Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two new complexes of the Ln2(oda)3·nH2O (oda =–O2CCH2OCH2CO2–) series are reported, i.e. {[Pr2(C4H4O5)3(H2O)3]·5H2O}n and {[Nd2(C4H4O5)3(H2O)6]·C4H6O5·-2H2O}n. The former is isostructural with the reported La analogue, while the latter is a new structural variety within the series. Each compound exhibits two independent nine-coordinated Ln centres showing a variety of coordination geometries.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015851/bk1511sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015851/bk1511Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015851/bk1511IIsup3.hkl
Contains datablock Nd_Oda

CCDC references: 143232; 143233

Comment top

The self-assembly of lanthanide(III) metal centres with oxydiacetate ligands (oda = –O2CCH2OCH2CO2–) leads to a series of crystalline coordination solids formulated as Ln2(oda)3.nH2O with an interesting variety of crystal-packing motifs. This is in accordance with the experience that the crystal structures of the lanthanide compounds frequently change along the series as a result of the lanthanide contraction. The crystals formed by the larger lanthanum [La2(C4H4O5)3(H2O)3. 5H2O]n are hexagonal, P62c (Baggio et al., 1996), and present two nine coordinated La centres; those for the intermediate gadolinium and europium compounds are orthorhombic, Ama2 (Aramendia et al., 1999) and present a mixture of nine and eight coordinated Ln centres, as it is also the case for the smaller Er (Elding, 1977) and Y (Baggio et al., 1999) analogues, which crystallize in the orthorhombic space group C222 (1).

Focusing our attention primarily on the structural aspects of these extended polymeric 4f complexes we report herein the preparation and structural characterization of the analogous compounds comprising praseodymium and neodymium: [Pr2(C4H4O5)3(H2O)3·5H2O]n, (I), and [Nd2(C4H4O5)3(H2O)6·2H2O·C4H6O5]n, (II). \sch

Compound (I) is isostructural to the lanthanum polymer (Baggio, 1996) and will not be described in too much detail here. Selected bond lengths and angles are listed in Table 1, and Figure 1 gives a sketch of its coordination scheme. The two metal centres are highly symmetric, with Pr2 occupying a site `a' of local symmetry 32, and coordinated to three tridentate oda units, while Pr1, which occupies a site `d' of symmetry \-6, receives six bonds from the outer carboxylate O atoms as well as those from three aqua molecules. Both coordination polyhedra have the shape of tricapped trigonal prisms, the one around Pr2 being regular and the one centred at Pr1 displaying a rotation of ca 13° between opposite triangular faces. The fact that all the carboxylate as well as the ether O atoms take part in the connectivity to the cations leads to a tightly woven three dimensional network, leaving only a few empty spaces, filled in turn by the (disordered) hydration water molecules, which attach to the main structure via hydrogen bonding (See Table 2 for short O···O contacts).

Compound (2) presents, instead, a novel disposition of the ligands, not found before in any member of the series. As already stated, two independent Nd centres are present: Nd1 is bonded to two tridentate oda groups (oda1 and oda2) and to two water molecules (O1W and O2W). The ninth bond (O41) is provided by a <010> translationally related oda1 ligand, to end up with a linear polymeric chain along the short unique b axis.

As it is often the case with lanthanide cations bound to three tridentate oda groups, or to two tridentate odas plus three extra monodentate units completing the ninefold environment (the present case), the Nd1 polyhedron displays a tricapped trigonal prismatic geometry. The three monodentate ligands (O1W, O2W and O41) adopt a planar configuration very much resembling that of the missing third oda unit. The resulting polyhedron is one with only slight modifications from the regular environment found in much more symmetric polyhedra [e.g. the one around Pr1 in (I)].

A completely different arrangement is found for Nd2, which is bonded to a single tridentate oxydiacetate group (oda3) and to six monodentate units, four of which are water molecules (O3W to O6W), and the remaining two, oxygen atoms from bridging carboxylates. One of these is O43 from a neigbouring (also a <010> translationally related) oxydiacetate unit, again to built up linear chains parallel to those already defined by the Nd1 polyhedra. The second, O42, is provided by these latter groups; the Nd—O42 bonds transversally link both types of linear arrays, acting as the rungs of a firmly connected ladder-like strip (Fig. 2).

The presence of a single tridentate, plus six monodentate ligands favours a less constrained environment around Nd2 in the form of a monocapped square antiprism in which O33 occupies the capping position; O13, O53, O4W and O5W the equatorial plane and the remaining two water molecules plus the two remaining bridging carboxylate O atoms (O42 and O43) the basal plane. The largest distortion in the polyhedron is observed at the rather long Nd2—O3W distance [2.674 (9) Å]. The structure is completed by two non-coordinated water molecules (O7 and a triply disordered O8W) and an H2oda neutral molecule. All of them, as well as the six coordinated water molecules, play an active role as hydrogen donors in a dense hydrogen bonding network in which the oxygen atoms from the coordinated oda groups act mainly as acceptors. Although the H atoms bonded to O atoms could not be reliably located, the hydrogen bonding interaction scheme could be confidently guessed both from the shortest (< 3.0 Å) O···O contacts (shown in Table 4) as well as from some significant structural details (viz C14—O24 and C44—O44 are sensibly longer than C14—O14 and C44—O54, respectively, at the same time that O24···O22 and O44···O51 are rather short. Charge balance and IR data (see Experimental section) required the presence of two OH groups in oda4; the preceeding geometrical arguments, in turn, point almost unambigously to the protonated character of O24 and O44.

Experimental top

The reaction of Pr2O3 and Nd2O3 with excess oxydiacetic acid in water (1:7:100) and subsequent work-up afforded light-green crystals of (I) and light-blue crystals of (II) in good yields. The procedure has been described previously in detail (Baggio et al., 1996). The IR spectra of the two compounds show significant changes in the COOH range. In fact the IR spectrum of compound (II) shows the characteristic absorptions of the acyd carbonyl groups (1738–1683 cm-1) in addition to the bands of the carboxylate anions (1597 and 1445 cm-1) and water molecules (~1641 and ~3550–3400 cm-1) also observed for compound (I). TGA measurements show that both compounds lose almost exactly eight water molecules per formula unit well below 450 K.

All chemicals were of reagent-grade purity and used as received. Water was purified by a Millipore milli-Q system. Elemental analyses (C,H) were performed on a Carlo Erba EA 1108 instrument. Infrared spectra were recorded as KBr discs with a Nicolet 510P FT—IR spectrophotometer. Thermogravimetric analyses were recorded on a Shimadzu DTG50 thermal analyzer under an atmosphere of air at a heating rate of 5 K min-1.

Refinement top

In both structures some hydration water molecules appeared split in a number of sites of lower occupancy, turning thus difficult to assess their correct total number just from the X-ray data alone. They were accordingly refined with adjustable populations constrained to add up to the value given by the thermogravimetric analysis, and a unique, common isotropic displacement factor.

As the H atoms could not be found in the difference Fourier synthesis, only those attached to carbon were included in ideallized positions, and refined using a riding scheme, both in coordinates as in displacement factors.

Computing details top

For both compounds, data collection: P3/P4-PC (Siemens, 1991); cell refinement: P3/P4-PC. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1991) for (I); XDISK in SHELXTL/PC (Sheldrick,1991) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: XP in SHELXTL/PC for (I); XP in SHELXTL/PC (Sheldrick, 1991) for (II). For both compounds, software used to prepare material for publication: CIFTAB (Sheldrick, 1993), PARST (Nardelli, 1983) and CSD (Allen et al., 1983).

Figures top
[Figure 1] Fig. 1. Molecular diagrams showing atom numbering and coordination schemes. In full line, independent atoms; in dotted lines, symmetry related ones. Thermal ellipsoids drawn at a 40% level. a) Compound (1); b) Compound (2).
[Figure 2] Fig. 2. Schematic diagram along a*, showing a ladder-like strip in (2), built up along the uniq axis b.
(I) Praseodimium oxydiacetate top
Crystal data top
[Pr2(C4H4O5)3(H2O)3]·5H2ODx = 2.06 Mg m3
Mr = 822.16Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P62cCell parameters from 25 reflections
a = 9.4003 (12) Åθ = 7.5–12.5°
c = 17.350 (4) ŵ = 3.72 mm1
V = 1327.8 (4) Å3T = 293 K
Z = 2Prisms, light green
F(000) = 8040.35 × 0.15 × 0.14 mm
Data collection top
Siemens R3m
diffractometer
738 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ω/2θ scansh = 110
Absorption correction: ψ-scan
(XEMP in SHELXTL/PC; Sheldrick, 1991)
k = 011
Tmin = 0.35, Tmax = 0.60l = 020
1693 measured reflections2 standard reflections every 98 reflections
780 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: C-H:geom O-H:not found
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.059Calculated w = 1/[σ2(Fo2) + (0.031P)2 + 2.733P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.01
780 reflectionsΔρmax = 0.94 e Å3
63 parametersΔρmin = 0.87 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
[Pr2(C4H4O5)3(H2O)3]·5H2OZ = 2
Mr = 822.16Mo Kα radiation
Hexagonal, P62cµ = 3.72 mm1
a = 9.4003 (12) ÅT = 293 K
c = 17.350 (4) Å0.35 × 0.15 × 0.14 mm
V = 1327.8 (4) Å3
Data collection top
Siemens R3m
diffractometer
738 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(XEMP in SHELXTL/PC; Sheldrick, 1991)
Rint = 0.034
Tmin = 0.35, Tmax = 0.602 standard reflections every 98 reflections
1693 measured reflections intensity decay: <2%
780 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.94 e Å3
S = 1.08Δρmin = 0.87 e Å3
780 reflectionsAbsolute structure: Flack (1983)
63 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Refinement. The structure was solved by direct methods and refined on F2, with anisotropic displacement factors for all non-H atoms with full occupancy.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.66670.33330.25000.01639 (16)
Pr20.00000.00000.00000.01481 (16)
O10.2108 (5)0.1722 (5)0.0965 (2)0.0321 (9)
O20.4473 (5)0.2704 (5)0.1572 (2)0.0384 (10)
O30.2715 (6)0.00000.00000.0299 (14)
C10.3484 (5)0.1825 (14)0.1061 (2)0.0268 (11)
C20.4000 (8)0.0929 (9)0.0534 (4)0.0442 (17)
H2A0.49850.17030.02590.053*
H2B0.42460.02010.08280.053*
O1W0.5625 (9)0.5502 (9)0.25000.056 (2)
O2WA0.158 (3)0.285 (2)0.25000.098 (4)*0.692 (17)
O2WB0.082 (6)0.180 (4)0.25000.098 (4)*0.352 (17)
O2WC0.226 (3)0.296 (3)0.1299 (11)0.098 (4)*0.311 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.02006 (19)0.02006 (19)0.0090 (2)0.01003 (10)0.0000.000
Pr20.01558 (19)0.01558 (19)0.0133 (3)0.00779 (9)0.0000.000
O10.026 (2)0.041 (2)0.032 (2)0.0186 (18)0.0129 (18)0.0171 (18)
O20.037 (2)0.042 (2)0.036 (2)0.0195 (19)0.019 (2)0.0143 (19)
O30.022 (2)0.043 (4)0.032 (3)0.0216 (18)0.0098 (13)0.020 (3)
C10.024 (2)0.034 (4)0.021 (2)0.014 (3)0.0084 (18)0.004 (4)
C20.030 (3)0.060 (4)0.052 (4)0.029 (3)0.022 (3)0.033 (4)
O1W0.066 (5)0.037 (4)0.064 (4)0.025 (4)0.0000.000
Geometric parameters (Å, º) top
Pr1—O2i2.444 (4)Pr2—O1viii2.478 (4)
Pr1—O2ii2.444 (4)Pr2—O1ix2.478 (4)
Pr1—O2iii2.444 (4)Pr2—O1x2.478 (4)
Pr1—O2iv2.444 (4)Pr2—O3x2.552 (5)
Pr1—O22.444 (4)Pr2—O32.552 (5)
Pr1—O2v2.444 (4)Pr2—O3ix2.552 (5)
Pr1—O1Wiv2.666 (7)O1—C11.259 (7)
Pr1—O1Wi2.666 (7)O2—C11.251 (7)
Pr1—O1W2.666 (7)O3—C21.423 (6)
Pr2—O12.478 (4)O3—C2vii1.423 (6)
Pr2—O1vi2.478 (4)C1—C21.480 (11)
Pr2—O1vii2.478 (4)
O1···O2WA2.99 (1)O1W···O2WAxi2.63 (2)
O1···O2WB2.94 (2)O1W···O2WBxi2.96 (3)
O2i—Pr1—O2ii82.4 (2)O1vii—Pr2—O1viii79.36 (15)
O2i—Pr1—O2iii135.79 (7)O1—Pr2—O1ix79.36 (15)
O2ii—Pr1—O2iii81.34 (15)O1vi—Pr2—O1ix86.9 (2)
O2i—Pr1—O2iv81.34 (15)O1vii—Pr2—O1ix150.66 (18)
O2ii—Pr1—O2iv135.79 (7)O1viii—Pr2—O1ix123.54 (17)
O2iii—Pr1—O2iv82.4 (2)O1—Pr2—O1x79.36 (15)
O2i—Pr1—O281.34 (15)O1vi—Pr2—O1x123.54 (17)
O2ii—Pr1—O2135.79 (7)O1vii—Pr2—O1x86.9 (2)
O2iii—Pr1—O2135.79 (7)O1viii—Pr2—O1x150.66 (19)
O2iv—Pr1—O281.34 (15)O1ix—Pr2—O1x79.36 (15)
O2i—Pr1—O2v135.79 (7)O1—Pr2—O3x136.57 (10)
O2ii—Pr1—O2v81.34 (15)O1vi—Pr2—O3x61.77 (9)
O2iii—Pr1—O2v81.34 (15)O1vii—Pr2—O3x75.33 (9)
O2iv—Pr1—O2v135.79 (7)O1viii—Pr2—O3x136.57 (10)
O2—Pr1—O2v82.4 (2)O1ix—Pr2—O3x75.33 (9)
O2i—Pr1—O1Wiv69.57 (15)O1x—Pr2—O3x61.77 (9)
O2ii—Pr1—O1Wiv69.57 (15)O1—Pr2—O361.77 (9)
O2iii—Pr1—O1Wiv66.24 (15)O1vi—Pr2—O3136.57 (10)
O2iv—Pr1—O1Wiv66.24 (15)O1vii—Pr2—O361.77 (9)
O2—Pr1—O1Wiv138.76 (10)O1viii—Pr2—O375.33 (9)
O2v—Pr1—O1Wiv138.76 (10)O1ix—Pr2—O3136.57 (10)
O2i—Pr1—O1Wi66.24 (15)O1x—Pr2—O375.33 (9)
O2ii—Pr1—O1Wi66.24 (15)O3x—Pr2—O3120.0
O2iii—Pr1—O1Wi138.76 (10)O1—Pr2—O3ix75.33 (9)
O2iv—Pr1—O1Wi138.76 (10)O1vi—Pr2—O3ix75.33 (9)
O2—Pr1—O1Wi69.57 (15)O1vii—Pr2—O3ix136.57 (10)
O2v—Pr1—O1Wi69.57 (15)O1viii—Pr2—O3ix61.77 (9)
O1Wiv—Pr1—O1Wi120.0O1ix—Pr2—O3ix61.77 (9)
O2i—Pr1—O1W138.76 (10)O1x—Pr2—O3ix136.57 (10)
O2ii—Pr1—O1W138.76 (10)O3x—Pr2—O3ix120.0
O2iii—Pr1—O1W69.57 (15)O3—Pr2—O3ix120.0
O2iv—Pr1—O1W69.57 (15)C1—O1—Pr2126.5 (5)
O2—Pr1—O1W66.24 (15)C1—O2—Pr1152.3 (6)
O2v—Pr1—O1W66.24 (15)C2—O3—C2vii114.4 (6)
O1Wiv—Pr1—O1W120.000 (2)C2—O3—Pr2122.8 (3)
O1Wi—Pr1—O1W120.000 (2)C2vii—O3—Pr2122.8 (3)
O1—Pr2—O1vi150.66 (19)O2—C1—O1122.7 (9)
O1—Pr2—O1vii123.54 (17)O2—C1—C2117.8 (6)
O1vi—Pr2—O1vii79.36 (15)O1—C1—C2119.4 (5)
O1—Pr2—O1viii86.9 (2)O3—C2—C1109.4 (4)
O1vi—Pr2—O1viii79.36 (15)
Symmetry codes: (i) y+1, xy, z; (ii) y+1, xy, z+1/2; (iii) x+y+1, x+1, z+1/2; (iv) x+y+1, x+1, z; (v) x, y, z+1/2; (vi) x, x+y, z; (vii) xy, y, z; (viii) y, x, z; (ix) y, xy, z; (x) x+y, x, z; (xi) y+1, xy+1, z.
(II) Neodimium oxydiacetate top
Crystal data top
[Nd2(C4H4O5)3(H2O)6]·2H2O·C4H6O5F(000) = 1896
Mr = 962.91Dx = 2.09 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.096 (2) ÅCell parameters from 25 reflections
b = 6.844 (1) Åθ = 7.5–15°
c = 32.223 (3) ŵ = 3.46 mm1
β = 99.59 (1)°T = 293 K
V = 3065.1 (6) Å3Plates, light blue
Z = 40.36 × 0.24 × 0.10 mm
Data collection top
Siemens R3m
diffractometer
3568 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω/2θ scansh = 016
Absorption correction: ψ-scan
(XEMP in SHELXTL/PC, Sheldrick, 1991)
k = 08
Tmin = 0.38, Tmax = 0.70l = 3837
5674 measured reflections2 standard reflections every 98 reflections
5393 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: C-H:geom O-H:not found
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.065P)2 + 37.22P]
where P = (Fo2 + 2Fc2)/3
5393 reflections(Δ/σ)max < 0.01
419 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.89 e Å3
Crystal data top
[Nd2(C4H4O5)3(H2O)6]·2H2O·C4H6O5V = 3065.1 (6) Å3
Mr = 962.91Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.096 (2) ŵ = 3.46 mm1
b = 6.844 (1) ÅT = 293 K
c = 32.223 (3) Å0.36 × 0.24 × 0.10 mm
β = 99.59 (1)°
Data collection top
Siemens R3m
diffractometer
3568 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(XEMP in SHELXTL/PC, Sheldrick, 1991)
Rint = 0.040
Tmin = 0.38, Tmax = 0.702 standard reflections every 98 reflections
5674 measured reflections intensity decay: <2%
5393 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Δρmax = 0.77 e Å3
5393 reflectionsΔρmin = 0.89 e Å3
419 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.01488 (4)0.55193 (9)0.138457 (16)0.01857 (17)
Nd20.02898 (4)0.55690 (9)0.328610 (16)0.01806 (16)
O110.1722 (5)0.4571 (12)0.1783 (3)0.0306 (18)
O210.3244 (6)0.5260 (12)0.2050 (3)0.034 (2)
O310.1170 (5)0.8153 (11)0.1822 (3)0.0298 (19)
O410.0347 (5)1.2212 (11)0.1540 (3)0.031 (2)
O510.0383 (6)0.9094 (11)0.1321 (3)0.032 (2)
C110.2384 (7)0.5720 (17)0.1940 (3)0.024 (2)
C210.2138 (7)0.7810 (16)0.2005 (3)0.023 (2)
H21A0.22290.80990.23040.028*
H21B0.25600.86550.18770.028*
C310.0847 (8)1.0095 (15)0.1872 (4)0.029 (3)
H31A0.13511.10110.18350.035*
H31B0.07061.02600.21550.035*
C410.0037 (8)1.0514 (17)0.1557 (4)0.027 (2)
O120.1031 (5)0.5532 (14)0.0750 (2)0.0337 (19)
O220.2494 (5)0.5768 (15)0.0373 (2)0.040 (2)
O320.1608 (5)0.5670 (12)0.1461 (2)0.0233 (16)
O420.1211 (5)0.5717 (13)0.2570 (2)0.0313 (19)
O520.0243 (5)0.5780 (13)0.2095 (2)0.0296 (18)
C120.1928 (7)0.5627 (17)0.0716 (3)0.024 (2)
C220.2364 (7)0.5512 (19)0.1107 (3)0.026 (2)
H22A0.28230.65630.11110.031*
H22B0.26980.42780.11160.031*
C320.1941 (7)0.5595 (19)0.1856 (3)0.027 (2)
H32A0.22940.43930.18780.032*
H32B0.23670.66880.18810.032*
C420.1074 (7)0.5688 (18)0.2202 (4)0.029 (3)
O130.1307 (5)0.4609 (11)0.3665 (2)0.0292 (18)
O230.2822 (5)0.5262 (12)0.3953 (3)0.041 (2)
O330.0768 (5)0.8191 (10)0.3705 (2)0.0241 (17)
O430.0739 (5)1.2220 (10)0.3407 (2)0.0249 (17)
O530.0804 (6)0.9045 (11)0.3228 (2)0.0303 (19)
C130.1969 (8)0.5731 (17)0.3838 (4)0.026 (2)
C230.1721 (7)0.7805 (16)0.3927 (4)0.026 (3)
H23A0.17430.79900.42270.031*
H23B0.21780.86910.38330.031*
C330.0466 (8)1.0128 (16)0.3758 (4)0.027 (3)
H33A0.09651.10400.37120.033*
H33B0.03361.03130.40420.033*
C430.0440 (8)1.0480 (16)0.3441 (3)0.024 (2)
O140.0490 (6)0.7483 (14)0.4739 (3)0.039 (2)
O240.0752 (6)0.8449 (14)0.5417 (2)0.040 (2)
O340.1322 (5)0.6445 (13)0.4795 (2)0.034 (2)
O440.3728 (6)0.5164 (14)0.4413 (3)0.042 (2)
O540.2438 (6)0.5228 (16)0.4115 (3)0.047 (3)
C140.0228 (8)0.7707 (17)0.5075 (4)0.029 (3)
C240.0788 (8)0.7265 (18)0.5162 (3)0.031 (3)
H24A0.07560.63560.53950.037*
H24B0.10930.84580.52360.037*
C340.2268 (8)0.592 (2)0.4851 (4)0.035 (3)
H34A0.25720.70010.49730.042*
H34B0.22500.48020.50360.042*
C440.2815 (8)0.5436 (17)0.4419 (4)0.028 (2)
O1W0.1194 (8)0.7023 (15)0.0933 (3)0.062 (3)
O2W0.0736 (6)0.3002 (12)0.0895 (3)0.035 (2)
O3W0.0332 (6)0.2991 (13)0.2769 (3)0.040 (2)
O4W0.0845 (6)0.6921 (13)0.2847 (2)0.034 (2)
O5W0.0583 (6)0.5854 (14)0.4016 (2)0.040 (2)
O6W0.2106 (5)0.5591 (13)0.3277 (2)0.0313 (18)
O7W0.3629 (7)0.5492 (17)0.2626 (3)0.054 (3)
O8WA0.1342 (16)0.514 (3)0.0209 (7)0.062 (5)*0.456 (10)
O8WB0.003 (3)0.832 (6)0.0015 (12)0.062 (5)*0.303 (10)
O8WC0.029 (3)0.741 (7)0.0015 (14)0.062 (5)*0.241 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0174 (3)0.0188 (3)0.0194 (3)0.0005 (3)0.0028 (2)0.0006 (3)
Nd20.0191 (3)0.0172 (3)0.0178 (3)0.0008 (3)0.0030 (2)0.0004 (3)
O110.023 (4)0.019 (4)0.047 (5)0.002 (4)0.002 (4)0.007 (4)
O210.029 (4)0.023 (4)0.047 (5)0.002 (4)0.004 (4)0.006 (4)
O310.022 (4)0.019 (4)0.043 (5)0.002 (3)0.008 (4)0.007 (4)
O410.028 (4)0.014 (4)0.053 (6)0.003 (3)0.010 (4)0.001 (4)
O510.031 (4)0.025 (5)0.039 (5)0.003 (4)0.002 (4)0.001 (4)
C110.021 (5)0.028 (6)0.022 (5)0.002 (5)0.001 (4)0.005 (5)
C210.020 (5)0.025 (6)0.022 (6)0.002 (5)0.001 (4)0.006 (5)
C310.034 (6)0.015 (6)0.035 (7)0.011 (5)0.006 (5)0.013 (5)
C410.026 (6)0.019 (6)0.040 (7)0.006 (5)0.017 (5)0.007 (6)
O120.026 (4)0.051 (5)0.025 (4)0.008 (4)0.005 (3)0.003 (4)
O220.025 (4)0.068 (7)0.024 (4)0.004 (4)0.000 (3)0.007 (5)
O320.020 (3)0.037 (4)0.012 (3)0.005 (4)0.000 (3)0.003 (4)
O420.025 (4)0.051 (5)0.017 (4)0.002 (4)0.001 (3)0.006 (4)
O520.023 (4)0.048 (5)0.019 (4)0.003 (4)0.007 (3)0.003 (4)
C120.026 (6)0.027 (6)0.019 (5)0.003 (5)0.001 (4)0.004 (5)
C220.018 (5)0.033 (6)0.026 (6)0.006 (5)0.002 (4)0.000 (6)
C320.022 (5)0.036 (6)0.022 (6)0.004 (5)0.006 (4)0.004 (6)
C420.021 (5)0.031 (6)0.033 (7)0.001 (5)0.000 (5)0.001 (6)
O130.031 (4)0.017 (4)0.037 (5)0.004 (4)0.003 (3)0.003 (4)
O230.021 (4)0.029 (5)0.069 (7)0.006 (4)0.005 (4)0.002 (5)
O330.023 (4)0.015 (4)0.032 (4)0.005 (3)0.001 (3)0.005 (3)
O430.027 (4)0.015 (4)0.034 (5)0.008 (3)0.010 (3)0.000 (3)
O530.038 (4)0.026 (5)0.024 (4)0.001 (4)0.002 (4)0.006 (4)
C130.024 (6)0.027 (6)0.029 (6)0.002 (5)0.006 (5)0.006 (5)
C230.021 (5)0.021 (6)0.033 (6)0.005 (5)0.001 (5)0.001 (5)
C330.026 (6)0.021 (6)0.035 (7)0.003 (5)0.004 (5)0.002 (5)
C430.033 (6)0.013 (5)0.026 (6)0.003 (5)0.008 (5)0.010 (5)
O140.036 (5)0.054 (6)0.025 (5)0.001 (4)0.002 (4)0.004 (4)
O240.037 (5)0.057 (6)0.023 (4)0.008 (4)0.002 (4)0.011 (4)
O340.027 (4)0.052 (5)0.022 (4)0.012 (4)0.003 (3)0.016 (4)
O440.032 (5)0.054 (6)0.040 (5)0.003 (4)0.005 (4)0.007 (4)
O540.037 (5)0.081 (8)0.021 (4)0.011 (5)0.000 (4)0.010 (5)
C140.033 (6)0.028 (6)0.022 (7)0.003 (5)0.010 (5)0.002 (5)
C240.038 (7)0.036 (7)0.018 (6)0.007 (6)0.000 (5)0.002 (5)
C340.036 (7)0.045 (8)0.025 (6)0.007 (6)0.006 (5)0.005 (6)
C440.033 (6)0.022 (6)0.030 (6)0.004 (5)0.003 (5)0.004 (6)
O1W0.078 (7)0.052 (6)0.068 (7)0.033 (6)0.047 (6)0.021 (6)
O2W0.041 (5)0.032 (5)0.034 (5)0.015 (4)0.012 (4)0.003 (4)
O3W0.035 (5)0.038 (5)0.047 (5)0.003 (4)0.010 (4)0.001 (4)
O4W0.034 (4)0.046 (5)0.024 (4)0.012 (4)0.011 (4)0.001 (4)
O5W0.041 (5)0.063 (6)0.020 (4)0.015 (5)0.015 (4)0.009 (4)
O6W0.025 (4)0.039 (5)0.029 (4)0.006 (4)0.002 (3)0.008 (4)
O7W0.053 (6)0.069 (7)0.035 (5)0.012 (6)0.007 (4)0.008 (5)
Geometric parameters (Å, º) top
Nd1—O122.412 (7)C31—C411.499 (16)
Nd1—O41i2.445 (8)O12—C121.253 (12)
Nd1—O522.448 (7)O22—C121.256 (12)
Nd1—O112.457 (7)O32—C321.430 (12)
Nd1—O1W2.462 (9)O32—C221.430 (12)
Nd1—O322.531 (7)O42—C421.233 (13)
Nd1—O512.557 (8)O52—C421.276 (13)
Nd1—O2W2.566 (8)C12—C221.491 (15)
Nd1—O312.575 (7)C32—C421.512 (14)
Nd2—O43i2.426 (7)O13—C131.264 (13)
Nd2—O422.455 (7)O23—C131.240 (13)
Nd2—O132.463 (7)O33—C331.412 (12)
Nd2—O5W2.464 (7)O33—C231.437 (12)
Nd2—O532.485 (8)O43—C431.262 (13)
Nd2—O4W2.485 (8)O53—C431.257 (13)
Nd2—O6W2.555 (7)C13—C231.501 (15)
Nd2—O332.568 (7)C33—C431.516 (15)
Nd2—O3W2.674 (9)O14—C141.208 (14)
O11—C111.260 (13)O24—C141.322 (13)
O21—C111.246 (13)O34—C241.409 (13)
O31—C211.415 (12)O34—C341.421 (13)
O31—C311.423 (12)O44—C441.298 (14)
O41—C411.239 (14)O54—C441.200 (14)
O51—C411.280 (14)C14—C241.536 (16)
C11—C211.494 (15)C34—C441.511 (16)
O1W···O23ii2.61 (1)O4W···O522.76 (1)
O1W···O8WA2.70 (3)O5W···O142.79 (1)
O2W···O41i2.83 (1)O5W···O342.90 (1)
O2W···O23iii2.75 (1)O5W···O542.72 (1)
O2W···O8WA2.89 (3)O6W···O43i2.99 (1)
O2W···O8WCiv2.81 (2)O6W···O7W2.74 (1)
O3W···O21iii2.73 (1)O7W···O53v2.91 (1)
O3W···O43i2.79 (1)O8WA···O22iv2.74 (2)
O3W···O522.90 (1)O24···O22vi2.55 (1)
O4W···O21ii2.61 (1)O44···O51v2.59 (1)
O12—Nd1—O41i89.8 (3)O4W—Nd2—O3370.5 (3)
O12—Nd1—O52124.2 (2)O6W—Nd2—O33119.7 (2)
O41i—Nd1—O5276.1 (3)O43i—Nd2—O3W66.3 (3)
O12—Nd1—O11151.5 (3)O42—Nd2—O3W67.5 (3)
O41i—Nd1—O1185.0 (3)O13—Nd2—O3W76.4 (3)
O52—Nd1—O1181.7 (3)O5W—Nd2—O3W140.6 (3)
O12—Nd1—O1W83.8 (3)O53—Nd2—O3W135.0 (3)
O41i—Nd1—O1W136.7 (3)O4W—Nd2—O3W65.2 (3)
O52—Nd1—O1W140.6 (3)O6W—Nd2—O3W115.4 (3)
O11—Nd1—O1W81.0 (3)O33—Nd2—O3W124.5 (2)
O12—Nd1—O3262.3 (2)C11—O11—Nd1126.0 (7)
O41i—Nd1—O3272.6 (3)C21—O31—C31114.3 (8)
O52—Nd1—O3261.9 (2)C21—O31—Nd1121.7 (6)
O11—Nd1—O32140.5 (3)C31—O31—Nd1123.8 (6)
O1W—Nd1—O32137.1 (3)C41—O41—Nd1vii140.0 (7)
O12—Nd1—O5177.1 (3)C41—O51—Nd1127.0 (7)
O41i—Nd1—O51144.3 (3)O21—C11—O11125.2 (11)
O52—Nd1—O5184.0 (3)O21—C11—C21116.0 (10)
O11—Nd1—O51121.4 (3)O11—C11—C21118.7 (9)
O1W—Nd1—O5175.5 (3)O31—C21—C11109.3 (8)
O32—Nd1—O5172.0 (3)O31—C31—C41110.3 (9)
O12—Nd1—O2W74.2 (3)O41—C41—O51126.1 (11)
O41i—Nd1—O2W68.7 (3)O41—C41—C31117.2 (10)
O52—Nd1—O2W140.4 (3)O51—C41—C31116.7 (10)
O11—Nd1—O2W77.8 (3)C12—O12—Nd1128.0 (7)
O1W—Nd1—O2W68.3 (3)C32—O32—C22113.4 (8)
O32—Nd1—O2W120.6 (3)C32—O32—Nd1123.9 (6)
O51—Nd1—O2W135.5 (3)C22—O32—Nd1122.0 (6)
O12—Nd1—O31134.8 (3)C42—O42—Nd2139.5 (7)
O41i—Nd1—O31133.5 (3)C42—O52—Nd1127.6 (7)
O52—Nd1—O3168.3 (3)O12—C12—O22124.2 (10)
O11—Nd1—O3161.7 (2)O12—C12—C22118.5 (9)
O1W—Nd1—O3172.3 (3)O22—C12—C22117.3 (9)
O32—Nd1—O31112.6 (2)O32—C22—C12108.2 (8)
O51—Nd1—O3160.2 (2)O32—C32—C42108.0 (8)
O2W—Nd1—O31126.8 (3)O42—C42—O52123.9 (10)
O43i—Nd2—O4294.5 (3)O42—C42—C32118.1 (9)
O43i—Nd2—O1384.8 (3)O52—C42—C32117.9 (10)
O42—Nd2—O13140.6 (3)C13—O13—Nd2127.1 (7)
O43i—Nd2—O5W80.3 (3)C33—O33—C23112.8 (8)
O42—Nd2—O5W138.4 (3)C33—O33—Nd2124.0 (6)
O13—Nd2—O5W80.4 (3)C23—O33—Nd2123.1 (6)
O43i—Nd2—O53146.7 (3)C43—O43—Nd2vii144.4 (7)
O42—Nd2—O5377.8 (3)C43—O53—Nd2128.3 (7)
O13—Nd2—O53121.6 (3)O23—C13—O13125.7 (11)
O5W—Nd2—O5384.4 (3)O23—C13—C23115.6 (10)
O43i—Nd2—O4W130.7 (3)O13—C13—C23118.7 (9)
O42—Nd2—O4W74.9 (3)O33—C23—C13107.9 (8)
O13—Nd2—O4W76.1 (3)O33—C33—C43107.7 (9)
O5W—Nd2—O4W137.8 (3)O53—C43—O43126.1 (10)
O53—Nd2—O4W78.9 (3)O53—C43—C33117.7 (10)
O43i—Nd2—O6W73.7 (3)O43—C43—C33116.1 (10)
O42—Nd2—O6W67.4 (2)C24—O34—C34112.0 (8)
O13—Nd2—O6W146.9 (3)O14—C14—O24125.7 (11)
O5W—Nd2—O6W71.6 (3)O14—C14—C24124.9 (10)
O53—Nd2—O6W73.4 (3)O24—C14—C24109.3 (10)
O4W—Nd2—O6W136.9 (3)O34—C24—C14107.9 (9)
O43i—Nd2—O33136.1 (3)O34—C34—C44106.5 (9)
O42—Nd2—O33129.4 (3)O54—C44—O44122.9 (11)
O13—Nd2—O3361.6 (2)O54—C44—C34123.5 (10)
O5W—Nd2—O3367.5 (3)O44—C44—C34113.5 (10)
O53—Nd2—O3360.5 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z; (v) x1/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z+1/2; (vii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pr2(C4H4O5)3(H2O)3]·5H2O[Nd2(C4H4O5)3(H2O)6]·2H2O·C4H6O5
Mr822.16962.91
Crystal system, space groupHexagonal, P62cMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)9.4003 (12), 9.4003 (12), 17.350 (4)14.096 (2), 6.844 (1), 32.223 (3)
α, β, γ (°)90, 90, 12090, 99.59 (1), 90
V3)1327.8 (4)3065.1 (6)
Z24
Radiation typeMo KαMo Kα
µ (mm1)3.723.46
Crystal size (mm)0.35 × 0.15 × 0.140.36 × 0.24 × 0.10
Data collection
DiffractometerSiemens R3m
diffractometer
Siemens R3m
diffractometer
Absorption correctionψ-scan
(XEMP in SHELXTL/PC; Sheldrick, 1991)
ψ-scan
(XEMP in SHELXTL/PC, Sheldrick, 1991)
Tmin, Tmax0.35, 0.600.38, 0.70
No. of measured, independent and
observed [I > 2σ(I)] reflections
1693, 780, 738 5674, 5393, 3568
Rint0.0340.040
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.059, 1.08 0.047, 0.145, 1.03
No. of reflections7805393
No. of parameters63419
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Calculated w = 1/[σ2(Fo2) + (0.031P)2 + 2.733P]
where P = (Fo2 + 2Fc2)/3
Calculated w = 1/[σ2(Fo2) + (0.065P)2 + 37.22P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.94, 0.870.77, 0.89
Absolute structureFlack (1983)?
Absolute structure parameter0.02 (4)?

Computer programs: P3/P4-PC (Siemens, 1991), P3/P4-PC, XDISK in SHELXTL/PC (Sheldrick, 1991), XDISK in SHELXTL/PC (Sheldrick,1991), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), XP in SHELXTL/PC (Sheldrick, 1991), CIFTAB (Sheldrick, 1993), PARST (Nardelli, 1983) and CSD (Allen et al., 1983).

Selected interatomic distances (Å) for (I) top
Pr1—O22.444 (4)Pr2—O32.552 (5)
Pr1—O1W2.666 (7)O1—C11.259 (7)
Pr2—O12.478 (4)O2—C11.251 (7)
O1···O2WA2.99 (1)O1W···O2WAi2.63 (2)
O1···O2WB2.94 (2)O1W···O2WBi2.96 (3)
Symmetry code: (i) y+1, xy+1, z.
Selected interatomic distances (Å) for (II) top
Nd1—O122.412 (7)Nd2—O3W2.674 (9)
Nd1—O41i2.445 (8)O11—C111.260 (13)
Nd1—O522.448 (7)O21—C111.246 (13)
Nd1—O112.457 (7)O41—C411.239 (14)
Nd1—O1W2.462 (9)O51—C411.280 (14)
Nd1—O322.531 (7)O12—C121.253 (12)
Nd1—O512.557 (8)O22—C121.256 (12)
Nd1—O2W2.566 (8)O42—C421.233 (13)
Nd1—O312.575 (7)O52—C421.276 (13)
Nd2—O43i2.426 (7)O13—C131.264 (13)
Nd2—O422.455 (7)O23—C131.240 (13)
Nd2—O132.463 (7)O43—C431.262 (13)
Nd2—O5W2.464 (7)O53—C431.257 (13)
Nd2—O532.485 (8)O14—C141.208 (14)
Nd2—O4W2.485 (8)O24—C141.322 (13)
Nd2—O6W2.555 (7)O44—C441.298 (14)
Nd2—O332.568 (7)O54—C441.200 (14)
O1W···O23ii2.61 (1)O4W···O522.76 (1)
O1W···O8WA2.70 (3)O5W···O142.79 (1)
O2W···O41i2.83 (1)O5W···O342.90 (1)
O2W···O23iii2.75 (1)O5W···O542.72 (1)
O2W···O8WA2.89 (3)O6W···O43i2.99 (1)
O2W···O8WCiv2.81 (2)O6W···O7W2.74 (1)
O3W···O21iii2.73 (1)O7W···O53v2.91 (1)
O3W···O43i2.79 (1)O8WA···O22iv2.74 (2)
O3W···O522.90 (1)O24···O22vi2.55 (1)
O4W···O21ii2.61 (1)O44···O51v2.59 (1)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z; (v) x1/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds