Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Gold(I) cyanide forms complexes with imidazolidine-2-thione (etu) and di­methyl­thio­urea (dmtu) with the formula [Au2(CN)2L2], i.e. the title complexes di­cyano-1κC,2κC-bis(imidazolidine-2-thione)-1κS,2κS-digold(I)(AuAu), [Au2(CN)2(C3H6N2S)2], and di­cyano-1κ2C-bis(N,N′-di­methyl­thio­urea)-2κ2S-digold(I)(AuAu), [Au2(CN)2(C3H8N2S)2]. In the etu complex, two approximately linear (etu)AuCN groups are held together by a weak homopolar Au—Au bond [3.117 (1) Å], with a torsion angle of 61 (3)° between the two groups. In the dmtu complex, an approximately linear Au(dmtu)2 group is bound to an approximately linear Au(CN)2 group by a weak heteropolar Au—Au bond [3.091 (1) Å], with a torsion angle of 83 (5)° between the two groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005783/bk1525sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005783/bk1525Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005783/bk1525IIsup3.hkl
Contains datablock II

CCDC references: 147626; 147627

Comment top

We have reported previously the preparation and structures of complexes of thioureas with copper(I) cyanide (Stocker et al., 1996) and with silver(I) cyanide (Stocker et al., 1999). We report here an extension of this work to gold(I) cyanide. The sulfur ligands used previously included thiourea (tu), 1-methyl-2-thiourea (mtu), 1,3-dimethyl-2-thiourea, 1,3-diethyl-2-thiourea (detu), 1,1,3,3-tetramethylthiourea (tmtu) and 2-imidalozidinethione (N,N-ethylenethiourea, etu). For the purposes of comparison, syntheses were attempted of the gold cyanide complexes of all of these ligands. Crystalline products could only be obtained with dmtu and etu, and the structures of 1,2-dicyano-1,2-bis(imidazolidine-2-thione)digold(I), (I), and 2,2-dicyano-1,1-bis(dimethylthiourea)digold(I), (II), are reported here.

Ellipsoid plots showing the atom labelling are shown in Figs. 1 and 2 for (I) and (II), respectively. In each case, there is a molecule containing two Au atoms, two CN groups and two thioureas, and the molecule is shaped like a twisted letter H with two approximately linear AuX2 or AuXY groups held together by a weak Au—Au bond. Because the end groups are not exactly linear, the torsion angles around the Au—Au bond are not well defined. An average torsion angle can be obtained from the four individual torsion angles involving the Au—Au bond; these are 61 (3)° for the etu complex and 83 (5)° for the dmtu complex.

The two molecules differ, however, in that the etu complex contains two (etu)AuCN groups, while in the dmtu complex, there is one Au(dmtu)2 group and one Au(CN)2 group. It is somewhat surprising that such a minor chemical change in the ligand in going from etu to dmtu should lead to a change in the isomer of [Au2(CN)2L2] that is formed. Although the two compounds appear to be quite different in that the Au—Au bond in the etu complex is non-polar, while that in the dmtu complex is polar, the occurrence of the two forms suggests that they differ very little in energy.

Every H atom attached to nitrogen in both structures is involved in hydrogen bonding (Tables 2 and 4).

Gold compounds of this sort are well known. Bis[iodo(trimethylphosphine)gold(I)] (Ahrland et al., 1987 is an example of a non-polar Au—Au complex (Au—Au 3.169 Å and torsion angle 70°). Bis(imidazolidene-2-thione)gold(I) diiodoaurate (Friedrichs & Jones, 1999) is an example of a polar isomer with etu as a ligand (3.270 Å and 74°). Dicyanobis[tris(2-cyanoethyl)phosphine]digold (Hussain et al., 1996) is an example containing the Au(CN)2 group (3.270 Å and 80°).

It is worth noting that the etu complex could be planar and have a center of symmetry; the sizes of the C and S atoms do not preclude such an arrangement. While it is possible that packing forces account for the lack of a center, none of the 13 Au2 complexes in the current version of the Cambridge Structural Database (Allen & Kennard, 1993) has a torsion angle around the Au—Au bond of less than 60°. This suggests that perhaps a torsion angle near 90° is favored energetically in the isolated molecule.

In both of the complexes reported here, there are Au—Au bonds, terminal CN groups and discrete molecules. This is different from the situation when the metal is Cu or Ag. In the seven complexes of CuCN with various thioureas (Stocker et al., 1996), there are 14 crystallographically different CN groups, 13 of which bridge between two Cu atoms. There are no Cu—Cu bonds. In the six complexes of AgCN with various thioureas (Stocker et al., 1999), there are nine crystallographically different CN groups, five of which bridge between two Ag atoms, and one of which is involved in what appears to be a three-center bond with two Ag atoms. The latter is the only example of a direct Ag—Ag interaction in any of the six complexes. About half of the time in both the Cu and Ag complexes, the S form bridges between the metal atoms. As a consequence of the CN and S bridges, all of the Cu and Ag complexes have polymeric solid-state structures. In the two examples presented here, the direct Au—Au bonds, which have no parallel in the Cu or Ag structures, lead to a completely different structural chemistry.

Experimental top

Commercial chemicals were used without further purification. For the preparation of AuCN(etu), (I), AuCN (56 mg, 0.25 mmol) was added to a solution of etu (177 mg, 1.67 mmol) in distilled water (10 ml). After heating to 363 K, a colorless solution was obtained which was filtered hot. Upon cooling, colorless crystals separated out (yield: 47 mg, 69%). IR (KBr): 3460 (m), 3220 (br s), 3070 (w), 2890 (m), 2155 (s), 1540 (s), 1482 (w), 1375 (m), 1320 (m), 1285 (s), 1212 (m), 1043 (w), 1015 (w), 997 (w), 917 (m), 750 (br m), 660 (w), 585 (br m), 495 (w), 445 (m) cm−1. Analysis calculated for C4H6AuN3S: C 14.78, H 1.86, N 12.92, S 9.86%; found: C 14.94, H 1.59, N 13.01, S, 9.73. For the preparation of AuCN(dmtu), (II), AuCN (56 mg, 0.25 mmol) was added to a solution of dmtu (661 mg, 5.0 mmol) dissolved in distilled water (10 ml). Mild heating (343 K) for about 30 min produced a clear colorless solution. Upon cooling, small block-like colorless crystals were deposited (yield: 60 mg, 73%). IR (KBr): 3385 (m), 3290 (s), 3235 (sh w), 3175 (w), 2960 (w), 2150 (s), 1617 (m), 1595 (s), 1530 (m), 1505 (s), 1455 (m), 1422 (m), 1375 (w), 1290 (s), 1190 (m), 1148 (w), 1042 (m), 1015 (w), 725 (m), 630 (w), 605 (w), 510 (m), 428 (w) cm−1. Analysis calculated for C4H8AuN3S: C 14.69, H 2.46, N 12.84, S 9.80%; found: C 14.72, H 2.57, N 12.86, S 9.76.

Refinement top

In the final difference map for the etu compound there are 21 peaks and valleys with magnitudes greater than 0.75 e Å−3; for the dtmu compound there are 15 suck peaks. In both cases, all of these are between 0.85 and 1.20 Å from one or the other of the Au atoms.

Computing details top

For both compounds, data collection: ASTRO (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1994); program(s) used to refine structure: SHELXLTL; molecular graphics: SHELXLTL; software used to prepare material for publication: SHELXLTL.

Figures top
[Figure 1] Fig. 1. Plot of the etu complex with displacement ellipsoids shown at the 50% probability level. H atoms are shown with arbitrary size.
[Figure 2] Fig. 2. Plot of the dtmu complex with displacement ellipsoids shown at the 50% probability level. H atoms are shown with arbitrary size.
(I) 1,2-bis(imidazolidine-2-thione)-1,2-dicyano-digold(I) top
Crystal data top
[Au2(CN)2(C3H6N2S)2]Z = 2
Mr = 650.28F(000) = 584
Triclinic, P1Dx = 2.966 Mg m3
a = 7.4654 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.233 (2) ÅCell parameters from 1873 reflections
c = 11.895 (2) Åθ = 1.8–25.0°
α = 103.73 (3)°µ = 20.40 mm1
β = 90.73 (3)°T = 174 K
γ = 112.98 (3)°Flat needle, colorless
V = 728.1 (3) Å30.30 × 0.10 × 0.06 mm
Data collection top
Siemens SMART area-detector
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 88
Tmin = 0.10, Tmax = 0.29k = 1010
5410 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.94Calculated w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
2545 reflections(Δ/σ)max = 0.005
163 parametersΔρmax = 1.91 e Å3
0 restraintsΔρmin = 1.52 e Å3
Crystal data top
[Au2(CN)2(C3H6N2S)2]γ = 112.98 (3)°
Mr = 650.28V = 728.1 (3) Å3
Triclinic, P1Z = 2
a = 7.4654 (15) ÅMo Kα radiation
b = 9.233 (2) ŵ = 20.40 mm1
c = 11.895 (2) ÅT = 174 K
α = 103.73 (3)°0.30 × 0.10 × 0.06 mm
β = 90.73 (3)°
Data collection top
Siemens SMART area-detector
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
2124 reflections with I > 2σ(I)
Tmin = 0.10, Tmax = 0.29Rint = 0.045
5410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.94Δρmax = 1.91 e Å3
2545 reflectionsΔρmin = 1.52 e Å3
163 parameters
Special details top

Experimental. IR spectra were recorded as KBr pellets with a Perkin-Elmer Model 1430 spectrophotometer. Elemental analyses were determined by Galbraith Laboratries, Knoxville, TN.

Refinement. There are 21 peaks and valleys in the final difference map with magnitudes greater tan 0.75 e/Å3. All of these are between 0.85 and 1.10 Å from one or the other of the Au atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.67083 (5)0.04212 (4)0.08277 (3)0.04509 (15)
C10.4754 (14)0.2554 (12)0.0901 (8)0.046 (2)
N10.3700 (13)0.3747 (11)0.1014 (8)0.064 (2)
Au20.61049 (5)0.13230 (4)0.32865 (3)0.04403 (15)
C20.6772 (16)0.0092 (13)0.4061 (8)0.056 (3)
N20.7093 (16)0.0937 (13)0.4505 (9)0.075 (3)
S10.9199 (4)0.2049 (3)0.0905 (2)0.0599 (7)
C110.9555 (12)0.2090 (10)0.0501 (7)0.043 (2)
N110.8629 (11)0.0908 (9)0.1444 (6)0.051 (2)
H110.7729 (11)0.0015 (9)0.1428 (6)0.061*
N121.0886 (11)0.3334 (9)0.0788 (7)0.055 (2)
H121.1635 (11)0.4224 (9)0.0291 (7)0.066*
C120.9290 (17)0.1331 (15)0.2521 (10)0.074 (3)
H12A0.8251 (17)0.1368 (15)0.2996 (10)0.088*
H12B0.9776 (17)0.0569 (15)0.2974 (10)0.088*
C131.0950 (14)0.3039 (13)0.2039 (9)0.059 (3)
H13A1.2207 (14)0.3046 (13)0.2243 (9)0.071*
H13B1.0706 (14)0.3849 (13)0.2331 (9)0.071*
S20.5347 (4)0.2982 (3)0.2382 (2)0.0498 (5)
C210.3810 (13)0.3629 (10)0.3220 (7)0.043 (2)
N210.3233 (12)0.4730 (10)0.3005 (7)0.057 (2)
H210.3626 (12)0.5212 (10)0.2463 (7)0.068*
N220.3032 (12)0.3159 (10)0.4129 (7)0.056 (2)
H220.3249 (12)0.2464 (10)0.4417 (7)0.067*
C220.1887 (16)0.5032 (13)0.3770 (9)0.059 (3)
H22A0.0618 (16)0.4718 (13)0.3345 (9)0.070*
H22B0.2379 (16)0.6172 (13)0.4197 (9)0.070*
C230.1770 (14)0.3954 (12)0.4581 (10)0.057 (3)
H23A0.2241 (14)0.4601 (12)0.5380 (10)0.069*
H23B0.0438 (14)0.3165 (12)0.4548 (10)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0468 (2)0.0410 (2)0.0439 (2)0.0139 (2)0.0090 (2)0.0113 (2)
C10.056 (5)0.042 (5)0.041 (5)0.019 (5)0.011 (4)0.015 (4)
N10.069 (6)0.057 (5)0.061 (5)0.022 (5)0.003 (4)0.017 (4)
Au20.0454 (2)0.0434 (2)0.0417 (2)0.0173 (2)0.0073 (2)0.0094 (2)
C20.077 (7)0.064 (6)0.045 (5)0.041 (6)0.028 (5)0.024 (5)
N20.096 (7)0.087 (7)0.069 (6)0.054 (6)0.025 (5)0.035 (6)
S10.0582 (15)0.0517 (14)0.0472 (13)0.0030 (12)0.0058 (11)0.0053 (11)
C110.038 (4)0.040 (5)0.045 (5)0.016 (4)0.003 (4)0.001 (4)
N110.052 (4)0.045 (4)0.046 (4)0.014 (4)0.008 (4)0.007 (4)
N120.049 (4)0.042 (4)0.060 (5)0.004 (4)0.007 (4)0.013 (4)
C120.067 (7)0.075 (8)0.052 (6)0.000 (6)0.016 (5)0.018 (6)
C130.050 (6)0.067 (7)0.058 (6)0.013 (5)0.009 (5)0.031 (5)
S20.0591 (14)0.0475 (13)0.0454 (13)0.0221 (11)0.0150 (10)0.0153 (10)
C210.047 (5)0.033 (4)0.042 (5)0.009 (4)0.001 (4)0.009 (4)
N210.064 (5)0.057 (5)0.060 (5)0.033 (4)0.011 (4)0.022 (4)
N220.072 (6)0.054 (5)0.055 (5)0.034 (4)0.016 (4)0.022 (4)
C220.072 (7)0.057 (6)0.053 (6)0.037 (6)0.005 (5)0.007 (5)
C230.045 (5)0.053 (6)0.071 (7)0.020 (5)0.011 (5)0.010 (5)
Geometric parameters (Å, º) top
Au1—Au23.1167 (10)C12—H12B0.97
Au1—S12.292 (3)C13—H13A0.97
Au2—S22.295 (3)C13—H13B0.97
Au1—C11.964 (10)S2—C211.717 (9)
Au2—C21.968 (10)C21—N221.318 (11)
C1—N11.117 (12)C21—N211.322 (11)
C2—N21.133 (13)N21—C221.427 (12)
S1—C111.703 (9)N21—H210.86
C11—N121.314 (11)N22—C231.442 (12)
C11—N111.318 (11)N22—H220.86
N11—C121.463 (13)C22—C231.523 (15)
N11—H110.86C22—H22A0.97
N12—C131.452 (13)C22—H22B0.97
N12—H120.86C23—H23A0.97
C12—C131.542 (14)C23—H23B0.97
C12—H12A0.97
C1—Au1—S1173.6 (3)C12—C13—H13A111.2 (6)
C1—Au1—Au292.8 (3)N12—C13—H13B111.2 (5)
S1—Au1—Au284.79 (8)C12—C13—H13B111.2 (6)
N1—C1—Au1175.4 (9)H13A—C13—H13B109.1
C2—Au2—S2179.6 (3)C21—S2—Au2106.1 (3)
C2—Au2—Au193.4 (3)N22—C21—N21109.9 (8)
S2—Au2—Au186.50 (6)N22—C21—S2128.2 (7)
N2—C2—Au2177.8 (11)N21—C21—S2121.9 (7)
C11—S1—Au1106.5 (3)C21—N21—C22112.7 (8)
N12—C11—N11110.1 (8)C21—N21—H21123.6 (5)
N12—C11—S1123.2 (7)C22—N21—H21123.6 (5)
N11—C11—S1126.6 (7)C21—N22—C23111.7 (8)
C11—N11—C12113.0 (8)C21—N22—H22124.2 (5)
C11—N11—H11123.5 (5)C23—N22—H22124.2 (5)
C12—N11—H11123.5 (5)N21—C22—C23102.5 (8)
C11—N12—C13112.5 (8)N21—C22—H22A111.3 (5)
C11—N12—H12123.8 (5)C23—C22—H22A111.3 (6)
C13—N12—H12123.8 (5)N21—C22—H22B111.3 (5)
N11—C12—C13101.3 (8)C23—C22—H22B111.3 (5)
N11—C12—H12A111.5 (6)H22A—C22—H22B109.2
C13—C12—H12A111.5 (6)N22—C23—C22103.1 (8)
N11—C12—H12B111.5 (6)N22—C23—H23A111.1 (5)
C13—C12—H12B111.5 (6)C22—C23—H23A111.1 (5)
H12A—C12—H12B109.3N22—C23—H23B111.1 (5)
N12—C13—C12103.0 (8)C22—C23—H23B111.1 (6)
N12—C13—H13A111.2 (5)H23A—C23—H23B109.1
C1—Au1—Au2—C257.8 (4)C11—N12—C13—C122.2 (12)
S1—Au1—Au2—C2116.2 (3)N11—C12—C13—N122.9 (11)
C1—Au1—Au2—S2122.5 (3)N22—C21—N21—C222.7 (11)
S1—Au1—Au2—S263.42 (10)S2—C21—N21—C22177.1 (7)
N12—C11—N11—C121.8 (11)N21—C21—N22—C231.4 (11)
S1—C11—N11—C12179.7 (8)S2—C21—N22—C23178.4 (7)
N11—C11—N12—C130.4 (11)C21—N21—C22—C232.7 (11)
S1—C11—N12—C13177.6 (7)C21—N22—C23—C220.2 (10)
C11—N11—C12—C133.0 (12)N21—C22—C23—N221.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···S2i0.862.763.556 (8)155
N12—H12···N1ii0.862.142.999 (12)172
N21—H21···N1iii0.862.152.988 (12)163
N22—H22···N2iv0.862.072.880 (13)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z+1.
(II) 1,1-bis(dimethylthiourea)-2,2-dicyano-digold(I) top
Crystal data top
[Au2(CN)2(C3H8N2S)2]F(000) = 1184
Mr = 654.32Dx = 2.784 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3922 (2) ÅCell parameters from 2105 reflections
b = 7.8170 (1) Åθ = 1.5–25.0°
c = 14.9588 (3) ŵ = 19.03 mm1
β = 94.506 (1)°T = 174 K
V = 1561.15 (4) Å3Needle, colorless
Z = 40.16 × 0.06 × 0.04 mm
Data collection top
Siemens SMART area-detector
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube2421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 1415
Tmin = 0.27, Tmax = 0.47k = 98
7629 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026Riding
wR(F2) = 0.063Calculated w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2737 reflectionsΔρmax = 1.97 e Å3
168 parametersΔρmin = 1.27 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00035 (8)
Crystal data top
[Au2(CN)2(C3H8N2S)2]V = 1561.15 (4) Å3
Mr = 654.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3922 (2) ŵ = 19.03 mm1
b = 7.8170 (1) ÅT = 174 K
c = 14.9588 (3) Å0.16 × 0.06 × 0.04 mm
β = 94.506 (1)°
Data collection top
Siemens SMART area-detector
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
2421 reflections with I > 2σ(I)
Tmin = 0.27, Tmax = 0.47Rint = 0.030
7629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063Riding
S = 1.07Δρmax = 1.97 e Å3
2737 reflectionsΔρmin = 1.27 e Å3
168 parameters
Special details top

Experimental. IR spectra were recorded as KBr pellets with a Perkin-Elmer Model 1430 spectrophotometer. Elemental analyses were determined by Galbraith Laboratries, Knoxville, TN.

Refinement. There are 15 peaks and valleys in the final difference map with magnitudes greater tan 0.75 e/Å3. All of these are between 0.85 and 1.20 Å from one or the other of the Au atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.17096 (2)0.21039 (3)0.84800 (2)0.02645 (11)
Au20.25436 (2)0.54854 (3)0.77682 (2)0.02818 (11)
C10.2080 (5)0.4932 (9)0.6510 (5)0.028 (2)
N10.1848 (5)0.4559 (7)0.5783 (4)0.0347 (14)
C20.3083 (5)0.6074 (10)0.9003 (5)0.033 (2)
N20.3401 (5)0.6353 (10)0.9699 (5)0.046 (2)
S10.01648 (13)0.3363 (2)0.83774 (12)0.0330 (4)
C110.0413 (5)0.3090 (8)0.9363 (5)0.0263 (15)
N120.1300 (4)0.3833 (7)0.9412 (4)0.0304 (13)
H120.1585 (4)0.3728 (7)0.9905 (4)0.036*
N130.0009 (4)0.2200 (7)1.0057 (4)0.0274 (13)
H130.0574 (4)0.1757 (7)1.0018 (4)0.033*
C140.1815 (6)0.4795 (10)0.8703 (6)0.039 (2)
H14A0.1379 (13)0.567 (4)0.850 (2)0.059*
H14B0.240 (2)0.532 (5)0.8918 (11)0.059*
H14C0.201 (3)0.4045 (14)0.8213 (14)0.059*
C150.0503 (6)0.1936 (9)1.0880 (5)0.034 (2)
H15A0.0066 (15)0.131 (6)1.1302 (13)0.051*
H15B0.111 (2)0.130 (6)1.0749 (7)0.051*
H15C0.066 (3)0.3024 (9)1.1132 (18)0.051*
S20.32664 (14)0.0946 (2)0.83130 (13)0.0356 (4)
C210.4014 (5)0.1736 (8)0.9230 (5)0.030 (2)
N220.4935 (4)0.2312 (7)0.9107 (4)0.0326 (14)
H220.5323 (4)0.2556 (7)0.9576 (4)0.039*
N230.3699 (5)0.1715 (8)1.0041 (4)0.0358 (15)
H230.3120 (5)0.1278 (8)1.0104 (4)0.043*
C240.5328 (6)0.2554 (11)0.8228 (6)0.046 (2)
H24A0.546 (4)0.1459 (12)0.7970 (17)0.070*
H24B0.594 (2)0.320 (6)0.8298 (7)0.070*
H24C0.4846 (19)0.316 (6)0.7841 (13)0.070*
C250.4256 (6)0.2372 (10)1.0835 (5)0.036 (2)
H25A0.3870 (16)0.222 (6)1.1343 (7)0.054*
H25B0.439 (3)0.3566 (16)1.0755 (13)0.054*
H25C0.4877 (17)0.176 (4)1.0932 (18)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0246 (2)0.0304 (2)0.0245 (2)0.00517 (11)0.00239 (11)0.00145 (11)
Au20.0263 (2)0.0316 (2)0.0270 (2)0.00442 (11)0.00412 (11)0.00039 (11)
C10.028 (4)0.031 (4)0.025 (4)0.002 (3)0.004 (3)0.003 (3)
N10.035 (3)0.037 (3)0.033 (4)0.006 (3)0.005 (3)0.000 (3)
C20.028 (4)0.045 (4)0.025 (4)0.007 (3)0.003 (3)0.007 (3)
N20.034 (4)0.062 (4)0.041 (5)0.005 (3)0.007 (3)0.001 (4)
S10.0293 (10)0.0420 (10)0.0278 (10)0.0013 (8)0.0039 (8)0.0097 (8)
C110.024 (4)0.021 (3)0.033 (4)0.006 (3)0.000 (3)0.003 (3)
N120.029 (3)0.031 (3)0.032 (4)0.004 (3)0.008 (3)0.005 (3)
N130.025 (3)0.028 (3)0.029 (3)0.001 (2)0.004 (2)0.003 (2)
C140.032 (4)0.041 (4)0.045 (5)0.007 (4)0.004 (4)0.007 (4)
C150.042 (4)0.035 (4)0.024 (4)0.004 (3)0.003 (3)0.002 (3)
S20.0300 (10)0.0437 (10)0.0325 (11)0.0000 (8)0.0007 (8)0.0096 (8)
C210.029 (4)0.029 (3)0.033 (4)0.003 (3)0.005 (3)0.002 (3)
N220.024 (3)0.043 (3)0.031 (4)0.001 (3)0.003 (3)0.001 (3)
N230.028 (3)0.048 (4)0.032 (4)0.009 (3)0.006 (3)0.000 (3)
C240.035 (5)0.069 (5)0.036 (5)0.007 (4)0.010 (4)0.008 (4)
C250.037 (4)0.051 (4)0.020 (4)0.001 (4)0.001 (3)0.003 (3)
Geometric parameters (Å, º) top
Au1—Au23.0911 (4)C15—H15A0.96
Au1—S12.285 (2)C15—H15B0.96
Au1—S22.304 (2)C15—H15C0.96
Au2—C11.983 (8)S2—C211.746 (8)
Au2—C21.984 (8)C21—N231.315 (9)
C1—N11.145 (9)C21—N221.340 (9)
C2—N21.115 (9)N22—C241.466 (9)
S1—C111.731 (7)N22—H220.86
C11—N131.329 (9)N23—C251.445 (10)
C11—N121.330 (8)N23—H230.86
N12—C141.432 (10)C24—H24A0.96
N12—H120.86C24—H24B0.96
N13—C151.459 (9)C24—H24C0.96
N13—H130.86C25—H25A0.96
C14—H14A0.96C25—H25B0.96
C14—H14B0.96C25—H25C0.96
C14—H14C0.96
S1—Au1—S2169.70 (7)H15A—C15—H15B109.5
S1—Au1—Au287.61 (5)N13—C15—H15C109.5 (3)
S2—Au1—Au286.79 (5)H15A—C15—H15C109.5
C1—Au2—C2176.7 (3)H15B—C15—H15C109.5
C1—Au2—Au192.6 (2)C21—S2—Au1104.1 (2)
C2—Au2—Au189.6 (2)N23—C21—N22119.7 (7)
N1—C1—Au2176.9 (6)N23—C21—S2121.0 (5)
N2—C2—Au2177.6 (7)N22—C21—S2119.2 (5)
C11—S1—Au1110.6 (2)C21—N22—C24124.4 (7)
N13—C11—N12119.7 (6)C21—N22—H22117.8 (4)
N13—C11—S1123.2 (5)C24—N22—H22117.8 (4)
N12—C11—S1117.1 (5)C21—N23—C25124.9 (6)
C11—N12—C14124.6 (6)C21—N23—H23117.6 (4)
C11—N12—H12117.7 (4)C25—N23—H23117.6 (4)
C14—N12—H12117.7 (4)N22—C24—H24A109.5 (4)
C11—N13—C15123.4 (6)N22—C24—H24B109.5 (4)
C11—N13—H13118.3 (4)H24A—C24—H24B109.5
C15—N13—H13118.3 (4)N22—C24—H24C109.5 (4)
N12—C14—H14A109.5 (4)H24A—C24—H24C109.5
N12—C14—H14B109.5 (4)H24B—C24—H24C109.5
H14A—C14—H14B109.5N23—C25—H25A109.5 (4)
N12—C14—H14C109.5 (4)N23—C25—H25B109.5 (4)
H14A—C14—H14C109.5H25A—C25—H25B109.5
H14B—C14—H14C109.5N23—C25—H25C109.5 (4)
N13—C15—H15A109.5 (4)H25A—C25—H25C109.5
N13—C15—H15B109.5 (4)H25B—C25—H25C109.5
S1—Au1—Au2—C179.5 (2)S1—Au1—Au2—C2102.9 (2)
S2—Au1—Au2—C191.8 (2)S2—Au1—Au2—C285.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···N2i0.862.553.207 (8)134
N13—H13···N1ii0.862.232.972 (9)144
N22—H22···N2iii0.862.132.936 (10)156
N23—H23···N1ii0.862.152.968 (8)158
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Au2(CN)2(C3H6N2S)2][Au2(CN)2(C3H8N2S)2]
Mr650.28654.32
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)174174
a, b, c (Å)7.4654 (15), 9.233 (2), 11.895 (2)13.3922 (2), 7.8170 (1), 14.9588 (3)
α, β, γ (°)103.73 (3), 90.73 (3), 112.98 (3)90, 94.506 (1), 90
V3)728.1 (3)1561.15 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)20.4019.03
Crystal size (mm)0.30 × 0.10 × 0.060.16 × 0.06 × 0.04
Data collection
DiffractometerSiemens SMART area-detector
diffractometer
Siemens SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Tmin, Tmax0.10, 0.290.27, 0.47
No. of measured, independent and
observed [I > 2σ(I)] reflections
5410, 2545, 2124 7629, 2737, 2421
Rint0.0450.030
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 0.94 0.026, 0.063, 1.07
No. of reflections25452737
No. of parameters163168
H-atom treatmentH-atom parameters constrainedRiding
Δρmax, Δρmin (e Å3)1.91, 1.521.97, 1.27

Computer programs: ASTRO (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXTL (Sheldrick, 1994), SHELXLTL.

Selected geometric parameters (Å, º) for (I) top
Au1—Au23.1167 (10)Au1—C11.964 (10)
Au1—S12.292 (3)Au2—C21.968 (10)
Au2—S22.295 (3)
C1—Au1—S1173.6 (3)C2—Au2—S2179.6 (3)
C1—Au1—Au2—C257.8 (4)C1—Au1—Au2—S2122.5 (3)
S1—Au1—Au2—C2116.2 (3)S1—Au1—Au2—S263.42 (10)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11···S2i0.862.763.556 (8)155
N12—H12···N1ii0.862.142.999 (12)172
N21—H21···N1iii0.862.152.988 (12)163
N22—H22···N2iv0.862.072.880 (13)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Au1—Au23.0911 (4)Au2—C11.983 (8)
Au1—S12.285 (2)Au2—C21.984 (8)
Au1—S22.304 (2)
S1—Au1—S2169.70 (7)C1—Au2—C2176.7 (3)
S1—Au1—Au2—C179.5 (2)S1—Au1—Au2—C2102.9 (2)
S2—Au1—Au2—C191.8 (2)S2—Au1—Au2—C285.7 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N12—H12···N2i0.862.553.207 (8)134
N13—H13···N1ii0.862.232.972 (9)144
N22—H22···N2iii0.862.132.936 (10)156
N23—H23···N1ii0.862.152.968 (8)158
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds