Download citation
Download citation
link to html
The binuclear cation of the title compound, [Ni2(C33H29­N4O3)(H2O)4]C2H3O2·C3H7NO·0.75H2O, was synthesized as a model for the active site of urease. Two tridentate halves of the symmetrical 2,6-bis{[(2-hydroxy­phenyl)(2-pyridyl­methyl)­amino]­methyl}-4-methyl­phenolate (BPPMP3−) ligand are arranged in a meridional fashion around the two NiII ions, with the phenoxo O atom bridging the NiII ions. The cation has an approximate twofold rotation axis running through the C—O bond of the bridging phenolate group. Four water mol­ecules complete the octahedral environment of each NiII ion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009379/bk1519sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009379/bk1519Isup2.hkl
Contains datablock I

CCDC reference: 152590

Comment top

Urease is known to catalyze the hydrolysis of urea at a rate 1014 times faster than the spontaneous degradation of the amide in water (Buchanan et al., 1989). The enzyme was first isolated from Japanese jack beans by Summer (Summer, 1926). Recently, an X-ray crystal structure analysis of a bacterial urease has confirmed the binuclear composition of the active site with two NiII ions separated by 3.5 Å (Jabri et al., 1995). Many dinickel complexes have been reported previously as models for urease (Holcrow & Christon, 1994). We present here the crystal structure of a new model, (I), for the active site of urease using the binucleating ligand 2,6-bis{[(2-hydroxyphenyl)(2-pyridylmethyl)amino]methyl}-4-methylphenol (H3BPPMP), which was synthesized according to Campbell et al. (1993).

The asymmetric unit of title compound consists of a discrete binuclear [Ni2(BPPMP)(H2O)4]+ cation (Fig. 1), one uncoordinated acetate anion, a dimethylformamide molecule and two partially occupied waters of crystallization. The two NiII ions are in distorted octahedral environments, bridged by the µ-phenoxo-O atom of the binucleating BPPMP3− ligand. Although the cation has no crystallographic symmetry, an approximate twofold rotation axis runs along the C—O bond of the bridging phenolate group. The N donors (amine and two pyridyl groups) and the two O donors (two pendant phenoxo groups) of the symmetrical ligand and four water molecules complete the coordination spheres of the binuclear complex. The two tridentate halves of the BPPMP3− anion adopt a meridional coordination mode, and pertinent bridging features include an NiII···NiII distance of 3.775 (1) Å and a bridging Ni1—O—Ni2 angle of 131.8 (1)°. In the title complex, since there is no other bridging atom, the Ni···Ni distance and Ni—O—Ni angle are significantly greater than those observed in similar binuclear Ni complexes, such as µ-acetato-bridged (3.422 Å and 116.7°; Buchanan et al., 1989) and isothiocyanate-bridged (2.993 Å and 94.7°; Okawa et al., 1998). In the [Ni2(BPPMP)(H2O)4]+ cation, the water molecules are coordinated trans to the phenoxo bridge and to the tertiary amine. The final pendant arms (phenolate and pyridyl) were constrained to trans positions with respect to each other because the phenolate moiety is directly linked to the tertiary amine. This arrangement is in contrast to other complexes containing the H3BBPMP ligand, such as [Fe2(BBPMP)(OAc)2]ClO4·H2O (Neves et al., 1993), NH4[Fe2(BBPMP)(SO4)2] (de Brito et al., 1997) and [In2(BBPMP)(OAc)2](NO3) (Bortoluzzi et al., 1999), in which the terminal phenolate arm always lies in a trans position with respect to the phenoxo bridge.

The average Ni—N (2.091 Å) and Ni—O (2.067 Å) distances agree with the values expected for octahedral NiII complexes (Buchanan et al., 1989), but the Ni1—O2W [2.131 (2) Å] and Ni2—O3W [2.140 (2) Å] distances are larger than usual values due to a trans effect from the bridging phenoxo group.

Cohesion in the three-dimensional structure results from the extensive hydrogen-bond network. The H atoms of the coordinated water molecules take part in both intra- and intermolecular interactions with some neighboring acceptors (Table 2). It should be noted that the acetate counter-ion is strongly hydrogen bonded to the coordinated water molecules of the binuclear cation. One acetate O atom (O1C) takes part in two strong and one weak hydrogen-bond interaction, while the other (O2C) takes part in only two hydrogen-bond interactions. This fact promotes different bond lengths in the uncoordinated acetate group (Table 1).

Experimental top

The reaction of Ni(CH3COO)2·3H2O with H3BPPMP and ammonium acetate (molar ratio 2:1:2) in methanol afforded a green precipitate which was filtered off and washed with cold 2-propanol and ether. Single crystals suitable for X-ray analysis were obtained by recystallization from a methanol–dimethylformamide (2:1) solution. Analysis: calculated for Ni2C38H48.5N5O10.75: C 52.78, H 5.65, N 8.10%; found: C 52.33, H 5.58, N 8.01%.

Refinement top

After all atoms of the structure had been placed in the refinement list, two isolated peaks were observed in the difference Fourier map with electron density greater than 1.6 e Å−3. These peaks were attributed to partially occupied solvate water. The disordered water molecules are situated in cavities large enough to accommodate water molecules (radii 3 Å). H atoms surround these cavities so that the disordered water molecules could be linked by hydrogen bonding, such as O—H···O or C—H···O. The occupancy factors for O5W [0.247 (6)] and O6W [0.494 (5)] were fixed at 0.25 and 1/2, respectively, based on their refinement. H atoms attached to C atoms were placed in the model at their idealized positions, with C—H distances and Ueq taken as the default of the refinement program. The H atoms of the coordinated water molecules were located in difference Fourier maps, were treated as riding and were refined with free isotropic displacement parameters [0.054 (11)–0.15 (2) Å2]. Although O5W and O6W were refined with anisotropic displacement parameters, their H atoms could not be found.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai et al., 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of the [Ni2(BPPMP)(H2O)4]+ cation with displacement ellipsoids shown at the 40% probability level. The labeling scheme is presented and H atoms have been omited for clarity.
(µ-2,6-Bis{[(2-hydroxyphenyl)(2-pyridylmethyl)amino]methyl}-4-methylphenolato)- bis[diaquanickel(II)] acetate dimetylformamide 0.75-hydrate top
Crystal data top
[Ni2(C33H29N4O4)H2O)4]·C2H3O2·C3H7NO·0.75H2OZ = 2
Mr = 864.74F(000) = 907
Triclinic, P1Dx = 1.435 Mg m3
a = 12.170 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.934 (3) ÅCell parameters from 25 reflections
c = 14.112 (3) Åθ = 9.9–15.3°
α = 66.46 (3)°µ = 1.00 mm1
β = 85.71 (3)°T = 293 K
γ = 79.46 (3)°Irregular, blue
V = 2001.9 (7) Å30.36 × 0.36 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
5348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.2°, θmin = 2.6°
ω–2θ scansh = 1414
Absorption correction: ψ scan
(PLATON; Spek, 1990)
k = 1415
Tmin = 0.699, Tmax = 0.740l = 016
7501 measured reflections3 standard reflections every 120 min
7184 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Calculated w = 1/[σ2(Fo2) + (0.055P)2 + 1.4276P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7184 reflectionsΔρmax = 0.75 e Å3
523 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (6)
Crystal data top
[Ni2(C33H29N4O4)H2O)4]·C2H3O2·C3H7NO·0.75H2Oγ = 79.46 (3)°
Mr = 864.74V = 2001.9 (7) Å3
Triclinic, P1Z = 2
a = 12.170 (2) ÅMo Kα radiation
b = 12.934 (3) ŵ = 1.00 mm1
c = 14.112 (3) ÅT = 293 K
α = 66.46 (3)°0.36 × 0.36 × 0.30 mm
β = 85.71 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
5348 reflections with I > 2σ(I)
Absorption correction: ψ scan
(PLATON; Spek, 1990)
Rint = 0.021
Tmin = 0.699, Tmax = 0.7403 standard reflections every 120 min
7501 measured reflections intensity decay: 2.0%
7184 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.75 e Å3
7184 reflectionsΔρmin = 0.47 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.09062 (3)0.16869 (3)0.43272 (3)0.03222 (12)
Ni20.14738 (3)0.08556 (3)0.20365 (3)0.03106 (12)
O10.16327 (16)0.17483 (16)0.29364 (15)0.0331 (5)
O1W0.15359 (18)0.00174 (18)0.48485 (17)0.0410 (5)
H1WB0.11260.06450.53180.055 (10)*
H1WA0.16770.01730.43070.076 (14)*
O2W0.0177 (2)0.1555 (2)0.57830 (16)0.0447 (6)
H2WA0.06840.10760.63350.105 (18)*
H2WB0.05060.12470.58850.15 (2)*
O3W0.11160 (19)0.0022 (2)0.10832 (19)0.0447 (6)
H3WA0.11760.04010.04400.089 (17)*
H3WB0.03470.03460.12510.101 (16)*
O4W0.02137 (18)0.13000 (19)0.21483 (16)0.0414 (5)
H4WA0.04120.15470.26860.064 (12)*
H4WB0.05900.06900.22850.054 (11)*
O200.06410 (18)0.17757 (18)0.38245 (15)0.0372 (5)
O400.17064 (18)0.07100 (18)0.32515 (16)0.0378 (5)
N10.0435 (2)0.3483 (2)0.37081 (19)0.0354 (6)
N40.3220 (2)0.0441 (2)0.19360 (19)0.0346 (6)
N320.2267 (2)0.2092 (2)0.48224 (19)0.0408 (6)
N520.1736 (2)0.2245 (2)0.06932 (19)0.0370 (6)
C20.0813 (3)0.4009 (3)0.2601 (2)0.0379 (7)
H2A0.03640.38190.21730.046*
H2B0.06750.48340.23770.046*
C30.3817 (3)0.0841 (3)0.2590 (2)0.0384 (7)
H3A0.46150.06900.24730.046*
H3B0.36750.03990.33130.046*
C50.4719 (3)0.4848 (3)0.1487 (3)0.0588 (10)
H5A0.46620.52360.07490.088*
H5B0.54660.44400.16700.088*
H5C0.45480.53980.17970.088*
C110.2022 (3)0.3632 (3)0.2422 (2)0.0343 (7)
C120.2369 (3)0.2476 (2)0.2582 (2)0.0317 (7)
C130.3470 (3)0.2096 (3)0.2371 (2)0.0341 (7)
C140.4222 (3)0.2869 (3)0.2019 (2)0.0412 (8)
H140.49560.26130.18770.049*
C150.3901 (3)0.4013 (3)0.1874 (2)0.0416 (8)
C160.2799 (3)0.4376 (3)0.2080 (2)0.0398 (7)
H160.25720.51370.19870.048*
C210.0782 (3)0.3674 (3)0.3728 (2)0.0398 (7)
C220.1279 (3)0.2760 (3)0.3751 (2)0.0386 (7)
C230.2446 (3)0.2934 (3)0.3700 (3)0.0508 (9)
H230.28000.23490.37130.061*
C240.3080 (3)0.3964 (4)0.3630 (3)0.0604 (11)
H240.38540.40600.35980.073*
C250.2589 (3)0.4847 (4)0.3608 (3)0.0622 (11)
H250.30270.55330.35660.075*
C260.1437 (3)0.4706 (3)0.3648 (3)0.0520 (9)
H260.10990.53060.36220.062*
C300.0977 (3)0.3886 (3)0.4369 (3)0.0459 (8)
H30A0.05300.38060.49850.055*
H30B0.10280.46890.39980.055*
C310.2136 (3)0.3197 (3)0.4672 (2)0.0428 (8)
C330.3265 (3)0.1428 (3)0.5126 (3)0.0542 (9)
H330.33530.06600.52340.065*
C340.4166 (4)0.1853 (5)0.5282 (3)0.0711 (13)
H340.48510.13780.54960.085*
C350.4032 (4)0.2985 (5)0.5117 (3)0.0755 (13)
H350.46300.32890.52140.091*
C360.3012 (4)0.3672 (4)0.4809 (3)0.0589 (10)
H360.29120.44430.46940.071*
C410.3440 (3)0.0805 (3)0.2359 (2)0.0348 (7)
C420.2618 (3)0.1337 (3)0.3051 (2)0.0360 (7)
C430.2817 (3)0.2535 (3)0.3496 (3)0.0481 (8)
H430.23050.29210.39660.058*
C440.3767 (3)0.3155 (3)0.3248 (3)0.0571 (10)
H440.38730.39500.35460.069*
C450.4549 (3)0.2621 (3)0.2574 (3)0.0523 (9)
H450.51830.30480.24170.063*
C460.4383 (3)0.1433 (3)0.2126 (3)0.0446 (8)
H460.49100.10610.16670.054*
C500.3513 (3)0.1005 (3)0.0828 (2)0.0403 (8)
H50A0.34090.05300.04670.048*
H50B0.42930.10940.07660.048*
C510.2791 (3)0.2161 (3)0.0340 (2)0.0379 (7)
C530.1039 (3)0.3237 (3)0.0274 (3)0.0445 (8)
H530.03100.32960.05210.053*
C540.1366 (4)0.4171 (3)0.0511 (3)0.0584 (10)
H540.08610.48480.07960.070*
C550.2440 (4)0.4097 (3)0.0868 (3)0.0597 (11)
H550.26750.47250.13940.072*
C560.3170 (3)0.3083 (3)0.0441 (3)0.0512 (9)
H560.39060.30170.06720.061*
O1C0.1348 (3)0.0397 (3)0.7555 (2)0.0851 (10)
O2C0.0927 (3)0.0708 (4)0.8941 (3)0.1025 (12)
C3C0.1501 (3)0.0820 (4)0.8188 (3)0.0591 (10)
C4C0.2439 (6)0.1465 (8)0.7962 (6)0.161 (4)
H4C10.24260.18240.84420.241*
H4C20.23680.20390.72710.241*
H4C30.31330.09500.80270.241*
O1S0.4001 (4)0.1786 (5)0.0288 (4)0.148 (2)
C2S0.3120 (4)0.1886 (5)0.0162 (5)0.0926 (17)
H2S0.29410.15290.06230.111*
N3S0.2376 (3)0.2446 (3)0.0056 (3)0.0671 (10)
C4S0.2540 (5)0.3008 (6)0.0660 (5)0.113 (2)
H4S10.33240.31690.07930.170*
H4S20.22450.37100.03650.170*
H4S30.21600.25170.12950.170*
C5S0.1317 (3)0.2438 (4)0.0571 (4)0.0829 (14)
H5S10.07460.19520.00800.124*
H5S20.11520.32010.08770.124*
H5S30.13440.21540.11010.124*
O5W0.6618 (3)0.0894 (7)0.2722 (4)0.136 (7)0.25
O6W0.0231 (4)0.3126 (7)0.7039 (5)0.151 (4)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0380 (2)0.0313 (2)0.0262 (2)0.00819 (17)0.00206 (16)0.00939 (16)
Ni20.0341 (2)0.0319 (2)0.0270 (2)0.00958 (16)0.00384 (15)0.01035 (16)
O10.0382 (12)0.0327 (11)0.0298 (11)0.0120 (9)0.0067 (9)0.0122 (9)
O1W0.0520 (14)0.0348 (12)0.0322 (12)0.0111 (10)0.0055 (10)0.0081 (10)
O2W0.0473 (14)0.0556 (14)0.0306 (12)0.0155 (12)0.0038 (10)0.0142 (11)
O3W0.0498 (14)0.0494 (14)0.0434 (14)0.0174 (11)0.0046 (11)0.0238 (12)
O4W0.0435 (13)0.0476 (13)0.0369 (12)0.0111 (11)0.0022 (10)0.0196 (11)
O200.0428 (12)0.0374 (12)0.0301 (11)0.0094 (10)0.0051 (9)0.0118 (9)
O400.0421 (12)0.0346 (11)0.0331 (11)0.0085 (10)0.0093 (9)0.0102 (9)
N10.0418 (15)0.0337 (14)0.0304 (13)0.0051 (12)0.0021 (11)0.0131 (11)
N40.0413 (15)0.0342 (14)0.0301 (13)0.0119 (11)0.0056 (11)0.0132 (11)
N320.0476 (17)0.0448 (16)0.0299 (14)0.0107 (13)0.0006 (12)0.0134 (12)
N520.0425 (15)0.0386 (15)0.0288 (13)0.0120 (12)0.0001 (11)0.0098 (12)
C20.0486 (19)0.0316 (16)0.0283 (16)0.0072 (14)0.0025 (14)0.0065 (13)
C30.0382 (17)0.0403 (18)0.0391 (17)0.0072 (14)0.0009 (14)0.0176 (15)
C50.059 (2)0.053 (2)0.069 (3)0.0309 (19)0.010 (2)0.022 (2)
C110.0434 (18)0.0342 (16)0.0244 (15)0.0112 (14)0.0024 (13)0.0089 (13)
C120.0408 (17)0.0318 (16)0.0236 (14)0.0124 (13)0.0009 (12)0.0096 (12)
C130.0381 (17)0.0347 (16)0.0300 (16)0.0105 (14)0.0007 (13)0.0115 (13)
C140.0377 (18)0.048 (2)0.0436 (19)0.0133 (15)0.0013 (14)0.0216 (16)
C150.049 (2)0.0449 (19)0.0345 (17)0.0220 (16)0.0026 (15)0.0136 (15)
C160.054 (2)0.0324 (17)0.0327 (16)0.0135 (15)0.0015 (15)0.0104 (14)
C210.0421 (18)0.0408 (18)0.0324 (17)0.0004 (15)0.0022 (14)0.0135 (14)
C220.0396 (18)0.0446 (19)0.0265 (16)0.0028 (15)0.0020 (13)0.0107 (14)
C230.0391 (19)0.064 (2)0.042 (2)0.0076 (17)0.0031 (15)0.0152 (18)
C240.043 (2)0.079 (3)0.044 (2)0.009 (2)0.0001 (17)0.017 (2)
C250.058 (3)0.066 (3)0.051 (2)0.021 (2)0.0008 (19)0.024 (2)
C260.063 (2)0.046 (2)0.045 (2)0.0035 (18)0.0009 (17)0.0210 (17)
C300.059 (2)0.0432 (19)0.0427 (19)0.0149 (17)0.0026 (16)0.0223 (16)
C310.053 (2)0.052 (2)0.0284 (16)0.0209 (17)0.0017 (14)0.0158 (15)
C330.054 (2)0.059 (2)0.043 (2)0.0051 (19)0.0081 (17)0.0138 (18)
C340.050 (2)0.101 (4)0.057 (3)0.019 (2)0.0130 (19)0.021 (2)
C350.070 (3)0.101 (4)0.063 (3)0.045 (3)0.006 (2)0.026 (3)
C360.072 (3)0.070 (3)0.048 (2)0.034 (2)0.0013 (19)0.027 (2)
C410.0369 (17)0.0343 (16)0.0363 (17)0.0072 (13)0.0011 (13)0.0163 (14)
C420.0439 (18)0.0338 (16)0.0313 (16)0.0082 (14)0.0023 (13)0.0136 (13)
C430.055 (2)0.0388 (19)0.047 (2)0.0111 (16)0.0075 (16)0.0130 (16)
C440.068 (3)0.0333 (19)0.064 (2)0.0013 (18)0.002 (2)0.0159 (18)
C450.048 (2)0.047 (2)0.063 (2)0.0037 (17)0.0018 (18)0.0276 (19)
C460.0422 (19)0.045 (2)0.048 (2)0.0073 (16)0.0052 (15)0.0210 (16)
C500.0430 (18)0.0449 (19)0.0330 (17)0.0126 (15)0.0117 (14)0.0149 (15)
C510.0481 (19)0.0423 (18)0.0271 (15)0.0190 (15)0.0054 (14)0.0138 (14)
C530.049 (2)0.0429 (19)0.0389 (18)0.0066 (16)0.0089 (15)0.0118 (16)
C540.073 (3)0.044 (2)0.046 (2)0.0081 (19)0.019 (2)0.0028 (17)
C550.083 (3)0.051 (2)0.0356 (19)0.029 (2)0.0020 (19)0.0008 (17)
C560.064 (2)0.054 (2)0.0356 (18)0.0260 (19)0.0078 (17)0.0117 (17)
O1C0.111 (3)0.094 (2)0.0542 (18)0.055 (2)0.0221 (17)0.0129 (17)
O2C0.107 (3)0.140 (3)0.080 (2)0.050 (2)0.037 (2)0.057 (2)
C3C0.064 (3)0.079 (3)0.036 (2)0.032 (2)0.0034 (18)0.0153 (19)
C4C0.173 (7)0.268 (10)0.126 (6)0.174 (7)0.068 (5)0.119 (6)
O1S0.072 (3)0.202 (5)0.190 (5)0.059 (3)0.035 (3)0.089 (4)
C2S0.058 (3)0.105 (4)0.135 (5)0.017 (3)0.000 (3)0.067 (4)
N3S0.048 (2)0.069 (2)0.094 (3)0.0006 (17)0.0087 (18)0.045 (2)
C4S0.097 (4)0.144 (6)0.131 (5)0.014 (4)0.024 (4)0.097 (5)
C5S0.066 (3)0.069 (3)0.113 (4)0.010 (2)0.003 (3)0.035 (3)
O5W0.077 (10)0.103 (12)0.186 (19)0.003 (9)0.027 (11)0.023 (12)
O6W0.196 (11)0.088 (6)0.162 (9)0.036 (6)0.004 (8)0.038 (6)
Geometric parameters (Å, º) top
Ni1—O202.029 (2)C14—C151.394 (5)
Ni1—O1W2.039 (2)C15—C161.387 (5)
Ni1—O12.069 (2)C21—C261.391 (5)
Ni1—N322.071 (3)C21—C221.411 (5)
Ni1—N12.111 (3)C22—C231.400 (5)
Ni1—O2W2.131 (2)C23—C241.382 (5)
Ni2—O4W2.041 (2)C24—C251.371 (6)
Ni2—O402.052 (2)C25—C261.383 (5)
Ni2—O12.067 (2)C30—C311.514 (5)
Ni2—N522.079 (3)C31—C361.385 (5)
Ni2—N42.103 (3)C33—C341.380 (5)
Ni2—O3W2.140 (2)C34—C351.368 (7)
O1—C121.343 (3)C35—C361.374 (6)
O20—C221.334 (4)C41—C461.379 (4)
O40—C421.333 (4)C41—C421.413 (4)
N1—C211.456 (4)C42—C431.400 (4)
N1—C301.477 (4)C43—C441.388 (5)
N1—C21.508 (4)C44—C451.366 (5)
N4—C411.456 (4)C45—C461.390 (5)
N4—C501.485 (4)C50—C511.506 (5)
N4—C31.505 (4)C51—C561.388 (4)
N32—C311.338 (4)C53—C541.373 (5)
N32—C331.341 (4)C54—C551.366 (6)
N52—C531.336 (4)C55—C561.377 (5)
N52—C511.343 (4)O1C—C3C1.259 (5)
C2—C111.498 (4)O2C—C3C1.199 (5)
C3—C131.509 (4)C3C—C4C1.478 (6)
C5—C151.516 (4)O1S—C2S1.205 (6)
C11—C161.396 (4)C2S—N3S1.309 (6)
C11—C121.407 (4)N3S—C5S1.431 (5)
C12—C131.393 (4)N3S—C4S1.446 (6)
C13—C141.398 (4)
O20—Ni1—O1W102.97 (9)C16—C11—C2123.2 (3)
O20—Ni1—O192.12 (8)C12—C11—C2117.6 (3)
O1W—Ni1—O184.55 (9)O1—C12—C13120.6 (3)
O20—Ni1—N32162.24 (10)O1—C12—C11119.5 (3)
O1W—Ni1—N3294.04 (10)C13—C12—C11119.9 (3)
O1—Ni1—N3294.59 (9)C12—C13—C14119.4 (3)
O20—Ni1—N181.82 (10)C12—C13—C3118.1 (3)
O1W—Ni1—N1173.43 (9)C14—C13—C3122.4 (3)
O1—Ni1—N190.83 (9)C15—C14—C13121.7 (3)
N32—Ni1—N181.66 (11)C16—C15—C14118.1 (3)
O20—Ni1—O2W88.20 (9)C16—C15—C5120.5 (3)
O1W—Ni1—O2W93.28 (9)C14—C15—C5121.5 (3)
O1—Ni1—O2W177.83 (9)C15—C16—C11121.8 (3)
N32—Ni1—O2W85.71 (10)C26—C21—C22120.6 (3)
N1—Ni1—O2W91.35 (10)C26—C21—N1123.7 (3)
O4W—Ni2—O4099.32 (9)C22—C21—N1115.4 (3)
O4W—Ni2—O186.94 (9)O20—C22—C23122.5 (3)
O40—Ni2—O194.09 (8)O20—C22—C21120.1 (3)
O4W—Ni2—N5298.00 (10)C23—C22—C21117.4 (3)
O40—Ni2—N52162.10 (10)C24—C23—C22120.8 (4)
O1—Ni2—N5291.33 (9)C25—C24—C23121.3 (4)
O4W—Ni2—N4178.12 (9)C24—C25—C26119.3 (4)
O40—Ni2—N481.38 (10)C25—C26—C21120.5 (4)
O1—Ni2—N491.28 (9)N1—C30—C31110.1 (3)
N52—Ni2—N481.45 (11)N32—C31—C36121.5 (4)
O4W—Ni2—O3W86.77 (9)N32—C31—C30116.4 (3)
O40—Ni2—O3W88.37 (9)C36—C31—C30122.1 (3)
O1—Ni2—O3W173.54 (8)N32—C33—C34121.9 (4)
N52—Ni2—O3W88.10 (10)C35—C34—C33118.7 (4)
N4—Ni2—O3W95.00 (9)C34—C35—C36119.9 (4)
C12—O1—Ni2114.97 (17)C35—C36—C31118.8 (4)
C12—O1—Ni1113.21 (17)C46—C41—C42121.7 (3)
Ni2—O1—Ni1131.77 (10)C46—C41—N4123.4 (3)
C22—O20—Ni1109.79 (19)C42—C41—N4114.9 (3)
C42—O40—Ni2107.61 (17)O40—C42—C43123.0 (3)
C21—N1—C30115.8 (2)O40—C42—C41120.5 (3)
C21—N1—C2108.4 (2)C43—C42—C41116.5 (3)
C30—N1—C2110.7 (2)C44—C43—C42121.1 (3)
C21—N1—Ni1104.69 (19)C45—C44—C43121.4 (3)
C30—N1—Ni1105.72 (19)C44—C45—C46119.1 (3)
C2—N1—Ni1111.28 (18)C41—C46—C45120.3 (3)
C41—N4—C50115.1 (2)N4—C50—C51110.5 (2)
C41—N4—C3108.6 (2)N52—C51—C56121.4 (3)
C50—N4—C3110.7 (2)N52—C51—C50115.8 (3)
C41—N4—Ni2104.19 (18)C56—C51—C50122.8 (3)
C50—N4—Ni2106.32 (19)N52—C53—C54122.1 (3)
C3—N4—Ni2111.81 (18)C55—C54—C53119.3 (4)
C31—N32—C33119.2 (3)C54—C55—C56119.4 (3)
C31—N32—Ni1112.8 (2)C55—C56—C51118.8 (4)
C33—N32—Ni1127.3 (2)O2C—C3C—O1C122.6 (4)
C53—N52—C51119.0 (3)O2C—C3C—C4C121.0 (4)
C53—N52—Ni2126.8 (2)O1C—C3C—C4C116.4 (4)
C51—N52—Ni2113.3 (2)O1S—C2S—N3S125.9 (6)
C11—C2—N1114.5 (2)C2S—N3S—C5S121.3 (4)
N4—C3—C13113.7 (3)C2S—N3S—C4S121.6 (5)
C16—C11—C12119.2 (3)C5S—N3S—C4S116.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20i1.011.662.658 (3)171
O1W—H1WA···O400.861.872.720 (3)166
O2W—H2WA···O1C0.961.772.699 (4)163
O2W—H2WB···O40i0.961.882.750 (3)149
O3W—H3WA···O2Cii0.852.032.805 (4)152
O3W—H3WB···O2Ci1.091.772.823 (4)160
O3W—H3WB···O1Ci1.092.563.446 (4)138
O4W—H4WA···O200.941.742.666 (3)170
O4W—H4WB···O1Ci0.931.752.680 (4)175
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni2(C33H29N4O4)H2O)4]·C2H3O2·C3H7NO·0.75H2O
Mr864.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.170 (2), 12.934 (3), 14.112 (3)
α, β, γ (°)66.46 (3), 85.71 (3), 79.46 (3)
V3)2001.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.36 × 0.36 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(PLATON; Spek, 1990)
Tmin, Tmax0.699, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
7501, 7184, 5348
Rint0.021
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.01
No. of reflections7184
No. of parameters523
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.47

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), SET4 in CAD-4 EXPRESS, HELENA (Spek, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai et al., 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O202.029 (2)Ni2—O4W2.041 (2)
Ni1—O1W2.039 (2)Ni2—O402.052 (2)
Ni1—O12.069 (2)Ni2—O12.067 (2)
Ni1—N322.071 (3)Ni2—N522.079 (3)
Ni1—N12.111 (3)Ni2—N42.103 (3)
Ni1—O2W2.131 (2)Ni2—O3W2.140 (2)
O20—Ni1—O1W102.97 (9)O4W—Ni2—O186.94 (9)
O20—Ni1—O192.12 (8)O40—Ni2—O194.09 (8)
O1W—Ni1—O184.55 (9)O4W—Ni2—N5298.00 (10)
O20—Ni1—N32162.24 (10)O40—Ni2—N52162.10 (10)
O1W—Ni1—N3294.04 (10)O1—Ni2—N5291.33 (9)
O1—Ni1—N3294.59 (9)O4W—Ni2—N4178.12 (9)
O20—Ni1—N181.82 (10)O40—Ni2—N481.38 (10)
O1W—Ni1—N1173.43 (9)O1—Ni2—N491.28 (9)
O1—Ni1—N190.83 (9)N52—Ni2—N481.45 (11)
N32—Ni1—N181.66 (11)O4W—Ni2—O3W86.77 (9)
O20—Ni1—O2W88.20 (9)O40—Ni2—O3W88.37 (9)
O1W—Ni1—O2W93.28 (9)O1—Ni2—O3W173.54 (8)
O1—Ni1—O2W177.83 (9)N52—Ni2—O3W88.10 (10)
N32—Ni1—O2W85.71 (10)N4—Ni2—O3W95.00 (9)
N1—Ni1—O2W91.35 (10)Ni2—O1—Ni1131.77 (10)
O4W—Ni2—O4099.32 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20i1.011.662.658 (3)171.2
O1W—H1WA···O400.861.872.720 (3)166.3
O2W—H2WA···O1C0.961.772.699 (4)163.0
O2W—H2WB···O40i0.961.882.750 (3)149.1
O3W—H3WA···O2Cii0.852.032.805 (4)152.4
O3W—H3WB···O2Ci1.091.772.823 (4)160.4
O3W—H3WB···O1Ci1.092.563.446 (4)137.8
O4W—H4WA···O200.941.742.666 (3)169.8
O4W—H4WB···O1Ci0.931.752.680 (4)175.4
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds