Download citation
Download citation
link to html
Both title compounds, [Cd(SO4)(C12H8N2)(H2O)2]n and [Cd(SO4)(C14H12N2)(H2O)2]n, respectively, are polymeric and present the Cd atoms in very similar octahedral environments, provided by the bidentate organic ligand (phenanthroline/di­methyl­phenanthroline), two aqua mol­ecules and two O atoms from two translationally related sulfate groups, which thus act as links in the resulting polymeric chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000617X/bk1526sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000617X/bk1526Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000617X/bk1526IIsup3.hkl
Contains datablock II

CCDC references: 147632; 147633

Comment top

Cadmium(II) complexes have been extensively studied from a chemical and structural point of view, mainly due to its capability (shared by most d10 metal ions) to adopt different ways of coordination solely determined by considerations of size as well as electrostatic and covalent bonding forces. The presence of sulfate as a ligand introduces some additional degrees of freedom, due to its versatility in acting either as a mono, bidentate or bridging ligand.

This latter way of coordination has been so far reported in four Cd sulfate complexes, as revealed by a search in the Cambridge Structural Database. In three of them [bis(µ-sulfato)-tetraaqua- bis(µ-cyanoguanidine)dicadmium(II) (Hubberstey & Falshaw, 1982); catena-[(µ-sulfato-O,O')-aqua- (2,2'-bipyridyl-N,N')-(2-imidazolinethione-S)-cadmium(II)] monohydrate (Rodesiler et al., 1987) and bis(thiosemicarbazide)cadmium(II) sulfate; Larsen & Trinderup, 1975) the bridging sulfates are in trans position. In the fourth one, instead catena-[cis-(µ-sulfato)-aqua-tris(imidazole)cadmium(II)] (Caira et al., 1976) the anionic ligands are located in cis positions.

The two polymeric structures herein presented, Cd(phen)(SO4)(H2O)2, (I), and Cd(dmph)(SO4)(H2O)2, (II), (Figs. 1a and 1 b, respectively), where phen = 1,10-phenanthroline and dmph = 2,9-dimethyl-1,10-phenanthroline, are examples of the former bridging case (trans ligands). In spite of crystallizing in quite different space groups and displaying different degrees of local symmetry the structures have many features in common. The main similarities reside in the fact that both compounds form polymeric chains constituted by the stacking of Cd octahedra, the equatorial planes of which are defined by the close bidentate bite of the organic ligand plus two coordinated water molecules. The apical sites, in turn, are occupied by two O atoms of the sulfate anion, which thus acts as the bridging link of the chains. \sch

For the four cadmium sulfate bridging complexes reported in the literature, the Cd—O(SO3) distances vary in an ample range (2.259 to 2.525 Å), with the values found in (I) and (II) [2.298 (4), 2.330 (25) Å, respectively] being in the lower third of the range reported.

Among the differences between the two structures it can be pointed out the effect that the presence of the two bulky methyl groups have in the geometry of the equatorial plane in (II), pushing the two water molecules into each other and stretching the OW—Cd—OW angle [81.6 (1)°] to a much smaller value than in the unconstrained case, (I) [97.8 (2)°]. This effect will be further discussed when describing the packing. The angle contraction is accompanied by a small but perceptible lengthening of the Cd—OW bond lengths, of ca 3.5%. Another difference is to be found in the local symmetry of the polyhedra, which in (I) lie in general positions [space group P212121] while in (II) (space group C2/c) the cation as well as the sulfur atom lie in special positions of type e, on two different twofold axis, thus rendering only half of the molecule independent. In both structures, the two aqua molecules attached to each cation are fully involved in hydrogen bonding, each one making one `intra-chain' bond, in the direction of, and reinforcing the link determined by the bridging sulfate, and a second one connecting neighbouring chains (Figures 2a and 2 b). The similarities end up here, as the differences which both polyhedra exhibit in the OW—Cd—OW angle determine the way in which the chains pack: the close approach of both water molecules in (II) determines that they can interact with one and only one of the neighbouring chains, due to steric hindrance. As a consequence, a ribbon made up of two parallel chains results. In the case of (I), instead, the much more open geometry permits the approach of two parallel chains, one at each side, interacting with one water molecule each and thus defining an infinite two-dimensional structure parallel to (010). Both structures [planes in (I), ribbons in (II)] share the usual gear-like appearance with the organic ligands protruding outwards and fitting into the hollows left by adjacent homologous groups in the neighbouring structures. The thus interleaved ligands give rise to a `dovetail' structure, with the planar groups being parallel to each other at the characteristic graphitic distance of ca 3.40 Å.

Experimental top

Compound (I): The direct mixture of a 0.075 M aqueous solution of 3CdSO4·8H2O and an ethanolic solution of phenanthroline gave a white precipitate, which when recrystallized from boiling water yielded well developed colorless needles suitable for X-ray studies.

Compound (II): Slow difusion of a 0.025 M alcoholic solution of dimethylphenanthroline into an aqueous solution of 3 CdSO4·8H2O developed thin colorless needles. After a week, the specimens had the appropiate size for X-ray analysis.

Refinement top

The structures were conventionally solved by direct methods and refined by least squares on F2. Anisotropic displacement factors were applied to non-H atoms. H atoms attached to carbon were idealized: those unambiguously determined by the stereochemistry were allowed to ride while those in the methyl groups were allowed to rotate as a rigid ideal group as well. Finally, those attached to oxygen were found in the difference Fourier and refined with softly restrained O—H and H···H distances and individual isotropic displacement factors.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: PARST (Nardelli, 1983) and CSD (Allen & Kennard, 1993).

Figures top
[Figure 1] Fig. 1. Molecular diagrams of (a) compound (I) and (b) compound (II) showing the numbering schemes used. Displacement ellipsoids are drawn at the 50% level. Note the twofold axis across the molecule in (b).
[Figure 2] Fig. 2. Simplified packing diagrams showing hydrogen-bonding interactions for (a) compound (I) and (b) compound (II).
(I) Catena-poly[[diaqua(phenanthroline-N,N')cadmium(II)-µ-(sulfato- O:O')] top
Crystal data top
[Cd(SO4)(C12H8N2)(H2O)2]Dx = 1.987 Mg m3
Mr = 424.70Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 10.352 (1) Åθ = 7.5–15°
b = 20.083 (2) ŵ = 1.72 mm1
c = 6.828 (4) ÅT = 293 K
V = 1419.5 (9) Å3Needles, colorless
Z = 40.40 × 0.15 × 0.12 mm
F(000) = 840
Data collection top
Rigaku AFC7S Difractometer
diffractometer
2084 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω/2θ scansh = 113
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
k = 126
Tmin = 0.57, Tmax = 0.80l = 18
2536 measured reflections3 standard reflections every 150 reflections
2348 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Hydrogen site location: geom+difmap
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026Calculated w = 1/[σ2(Fo2) + (0.047P)2 + 0.415P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.01
S = 1.00Δρmax = 0.65 e Å3
2348 reflectionsΔρmin = 0.78 e Å3
217 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0042 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
[Cd(SO4)(C12H8N2)(H2O)2]V = 1419.5 (9) Å3
Mr = 424.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.352 (1) ŵ = 1.72 mm1
b = 20.083 (2) ÅT = 293 K
c = 6.828 (4) Å0.40 × 0.15 × 0.12 mm
Data collection top
Rigaku AFC7S Difractometer
diffractometer
2084 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Rint = 0.016
Tmin = 0.57, Tmax = 0.803 standard reflections every 150 reflections
2536 measured reflections intensity decay: <3%
2348 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.65 e Å3
S = 1.00Δρmin = 0.78 e Å3
2348 reflectionsAbsolute structure: Flack (1983)
217 parametersAbsolute structure parameter: 0.01 (4)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00245 (2)0.159722 (11)0.76384 (3)0.02405 (11)
S10.01991 (8)0.20778 (5)0.26040 (12)0.02519 (19)
O10.1423 (3)0.23963 (16)0.3174 (5)0.0409 (7)
O20.0697 (3)0.26019 (17)0.1985 (6)0.0501 (8)
O30.0324 (3)0.17139 (19)0.4291 (4)0.0470 (9)
O40.0422 (4)0.16136 (15)0.0982 (4)0.0419 (8)
N10.1686 (3)0.08368 (14)0.7813 (6)0.0252 (7)
N20.0892 (3)0.05366 (15)0.7541 (5)0.0257 (7)
C10.2948 (3)0.09817 (19)0.7861 (8)0.0327 (9)
H1B0.32020.14260.78300.039*
C20.3898 (4)0.0490 (2)0.7953 (8)0.0359 (9)
H2B0.47670.06060.79990.043*
C30.3546 (4)0.01590 (19)0.7972 (7)0.0347 (9)
H3A0.41750.04900.80070.042*
C40.2238 (4)0.03368 (19)0.7927 (7)0.0280 (8)
C50.1811 (4)0.10127 (19)0.7965 (9)0.0388 (11)
H5A0.24150.13550.80270.047*
C60.0535 (4)0.11604 (19)0.7910 (9)0.0432 (11)
H6A0.02720.16020.79890.052*
C70.0422 (4)0.06442 (18)0.7737 (7)0.0319 (8)
C80.1749 (4)0.0772 (2)0.7581 (8)0.0413 (12)
H8A0.20490.12090.75900.050*
C90.2593 (4)0.0267 (2)0.7393 (8)0.0442 (12)
H9A0.34730.03510.72720.053*
C100.2135 (4)0.0386 (2)0.7399 (7)0.0363 (10)
H10A0.27300.07310.72990.044*
C110.0024 (3)0.00271 (18)0.7717 (5)0.0251 (7)
C120.1329 (3)0.01841 (17)0.7838 (6)0.0242 (7)
O1W0.1878 (4)0.2119 (3)0.6906 (6)0.0729 (15)
O2W0.1186 (3)0.25042 (16)0.8191 (5)0.0344 (7)
H1WA0.176 (6)0.220 (3)0.581 (6)0.081 (7)*
H2WA0.110 (5)0.251 (3)0.930 (5)0.085 (7)*
H1WB0.261 (4)0.214 (4)0.712 (11)0.145 (11)*
H2WB0.188 (4)0.247 (3)0.788 (8)0.064 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02613 (16)0.02383 (15)0.02220 (15)0.00383 (9)0.00111 (16)0.00124 (9)
S10.0219 (3)0.0349 (4)0.0188 (4)0.0027 (3)0.0004 (4)0.0013 (3)
O10.0327 (14)0.0526 (18)0.0373 (17)0.0194 (13)0.0014 (14)0.0078 (16)
O20.0433 (16)0.068 (2)0.0385 (17)0.0281 (16)0.0010 (16)0.0028 (19)
O30.0454 (17)0.074 (2)0.0221 (14)0.0358 (17)0.0046 (13)0.0077 (14)
O40.0631 (19)0.0382 (16)0.0246 (15)0.0144 (16)0.0099 (15)0.0022 (13)
N10.0235 (14)0.0236 (14)0.0284 (17)0.0004 (10)0.0003 (16)0.0048 (14)
N20.0244 (13)0.0285 (14)0.0241 (17)0.0014 (11)0.0001 (14)0.0010 (14)
C10.0265 (17)0.0313 (18)0.040 (2)0.0040 (14)0.005 (2)0.001 (2)
C20.0227 (16)0.043 (2)0.042 (2)0.0005 (16)0.002 (2)0.005 (2)
C30.0314 (18)0.0328 (19)0.040 (2)0.0088 (15)0.001 (2)0.003 (2)
C40.0297 (17)0.0248 (17)0.030 (2)0.0048 (14)0.0006 (18)0.0009 (17)
C50.043 (2)0.0215 (16)0.051 (3)0.0048 (16)0.007 (3)0.001 (2)
C60.044 (2)0.0222 (18)0.063 (3)0.0014 (17)0.005 (3)0.002 (2)
C70.0347 (18)0.0255 (18)0.035 (2)0.0034 (15)0.0019 (19)0.0026 (16)
C80.038 (2)0.038 (2)0.049 (3)0.0120 (17)0.005 (2)0.007 (3)
C90.0254 (16)0.055 (3)0.052 (3)0.0091 (17)0.001 (2)0.000 (3)
C100.0287 (17)0.038 (2)0.043 (3)0.0012 (14)0.002 (2)0.004 (2)
C110.0263 (16)0.0253 (15)0.0238 (15)0.0022 (13)0.005 (2)0.0007 (12)
C120.0239 (15)0.0252 (16)0.0236 (17)0.0027 (13)0.0007 (16)0.0007 (17)
O1W0.0479 (19)0.132 (4)0.039 (2)0.054 (2)0.0205 (18)0.038 (3)
O2W0.0337 (13)0.0365 (14)0.0329 (16)0.0046 (12)0.0084 (14)0.0007 (15)
Geometric parameters (Å, º) top
Cd1—O1W2.243 (3)N2—C111.367 (4)
Cd1—O2W2.243 (3)C1—C21.395 (5)
Cd1—N22.312 (3)C2—C31.354 (6)
Cd1—O4i2.320 (3)C3—C41.400 (5)
Cd1—O32.326 (3)C4—C121.409 (5)
Cd1—N12.341 (3)C4—C51.428 (5)
S1—O21.466 (3)C5—C61.354 (6)
S1—O41.466 (3)C6—C71.439 (6)
S1—O31.468 (3)C7—C81.402 (5)
S1—O11.472 (3)C7—C111.410 (5)
N1—C11.339 (4)C8—C91.345 (6)
N1—C121.362 (4)C9—C101.395 (6)
N2—C101.326 (5)C11—C121.438 (4)
O1W—Cd1—O2W97.83 (18)C12—N1—Cd1115.0 (2)
O1W—Cd1—N295.27 (17)C10—N2—C11118.3 (3)
O2W—Cd1—N2165.87 (11)C10—N2—Cd1126.1 (3)
O1W—Cd1—O4i93.50 (14)C11—N2—Cd1115.6 (2)
O2W—Cd1—O4i85.53 (11)N1—C1—C2122.4 (3)
N2—Cd1—O4i88.42 (11)C3—C2—C1119.5 (4)
O1W—Cd1—O382.33 (12)C2—C3—C4120.4 (4)
O2W—Cd1—O389.82 (13)C3—C4—C12117.2 (3)
N2—Cd1—O397.18 (13)C3—C4—C5122.8 (4)
O4i—Cd1—O3173.29 (13)C12—C4—C5120.0 (3)
O1W—Cd1—N1164.39 (18)C6—C5—C4120.7 (4)
O2W—Cd1—N195.65 (10)C5—C6—C7121.0 (4)
N2—Cd1—N172.20 (10)C8—C7—C11117.4 (4)
O4i—Cd1—N195.37 (13)C8—C7—C6123.3 (4)
O3—Cd1—N189.89 (12)C11—C7—C6119.3 (4)
O2—S1—O4109.81 (19)C9—C8—C7120.4 (4)
O2—S1—O3110.5 (2)C8—C9—C10119.2 (4)
O4—S1—O3109.5 (2)N2—C10—C9123.0 (4)
O2—S1—O1108.0 (2)N2—C11—C7121.7 (3)
O4—S1—O1109.9 (2)N2—C11—C12118.7 (3)
O3—S1—O1109.07 (18)C7—C11—C12119.6 (3)
S1—O3—Cd1139.81 (18)N1—C12—C4122.3 (3)
S1—O4—Cd1ii136.43 (18)N1—C12—C11118.3 (3)
C1—N1—C12118.3 (3)C4—C12—C11119.4 (3)
C1—N1—Cd1126.7 (2)
O2—S1—O3—Cd1108.0 (4)C1—C2—C3—C40.9 (8)
O4—S1—O3—Cd1130.9 (4)C2—C3—C4—C120.7 (7)
O1—S1—O3—Cd110.6 (4)C2—C3—C4—C5179.3 (5)
O1W—Cd1—O3—S113.6 (4)C3—C4—C5—C6179.7 (5)
O2W—Cd1—O3—S184.4 (4)C12—C4—C5—C60.2 (8)
N2—Cd1—O3—S1107.9 (4)C4—C5—C6—C72.4 (9)
O4i—Cd1—O3—S138.3 (12)C5—C6—C7—C8176.9 (6)
N1—Cd1—O3—S1180.0 (4)C5—C6—C7—C112.9 (8)
O2—S1—O4—Cd1ii13.2 (4)C11—C7—C8—C90.9 (8)
O3—S1—O4—Cd1ii134.7 (3)C6—C7—C8—C9179.0 (5)
O1—S1—O4—Cd1ii105.5 (3)C7—C8—C9—C101.4 (8)
O1W—Cd1—N1—C1139.2 (5)C11—N2—C10—C90.9 (7)
O2W—Cd1—N1—C110.5 (4)Cd1—N2—C10—C9178.5 (3)
N2—Cd1—N1—C1176.9 (4)C8—C9—C10—N21.4 (8)
O4i—Cd1—N1—C196.5 (4)C10—N2—C11—C70.4 (6)
O3—Cd1—N1—C179.3 (4)Cd1—N2—C11—C7178.2 (3)
O1W—Cd1—N1—C1239.9 (7)C10—N2—C11—C12178.9 (4)
O2W—Cd1—N1—C12170.5 (3)Cd1—N2—C11—C123.2 (4)
N2—Cd1—N1—C122.1 (3)C8—C7—C11—N20.3 (6)
O4i—Cd1—N1—C1284.5 (3)C6—C7—C11—N2179.5 (4)
O3—Cd1—N1—C1299.7 (3)C8—C7—C11—C12178.9 (4)
O1W—Cd1—N2—C109.1 (4)C6—C7—C11—C120.9 (6)
O2W—Cd1—N2—C10148.9 (5)C1—N1—C12—C40.5 (6)
O4i—Cd1—N2—C1084.3 (4)Cd1—N1—C12—C4179.6 (3)
O3—Cd1—N2—C1092.0 (4)C1—N1—C12—C11177.8 (4)
N1—Cd1—N2—C10179.6 (4)Cd1—N1—C12—C111.3 (5)
O1W—Cd1—N2—C11173.3 (3)C3—C4—C12—N10.5 (6)
O2W—Cd1—N2—C1128.8 (6)C5—C4—C12—N1179.5 (5)
O4i—Cd1—N2—C1193.4 (3)C3—C4—C12—C11177.8 (4)
O3—Cd1—N2—C1190.4 (3)C5—C4—C12—C112.2 (7)
N1—Cd1—N2—C112.8 (2)N2—C11—C12—N11.3 (6)
C12—N1—C1—C20.6 (7)C7—C11—C12—N1179.9 (4)
Cd1—N1—C1—C2179.6 (4)N2—C11—C12—C4177.0 (4)
N1—C1—C2—C30.8 (8)C7—C11—C12—C41.6 (6)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.77 (4)1.87 (4)2.650 (6)178 (4)
O1W—H1WB···O2iii0.77 (4)1.92 (4)2.681 (5)165 (4)
O2W—H2WB···O1iv0.75 (3)1.91 (4)2.652 (4)166 (3)
O2W—H2WA···O2i0.76 (3)1.89 (3)2.647 (5)172 (3)
Symmetry codes: (i) x, y, z1; (iii) x+1/2, y1/2, z1; (iv) x1/2, y1/2, z1.
(II) top
Crystal data top
[Cd(SO4)(C14H12N2)(H2O)2]F(000) = 904
Mr = 452.75Dx = 1.996 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.384 (3) ÅCell parameters from 25 reflections
b = 14.826 (3) Åθ = 7.5–15°
c = 6.926 (1) ŵ = 1.62 mm1
β = 107.54 (3)°T = 293 K
V = 1506.3 (5) Å3Needles, colorless
Z = 40.28 × 0.12 × 0.12 mm
Data collection top
Rigaku AFC7S Difractometer
diffractometer
1622 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ω/2θ scansh = 019
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
k = 019
Tmin = 0.69, Tmax = 0.82l = 88
1787 measured reflections3 standard reflections every 150 reflections
1727 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: geom+difmap
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Calculated w = 1/[σ2(Fo2) + (0.046P)2 + 0.887P]
where P = (Fo2 + 2Fc2)/3
1727 reflections(Δ/σ)max < 0.01
120 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Cd(SO4)(C14H12N2)(H2O)2]V = 1506.3 (5) Å3
Mr = 452.75Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.384 (3) ŵ = 1.62 mm1
b = 14.826 (3) ÅT = 293 K
c = 6.926 (1) Å0.28 × 0.12 × 0.12 mm
β = 107.54 (3)°
Data collection top
Rigaku AFC7S Difractometer
diffractometer
1622 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Rint = 0.030
Tmin = 0.69, Tmax = 0.823 standard reflections every 150 reflections
1787 measured reflections intensity decay: <3%
1727 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.63 e Å3
1727 reflectionsΔρmin = 0.98 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.794924 (14)0.25000.02022 (11)
S10.50000.85489 (5)0.25000.02019 (17)
O10.47136 (16)0.79762 (11)0.1059 (3)0.0323 (5)
O20.42314 (13)0.91286 (13)0.3630 (3)0.0306 (4)
N10.40920 (13)0.66793 (13)0.2465 (3)0.0204 (4)
C10.32243 (16)0.66774 (17)0.2518 (4)0.0257 (5)
C20.27452 (17)0.5869 (2)0.2506 (4)0.0331 (6)
H20.21220.58830.25090.040*
C30.3173 (2)0.50633 (19)0.2483 (4)0.0332 (5)
H30.28480.45090.24640.040*
C40.40871 (19)0.50436 (17)0.2497 (4)0.0259 (5)
C50.45300 (15)0.58797 (15)0.2489 (3)0.0202 (4)
C60.4564 (2)0.42153 (16)0.2506 (4)0.0317 (5)
H60.42590.36520.25200.038*
C70.27682 (18)0.7558 (2)0.2607 (5)0.0342 (6)
H7A0.28750.79630.16200.041*
H7B0.30120.78150.39340.041*
H7C0.21250.74640.23260.041*
O1W0.59967 (14)0.91276 (13)0.2630 (3)0.0307 (4)
H1WA0.595 (3)0.968 (2)0.319 (5)0.049 (11)*
H1WB0.588 (3)0.917 (3)0.123 (4)0.058 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02435 (15)0.01681 (15)0.02132 (15)0.0000.00965 (10)0.000
S10.0278 (4)0.0172 (4)0.0183 (3)0.0000.0110 (3)0.000
O10.0478 (12)0.0291 (10)0.0224 (10)0.0146 (7)0.0143 (9)0.0012 (6)
O20.0325 (9)0.0305 (9)0.0293 (9)0.0084 (7)0.0102 (7)0.0005 (7)
N10.0204 (9)0.0217 (9)0.0197 (9)0.0013 (7)0.0068 (7)0.0010 (7)
C10.0251 (11)0.0306 (13)0.0218 (10)0.0030 (9)0.0077 (9)0.0002 (9)
C20.0255 (12)0.0367 (14)0.0395 (14)0.0084 (10)0.0134 (11)0.0010 (11)
C30.0369 (13)0.0309 (13)0.0315 (13)0.0153 (11)0.0096 (11)0.0014 (10)
C40.0349 (12)0.0220 (11)0.0202 (11)0.0059 (10)0.0074 (9)0.0011 (9)
C50.0275 (12)0.0194 (10)0.0142 (9)0.0020 (8)0.0070 (8)0.0007 (7)
C60.0492 (15)0.0176 (11)0.0267 (12)0.0049 (10)0.0091 (11)0.0007 (9)
C70.0263 (12)0.0358 (15)0.0438 (15)0.0015 (10)0.0153 (11)0.0006 (11)
O1W0.0369 (10)0.0236 (9)0.0334 (10)0.0043 (8)0.0133 (8)0.0051 (8)
Geometric parameters (Å, º) top
Cd1—O1W2.308 (2)N1—C11.346 (3)
Cd1—O1Wi2.308 (2)N1—C51.361 (3)
Cd1—N12.340 (2)C1—C21.406 (4)
Cd1—N1i2.340 (2)C1—C71.493 (4)
Cd1—O1i2.370 (2)C2—C31.366 (4)
Cd1—O12.370 (2)C3—C41.403 (4)
S1—O1ii1.4751 (18)C4—C51.415 (3)
S1—O11.4751 (18)C4—C61.430 (4)
S1—O21.4804 (18)C5—C5i1.442 (4)
S1—O2ii1.4804 (19)C6—C6i1.342 (6)
O1W—Cd1—O1Wi81.62 (10)O1—S1—O2ii109.29 (11)
O1W—Cd1—N1175.39 (7)O2—S1—O2ii109.03 (16)
O1Wi—Cd1—N1102.78 (8)S1—O1—Cd1135.52 (11)
O1W—Cd1—N1i102.78 (8)C1—N1—C5119.3 (2)
O1Wi—Cd1—N1i175.39 (7)C1—N1—Cd1126.51 (17)
N1—Cd1—N1i72.86 (10)C5—N1—Cd1114.14 (14)
O1W—Cd1—O1i91.92 (8)N1—C1—C2121.6 (2)
O1Wi—Cd1—O1i86.62 (7)N1—C1—C7118.8 (2)
N1—Cd1—O1i87.00 (7)C2—C1—C7119.6 (2)
N1i—Cd1—O1i94.56 (7)C3—C2—C1119.4 (2)
O1W—Cd1—O186.62 (7)C2—C3—C4120.2 (2)
O1Wi—Cd1—O191.92 (8)C3—C4—C5117.7 (2)
N1—Cd1—O194.56 (7)C3—C4—C6122.0 (2)
N1i—Cd1—O187.00 (7)C5—C4—C6120.3 (2)
O1i—Cd1—O1178.07 (8)N1—C5—C4121.7 (2)
O1ii—S1—O1109.71 (15)N1—C5—C5i119.43 (12)
O1ii—S1—O2109.29 (11)C4—C5—C5i118.85 (15)
O1—S1—O2109.75 (12)C6i—C6—C4120.82 (16)
O1ii—S1—O2ii109.75 (12)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.92 (3)1.82 (3)2.726 (3)165 (3)
O1W—H1WB···O2ii0.93 (3)1.76 (3)2.686 (3)171 (3)
Symmetry codes: (ii) x+1, y, z1/2; (iii) x+1, y+2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd(SO4)(C12H8N2)(H2O)2][Cd(SO4)(C14H12N2)(H2O)2]
Mr424.70452.75
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2/c
Temperature (K)293293
a, b, c (Å)10.352 (1), 20.083 (2), 6.828 (4)15.384 (3), 14.826 (3), 6.926 (1)
α, β, γ (°)90, 90, 9090, 107.54 (3), 90
V3)1419.5 (9)1506.3 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.721.62
Crystal size (mm)0.40 × 0.15 × 0.120.28 × 0.12 × 0.12
Data collection
DiffractometerRigaku AFC7S Difractometer
diffractometer
Rigaku AFC7S Difractometer
diffractometer
Absorption correctionψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Tmin, Tmax0.57, 0.800.69, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
2536, 2348, 2084 1787, 1727, 1622
Rint0.0160.030
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 1.00 0.026, 0.073, 1.05
No. of reflections23481727
No. of parameters217120
No. of restraints63
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.780.63, 0.98
Absolute structureFlack (1983)?
Absolute structure parameter0.01 (4)?

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), PARST (Nardelli, 1983) and CSD (Allen & Kennard, 1993).

Selected bond lengths (Å) for (I) top
Cd1—O1W2.243 (3)Cd1—N12.341 (3)
Cd1—O2W2.243 (3)S1—O21.466 (3)
Cd1—N22.312 (3)S1—O41.466 (3)
Cd1—O4i2.320 (3)S1—O31.468 (3)
Cd1—O32.326 (3)S1—O11.472 (3)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.77 (4)1.87 (4)2.650 (6)178 (4)
O1W—H1WB···O2ii0.77 (4)1.92 (4)2.681 (5)165 (4)
O2W—H2WB···O1iii0.75 (3)1.91 (4)2.652 (4)166 (3)
O2W—H2WA···O2i0.76 (3)1.89 (3)2.647 (5)172 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z1; (iii) x1/2, y1/2, z1.
Selected bond lengths (Å) for (II) top
Cd1—O1W2.308 (2)S1—O11.4751 (18)
Cd1—N12.340 (2)S1—O21.4804 (18)
Cd1—O12.370 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.92 (3)1.82 (3)2.726 (3)165 (3)
O1W—H1WB···O2ii0.93 (3)1.76 (3)2.686 (3)171 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds