.020 (1)0.000 (1)0.007 (1)0.002 (1)
Geometric parameters (Å, º) top
Mn1—O22.312 (2)N1—C51.342 (3)
Mn1—O2i2.313 (2)N2—C81.343 (3)
Mn1—O42.467 (2)N2—C121.334 (3)
Mn1—O92.176 (2)C1—C21.379 (4)
Mn1—O102.192 (2)C1—C61.509 (3)
Mn1—O112.305 (2)C2—C31.382 (4)
Mn1—N12.283 (2)C3—C41.386 (4)
O1—C61.238 (3)C4—C51.388 (4)
O2—C61.271 (3)C5—C71.507 (4)
O3—C71.238 (3)C8—C91.387 (4)
O4—C71.269 (3)C8—C131.505 (4)
O5—C131.220 (4)C9—C101.379 (4)
O6—C131.311 (4)C10—C111.380 (4)
O7—C141.215 (3)C11—C121.397 (4)
O8—C141.281 (3)C12—C141.500 (4)
N1—C11.336 (3)
O2—Mn1—O2i69.39 (7)C2—C3—C4118.9 (2)
O2—Mn1—O4136.61 (6)C3—C4—C5118.8 (2)
O2—Mn1—O9151.61 (7)N1—C5—C4122.3 (2)
O2—Mn1—O1091.87 (7)N1—C5—C7115.2 (2)
O2—Mn1—O1188.06 (7)C4—C5—C7122.5 (2)
O2—Mn1—N170.29 (7)O1—C6—O2126.9 (2)
O4—Mn1—O971.71 (7)O1—C6—C1117.0 (2)
O4—Mn1—O1088.83 (7)O2—C6—C1116.1 (2)
O4—Mn1—O1199.85 (7)O3—C7—O4125.2 (2)
O4—Mn1—N166.67 (7)O3—C7—C5119.9 (2)
O9—Mn1—O1090.41 (8)O4—C7—C5114.9 (2)
O9—Mn1—O1183.76 (8)N2—C8—C9123.4 (3)
O9—Mn1—N1137.26 (7)N2—C8—C13118.2 (2)
O10—Mn1—O11167.40 (7)C9—C8—C13118.4 (2)
O10—Mn1—N197.91 (7)C8—C9—C10118.9 (3)
O11—Mn1—N193.93 (7)C9—C10—C11118.8 (3)
Mn1—O2—C6119.2 (2)C10—C11—C12118.5 (3)
Mn1i—O2—C6129.7 (2)N2—C12—C11123.5 (2)
Mn1—O4—C7119.7 (2)N2—C12—C14117.6 (2)
Mn1—N1—C1118.2 (2)C11—C12—C14118.9 (2)
Mn1—N1—C5123.4 (2)O5—C13—O6124.7 (3)
C1—N1—C5118.3 (2)O5—C13—C8121.0 (3)
C8—N2—C12116.9 (2)O6—C13—C8114.3 (2)
N1—C1—C2122.9 (2)O7—C14—O8124.6 (3)
N1—C1—C6115.5 (2)O7—C14—C12121.3 (2)
C2—C1—C6121.6 (2)O8—C14—C12114.1 (2)
C1—C2—C3118.8 (2)
Mn1—O2—C6—O1173.7 (2)O9—Mn1—O2—C6161.0 (2)
Mn1—O2—C6—C17.1 (3)O9—Mn1—O4—C7167.3 (2)
Mn1—O4—C7—O3177.1 (2)O9—Mn1—N1—C1165.8 (2)
Mn1—O4—C7—C52.4 (3)O9—Mn1—N1—C511.2 (3)
Mn1—N1—C1—C2176.7 (2)O10—Mn1—O2—C6104.7 (2)
Mn1—N1—C1—C64.5 (3)O10—Mn1—O4—C7101.9 (2)
Mn1—N1—C5—C4177.0 (2)O10—Mn1—N1—C194.9 (2)
Mn1—N1—C5—C72.7 (3)O10—Mn1—N1—C588.0 (2)
O2—Mn1—O2i—C6i171.9 (3)O11—Mn1—O2—C687.9 (2)
O2—Mn1—O4—C710.4 (3)O11—Mn1—O4—C787.3 (2)
O2—Mn1—N1—C15.8 (2)O11—Mn1—N1—C180.8 (2)
O2—Mn1—N1—C5177.2 (2)O11—Mn1—N1—C596.3 (2)
O4—Mn1—O2—C614.4 (2)N1—Mn1—O2—C67.0 (2)
O4—Mn1—N1—C1179.8 (2)N1—Mn1—O4—C72.7 (2)
O4—Mn1—N1—C52.8 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H7···O11ii0.902.02.841 (2)156
O8—H8···O40.981.572.507 (3)158
O9—H10···O1i0.911.752.608 (2)158
O9—H9···O70.832.002.821 (3)169
O10—H11···O3iii0.871.872.724 (2)167
O10—H12···O5iv0.941.832.756 (3)170
O11—H13···O8v0.862.432.842 (3)110
O11—H14···O3v0.862.092.934 (3)168
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C7H3NO4)2(H2O)6]·2C7H5NO4
Mr882.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.166 (3), 14.603 (3), 12.192 (3)
β (°) 97.43 (2)
V3)1618.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.60 × 0.30 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.816, 0.915
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
4093, 3711, 2524
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.122, 1.10
No. of reflections3711
No. of parameters253
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.58, 0.67

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a), MSC/AFC Diffractometer Control Software, TEXSAN PROCESS (Molecular Structure Corporation, 1992b), SAPI91 (Fan, 1991) and DIRDIF (Beurskens et al., 1994), TEXSAN LS, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Mn1—O22.312 (2)O2—C61.271 (3)
Mn1—O2i2.313 (2)O3—C71.238 (3)
Mn1—O42.467 (2)O4—C71.269 (3)
Mn1—O92.176 (2)O5—C131.220 (4)
Mn1—O102.192 (2)O6—C131.311 (4)
Mn1—O112.305 (2)O7—C141.215 (3)
Mn1—N12.283 (2)O8—C141.281 (3)
O1—C61.238 (3)
O2—Mn1—O2i69.39 (7)O4—Mn1—O1199.85 (7)
O2—Mn1—O4136.61 (6)O4—Mn1—N166.67 (7)
O2—Mn1—O9151.61 (7)O9—Mn1—O1090.41 (8)
O2—Mn1—O1091.87 (7)O9—Mn1—O1183.76 (8)
O2—Mn1—O1188.06 (7)O9—Mn1—N1137.26 (7)
O2—Mn1—N170.29 (7)O10—Mn1—O11167.40 (7)
O4—Mn1—O971.71 (7)O10—Mn1—N197.91 (7)
O4—Mn1—O1088.83 (7)O11—Mn1—N193.93 (7)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H7···O11ii0.902.02.841 (2)156
O8—H8···O40.981.572.507 (3)158
O9—H10···O1i0.911.752.608 (2)158
O9—H9···O70.832.002.821 (3)169
O10—H11···O3iii0.871.872.724 (2)167
O10—H12···O5iv0.941.832.756 (3)170
O11—H13···O8v0.862.432.842 (3)110
O11—H14···O3v0.862.092.934 (3)168
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds