Download citation
Download citation
link to html
In the title compound, [Li(C5H3N4O2)(H2O)2]n, the coordinate geometry about the Li+ ion is distorted tetrahedral and the Li+ ion is bonded to N and O atoms of adjacent ligand mol­ecules forming an infinite polymeric chain with Li—O and Li—N bond lengths of 1.901 (5) and 2.043 (6) Å, respectively. Tetrahedral coordination at the Li+ ion is completed by two cis water mol­ecules [Li—O 1.985 (6) and 1.946 (6) Å]. The crystal structure is stabilized both by the polymeric structure and by a hydrogen-bond network involving N—H...O, O—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011999/bk1536sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011999/bk1536IIsup2.hkl
Contains datablock II

CCDC reference: 156140

Comment top

3,7-Dihydro-1H-purine-2,6-dione, (I), also known as xanthine, is a well known metabolite of purine bases, guanine and adenine, derived from hypoxanthine by xanthine oxidase or from guanine by guanase (Martin, 1983). Xanthine is further converted to the final metabolite, namely uric acid. In xanthinurea, crystalline xanthine is found as a constituent of urinary calculi or in muscle tissue as a crystalline alkaline salt of uric acid in hyperuricemia or gout. Up until now, structures of chelate compounds of xanthine with the transition metal ions CuII, ZnII CoIII, TiIII and CH3HgI have been determined (Dubler et al., 1992). However structural information on compounds with alkaline or alkaline earth metals is rare. The only structurally characterized compound is the sodium salt of xanthine (Mizuno et al., 1969), in which each Na+ cation is surrounded by six water molecules and each xanthine anion participates in hydrogen bonds without direct coordination to the metal ions.

In order to clarify the coordination modes of chelate compounds of xanthine with alkaline metals, we have analyzed the 1:1 complex, (II), of the Li+ ion with xanthine. \sch

The complex contains a monoanionic ligand in which deprotonation of the xanthine has taken place at the N3—H imino group (see Fig. 1). The coordination geometry about the Li+ ion is distorted tetrahedral (Table 1) with the Li+ ion bonded to N7 of one ligand and O1 of a symmetry-related ligand to yield an infinite-chain structure. This polymeric coordination mode has not been seen in any other metal compounds of xanthine. The O1—C2 bond distance of 1.268 (4) Å is significantly longer than the standard CO double-bond distance of 1.20 Å. This suggests the presence of some negative charge at the O1 atom of the xanthine anion. The LiI ion is also bonded to two water O atoms.

The crystal structure is also stabilized by a network of N—H···O, O—H···O and O—H···N hydrogen bonds, as detailed in Table 2. No stacking interactions between the xanthine ligands are observed.

Experimental top

The colorless prismatic crystal used for analysis was obtained by slow evaporation from a 50% ethanol–water solution of a mixture containing xanthine and lithium hydroxide (1:1) at room temperature.

Refinement top

All H atoms were clearly resolved in difference maps. Those bonded to C and N atoms were treated as riding atoms (C—H 0.93 Å and N—H 0.86 Å). The O—H distances in the water molecule were controlled by a SHELXL97 DFIX command (Sheldrick, 1997), with an overall O—H distance as a free-variable (see Table 2 for O—H distances). An overall isotropic vibration parameter for the water H atoms was initially refined as a free-variable and in the final cycles, this parameter was set at the refined value (0.054 Å2). No correction was required for extinction. With no atoms having significant anomalous dispersion being present, the few measured Friedel reflections were merged to give the reflection file used in the final refinement.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN and PROCESS (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR88 (Burla et al., 1989) and DIRDIF (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: IUCr SHELXL97 template.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (II) with the atomic numbering scheme. Ellipsoids for non-H atoms correspond to 50% probability. The symmetry codes are as in Table 1.
Diaquabis[3,7-dihydro-1H-purine-2,6-dione]lithium(I) top
Crystal data top
[Li(C5H3N4O2)(H2O)2]Z = 1
Mr = 194.08F(000) = 100
Triclinic, P1Dx = 1.632 Mg m3
a = 5.4017 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3903 (7) ÅCell parameters from 25 reflections
c = 4.6325 (4) Åθ = 12.7–14.5°
α = 102.237 (7)°µ = 0.14 mm1
β = 93.676 (8)°T = 293 K
γ = 104.154 (6)°Prism, colorless
V = 197.46 (3) Å30.13 × 0.12 × 0.10 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.6°
Graphite monochromatorh = 77
ω–2θ scansk = 1010
1015 measured reflectionsl = 06
903 independent reflections3 standard reflections every 150 reflections
722 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: diff-map
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2)]
903 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.18 e Å3
7 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Li(C5H3N4O2)(H2O)2]γ = 104.154 (6)°
Mr = 194.08V = 197.46 (3) Å3
Triclinic, P1Z = 1
a = 5.4017 (5) ÅMo Kα radiation
b = 8.3903 (7) ŵ = 0.14 mm1
c = 4.6325 (4) ÅT = 293 K
α = 102.237 (7)°0.13 × 0.12 × 0.10 mm
β = 93.676 (8)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.018
1015 measured reflections3 standard reflections every 150 reflections
903 independent reflections intensity decay: 0.1%
722 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0327 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.18 e Å3
903 reflectionsΔρmin = 0.22 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.5000 (10)0.5000 (6)0.5001 (13)0.0304 (12)
O10.2554 (4)0.3906 (3)0.3795 (6)0.0326 (6)
O20.6462 (4)0.1030 (3)0.1529 (5)0.0325 (6)
O30.7090 (5)0.6592 (3)0.8618 (5)0.0341 (6)
H310.751 (10)0.592 (6)0.963 (11)0.054*
H320.854 (7)0.695 (6)0.797 (11)0.054*
O40.7537 (4)0.4451 (3)0.2435 (5)0.0309 (5)
H410.913 (6)0.482 (6)0.320 (11)0.054*
H420.727 (10)0.336 (3)0.194 (13)0.054*
N10.4430 (5)0.1383 (3)0.2833 (7)0.0256 (6)
H10.53560.19040.17480.031*
N30.1145 (5)0.1657 (3)0.5998 (6)0.0260 (6)
N70.3050 (6)0.2707 (4)0.5623 (7)0.0304 (6)
N90.0275 (5)0.1067 (4)0.7833 (6)0.0300 (6)
H90.09060.07790.89260.036*
C20.2662 (5)0.2344 (4)0.4279 (7)0.0245 (7)
C40.1513 (5)0.0030 (4)0.6187 (7)0.0223 (6)
C50.3236 (5)0.1062 (4)0.4826 (7)0.0222 (6)
C60.4839 (6)0.0325 (4)0.2973 (7)0.0218 (6)
C80.1259 (7)0.2641 (4)0.7419 (8)0.0320 (7)
H80.07210.35790.83150.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.029 (3)0.019 (2)0.047 (3)0.009 (2)0.010 (2)0.012 (2)
O10.0289 (11)0.0161 (11)0.0547 (15)0.0070 (9)0.0093 (11)0.0101 (10)
O20.0335 (12)0.0251 (12)0.0436 (14)0.0088 (9)0.0271 (11)0.0105 (10)
O30.0390 (14)0.0328 (14)0.0336 (14)0.0109 (11)0.0156 (11)0.0100 (11)
O40.0280 (11)0.0222 (11)0.0432 (14)0.0048 (9)0.0143 (10)0.0081 (10)
N10.0255 (11)0.0191 (12)0.0345 (14)0.0082 (9)0.0143 (11)0.0059 (10)
N30.0255 (13)0.0207 (13)0.0348 (14)0.0053 (10)0.0121 (11)0.0117 (11)
N70.0357 (14)0.0232 (14)0.0361 (15)0.0099 (11)0.0189 (12)0.0083 (12)
N90.0303 (13)0.0261 (13)0.0372 (15)0.0084 (11)0.0217 (12)0.0089 (11)
C20.0228 (14)0.0198 (15)0.0323 (17)0.0054 (11)0.0073 (13)0.0082 (13)
C40.0220 (14)0.0240 (14)0.0229 (15)0.0086 (11)0.0095 (13)0.0048 (11)
C50.0230 (14)0.0180 (13)0.0266 (15)0.0045 (11)0.0105 (13)0.0066 (12)
C60.0217 (13)0.0183 (14)0.0270 (15)0.0056 (11)0.0107 (12)0.0062 (11)
C80.0385 (17)0.0228 (16)0.0387 (18)0.0123 (13)0.0197 (15)0.0064 (13)
Geometric parameters (Å, º) top
Li1—O1i1.901 (5)N1—C21.395 (4)
Li1—O31.985 (6)N1—H10.86
Li1—O41.946 (6)N3—C21.326 (4)
Li1—N72.043 (6)N3—C41.363 (4)
O1—C21.268 (4)N7—C81.314 (5)
O1—Li1ii1.901 (5)N7—C51.382 (4)
O2—C61.247 (4)N9—C81.357 (4)
O3—H310.86 (3)N9—C41.362 (4)
O3—H320.86 (3)N9—H90.86
O4—H410.87 (3)C4—C51.388 (4)
O4—H420.86 (3)C5—C61.415 (4)
N1—C61.382 (4)C8—H80.93
O1i—Li1—O3105.5 (3)C8—N9—C4106.9 (3)
O1i—Li1—O4120.9 (3)C8—N9—H9126.5
O1i—Li1—N7108.3 (3)C4—N9—H9126.5
O4—Li1—O3104.1 (3)O1—C2—N3122.4 (3)
O4—Li1—N7103.6 (2)O1—C2—N1116.2 (3)
O3—Li1—N7114.9 (3)N3—C2—N1121.4 (3)
C2—O1—Li1ii129.8 (3)N9—C4—N3126.5 (3)
H31—O3—H32100 (5)N9—C4—C5105.4 (3)
Li1—O4—H41117 (4)N3—C4—C5128.1 (3)
Li1—O4—H42109 (4)N7—C5—C4110.3 (3)
H41—O4—H42104 (5)N7—C5—C6131.4 (3)
C6—N1—C2126.3 (3)C4—C5—C6118.3 (3)
C6—N1—H1116.8O2—C6—N1119.9 (3)
C2—N1—H1116.8O2—C6—C5127.8 (3)
C2—N3—C4113.6 (3)N1—C6—C5112.3 (3)
C8—N7—C5104.1 (3)N7—C8—N9113.2 (3)
C8—N7—Li1119.3 (3)N7—C8—H8123.4
C5—N7—Li1136.3 (3)N9—C8—H8123.4
O1i—Li1—N7—C854.2 (4)Li1—N7—C5—C4173.2 (3)
O4—Li1—N7—C8176.3 (3)C8—N7—C5—C6179.2 (4)
O3—Li1—N7—C863.4 (4)Li1—N7—C5—C66.1 (7)
O1i—Li1—N7—C5133.5 (4)N9—C4—C5—N70.1 (3)
O4—Li1—N7—C54.0 (5)N3—C4—C5—N7178.9 (4)
O3—Li1—N7—C5108.9 (4)N9—C4—C5—C6179.3 (3)
Li1ii—O1—C2—N3112.4 (4)N3—C4—C5—C60.5 (4)
Li1ii—O1—C2—N169.2 (5)C2—N1—C6—O2178.9 (3)
C4—N3—C2—O1178.6 (3)C2—N1—C6—C50.4 (4)
C4—N3—C2—N10.3 (5)N7—C5—C6—O22.1 (6)
C6—N1—C2—O1178.5 (3)C4—C5—C6—O2178.6 (3)
C6—N1—C2—N30.1 (5)N7—C5—C6—N1178.6 (3)
C8—N9—C4—N3178.9 (3)C4—C5—C6—N10.6 (4)
C8—N9—C4—C50.1 (4)C5—N7—C8—N90.1 (4)
C2—N3—C4—N9178.5 (3)Li1—N7—C8—N9174.6 (3)
C2—N3—C4—C50.0 (5)C4—N9—C8—N70.0 (4)
C8—N7—C5—C40.1 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O4iii0.86 (3)1.98 (3)2.814 (3)163 (5)
O3—H32···N3iv0.86 (3)2.00 (3)2.820 (4)159 (5)
O4—H41···O1iv0.87 (3)1.86 (3)2.689 (3)159 (5)
O4—H42···O20.86 (3)1.86 (3)2.719 (3)170 (6)
N1—H1···O3v0.862.132.985 (4)171
N9—H9···O2vi0.861.942.760 (3)158
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y1, z1; (vi) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Li(C5H3N4O2)(H2O)2]
Mr194.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.4017 (5), 8.3903 (7), 4.6325 (4)
α, β, γ (°)102.237 (7), 93.676 (8), 104.154 (6)
V3)197.46 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1015, 903, 722
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 0.87
No. of reflections903
No. of parameters140
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN and PROCESS (Molecular Structure Corporation, 1992), SIR88 (Burla et al., 1989) and DIRDIF (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2000), IUCr SHELXL97 template.

Selected geometric parameters (Å, º) top
Li1—O1i1.901 (5)Li1—O41.946 (6)
Li1—O31.985 (6)Li1—N72.043 (6)
O1i—Li1—O3105.5 (3)O3—Li1—N7114.9 (3)
O1i—Li1—O4120.9 (3)C2—O1—Li1ii129.8 (3)
O1i—Li1—N7108.3 (3)C8—N7—Li1119.3 (3)
O4—Li1—O3104.1 (3)C5—N7—Li1136.3 (3)
O4—Li1—N7103.6 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O4iii0.86 (3)1.98 (3)2.814 (3)163 (5)
O3—H32···N3iv0.86 (3)2.00 (3)2.820 (4)159 (5)
O4—H41···O1iv0.87 (3)1.86 (3)2.689 (3)159 (5)
O4—H42···O20.86 (3)1.86 (3)2.719 (3)170 (6)
N1—H1···O3v0.862.132.985 (4)171
N9—H9···O2vi0.861.942.760 (3)158
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y1, z1; (vi) x1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds