Download citation
Download citation
link to html
The title compound, [Co(C6H13)(C11H19N4O2)(H2O)]ClO4, is in the general class of coenzyme B12 models which contain a ClO4 anion and a [Co(C6H13)(C11H19N4O2)(H2O)]+ cation. In the cation, the Co atom has a distorted octahedral coordination, with the n-hexyl and H2O ligands in axial positions. The crystal data reveal some degree of flexibility in the Costa-type system, which is similar to the coenzyme B12.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827019901673X/bk1502sup1.cif
Contains datablocks default, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901673X/bk1502Isup2.hkl
Contains datablock I

CCDC reference: 144612

Comment top

Costa-type organocobalt complexes, [LCo(DO)(DOH)pnR]X, where L = neutral base, (DO)(DOH)pn = 3,3'-(propane-1,3-diyldinitrilo)bis(butan-2-one)dioximato, R = alkyl and X = anion group (PF6-, ClO4- etc.), exhibit many interesting properties and have been examined in detail as coenzyme B12 models (Randaccio et al., 1989). However, only a few structures of (aqua)alkyl costa-type complexes (R = CH3, X = PF6-, etc.) are available (Marzilli et al., 1985) and we report here the structural data on a new such compound with R = n-C6H13, (I). \scheme

An ORTEP plot (Johnson, 1965) of the cation in (I), with the atom-numbering scheme, is shown in Fig. 1. The Co exhibits a distorted octahedral stereochemistry and the (DH)(DOH)pn ligand occupies four equatorial positions. The four equatorial N atoms are coplanar within 0.01 (4) Å, and the Co is displaced by 0.033 (1) Å from this mean plane toward the axial alkyl group. The two chemically equivalent halves of the equatorial macrocycle, with the exclusion of C6, are approximately planar. These planes have a dihedral angle of 8.5 (2)° and bend toward the axial water group. The position of the central atom of the propylene bridge appears to be determined mainly by the interaction with the axial ligands (Parker et al., 1985). Other bond lengths and angles are in agreement with those in related compounds (Zangrando, Parker, Bresciani-Pahor et al., 1987; Zangrando, Parker & Mezzetti, 1987; Parker et al., 1985).

The oxime H atom takes part in a short intramolecular hydrogen bond linking oxime O atoms O1 and O2. The H atoms of the water molecule form O—H···O hydrogen bonds with perchlorate O atoms. Details of the hydrogen bonding are in Table 2.

Experimental top

Compound (I) was prepared according to the method of Parker et al. (1985). A crystal suitable for X-ray diffraction was grown from an acetone-water solution in the dark under aerobic conditions.

Refinement top

The hydrogen-bonding H atoms H1, H1WA and H1WB were located from a difference Fourier map and refined isotropically. The terminal methyl group of the hexyl ligand was found to be disordered over two positions, C17 and C17'. These two atoms refined to occupancies of 0.30 (5) and 0.70 (5), respectively.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1995); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation of (I) showing 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
Aqua(n-hexyl)[3,3'-(propane-1,3-diyldinitrilo)bis(butan-2-one) dioximato-κ4-N]cobalt(III) perchlorate top
Crystal data top
[Co(C11H19N4O2)(C6H13)H2O]ClO4Dx = 1.385 Mg m3
Mr = 500.86Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 34 reflections
Hall symbol: -R 3θ = 5.3–14.8°
a = 42.064 (6) ŵ = 0.87 mm1
c = 7.052 (3) ÅT = 293 K
V = 10806 (5) Å3Prism, red
Z = 180.8 × 0.4 × 0.4 mm
F(000) = 4752
Data collection top
Siemens P4
diffractometer
2891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25°, θmin = 1.9°
2θ/ω scansh = 147
Absorption correction: empirical (using intensity measurements) via ψ-scan (north et al., 1968)
?
k = 501
Tmin = 0.687, Tmax = 0.707l = 08
4691 measured reflections3 standard reflections every 97 reflections
4077 independent reflections intensity decay: 6.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.0828P)2 + 52.947P]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co(C11H19N4O2)(C6H13)H2O]ClO4Z = 18
Mr = 500.86Mo Kα radiation
Trigonal, R3µ = 0.87 mm1
a = 42.064 (6) ÅT = 293 K
c = 7.052 (3) Å0.8 × 0.4 × 0.4 mm
V = 10806 (5) Å3
Data collection top
Siemens P4
diffractometer
2891 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) via ψ-scan (north et al., 1968)
?
Rint = 0.032
Tmin = 0.687, Tmax = 0.7073 standard reflections every 97 reflections
4691 measured reflections intensity decay: 6.0%
4077 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.69 e Å3
4077 reflectionsΔρmin = 0.41 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Hydrogen atoms attached to the carbon atoms were placed at their calculated position using Hadd command, and refined using riding model. Hydrogen atom of attached to the oxygen atoms were found from DIFMAP and refined isotropically The –CH3 group of the axial ligand were refined disordered, the s.o.f were refined using the free variable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.589231 (17)0.091116 (17)0.22658 (8)0.0447 (2)
O1W0.54829 (13)0.04825 (13)0.3922 (6)0.0621 (11)
N10.62390 (11)0.09447 (12)0.4060 (6)0.0546 (11)
N20.60220 (11)0.05793 (11)0.1102 (6)0.0506 (10)
N30.55259 (11)0.08704 (12)0.0516 (5)0.0511 (10)
N40.57586 (13)0.12233 (12)0.3486 (6)0.0564 (11)
O10.63312 (12)0.11598 (12)0.5592 (5)0.0744 (12)
O20.59103 (13)0.13940 (12)0.5107 (6)0.0774 (12)
C10.66323 (16)0.07027 (19)0.5210 (9)0.0769 (18)
H1A0.66680.08590.62780.115*
H1B0.68650.07760.46200.115*
H1C0.65240.04530.56290.115*
C20.63805 (14)0.07353 (15)0.3800 (8)0.0562 (13)
C30.62570 (14)0.05296 (15)0.2041 (8)0.0569 (13)
C40.63967 (17)0.02781 (18)0.1457 (11)0.0807 (19)
H4A0.62020.00620.08730.121*
H4B0.64830.02090.25540.121*
H4C0.65940.04020.05700.121*
C50.58713 (17)0.03999 (18)0.0719 (8)0.0720 (17)
H5A0.58730.01700.07750.086*
H5B0.60250.05560.17390.086*
C60.54836 (16)0.03247 (16)0.0994 (8)0.0699 (16)
H6A0.53810.01710.21060.084*
H6B0.53380.01860.00890.084*
C70.54427 (17)0.06582 (17)0.1228 (8)0.0674 (15)
H7A0.56060.08120.22240.081*
H7B0.51930.05810.16130.081*
C80.50644 (19)0.1055 (2)0.0171 (11)0.095 (2)
H8A0.51300.10840.14890.142*
H8B0.50340.12560.02330.142*
H8C0.48390.08290.00090.142*
C90.53642 (14)0.10505 (15)0.0981 (8)0.0587 (13)
C100.54928 (16)0.12543 (16)0.2748 (8)0.0620 (14)
C110.5342 (2)0.1471 (2)0.3658 (12)0.101 (2)
H11A0.54470.15480.48980.151*
H11B0.50800.13220.37650.151*
H11C0.54010.16830.28970.151*
C120.62900 (15)0.13266 (16)0.0737 (9)0.0672 (15)
H12A0.65140.14250.14730.081*
H12B0.63280.12180.03940.081*
C130.6255 (2)0.16350 (19)0.0125 (10)0.089 (2)
H13A0.62500.17660.12480.106*
H13B0.60180.15390.04910.106*
C140.65371 (18)0.19045 (17)0.1172 (10)0.0795 (18)
H14A0.65750.17700.21810.095*
H14B0.67660.20360.04750.095*
C150.6458 (3)0.2181 (2)0.2059 (13)0.126 (3)
H15A0.62020.20530.24320.151*
H15B0.64850.23540.10750.151*
C160.6667 (3)0.2392 (3)0.3664 (17)0.150 (4)
H16C0.66230.22330.47300.180*0.69 (5)
H16D0.69210.25000.33180.180*0.69 (5)
H16A0.67620.22520.42760.180*0.31 (5)
H16B0.68720.26140.31960.180*0.31 (5)
C170.648 (2)0.243 (2)0.516 (6)0.26 (4)0.31 (5)
H17A0.63630.22280.60570.389*0.31 (5)
H17B0.63010.24610.45220.389*0.31 (5)
H17C0.66500.26460.58240.389*0.31 (5)
C17'0.6593 (6)0.2693 (9)0.431 (5)0.184 (17)0.69 (5)
H17D0.67110.28920.34290.276*0.69 (5)
H17E0.66810.27800.55690.276*0.69 (5)
H17F0.63330.25950.42670.276*0.69 (5)
Cl10.54919 (4)0.03783 (4)0.4772 (2)0.0605 (4)
O110.58291 (12)0.01126 (13)0.5568 (7)0.0908 (14)
O120.54105 (18)0.02117 (14)0.3261 (9)0.131 (2)
O130.55118 (16)0.06784 (15)0.4145 (9)0.120 (2)
O140.52138 (17)0.0487 (2)0.6123 (11)0.149 (3)
H1WA0.5486 (17)0.0298 (18)0.379 (9)0.07 (2)*
H1WB0.529 (2)0.045 (2)0.401 (11)0.10 (3)*
H10.615 (2)0.1293 (19)0.551 (10)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0455 (4)0.0516 (4)0.0358 (4)0.0234 (3)0.0002 (3)0.0040 (3)
O1W0.059 (3)0.065 (3)0.064 (3)0.032 (2)0.016 (2)0.010 (2)
N10.051 (2)0.061 (3)0.042 (2)0.021 (2)0.0047 (18)0.005 (2)
N20.047 (2)0.055 (2)0.045 (2)0.021 (2)0.0063 (18)0.0083 (19)
N30.047 (2)0.060 (3)0.040 (2)0.023 (2)0.0011 (18)0.0030 (19)
N40.070 (3)0.057 (3)0.044 (2)0.033 (2)0.005 (2)0.004 (2)
O10.083 (3)0.090 (3)0.050 (2)0.044 (3)0.021 (2)0.019 (2)
O20.103 (3)0.079 (3)0.054 (2)0.048 (3)0.007 (2)0.024 (2)
C10.055 (3)0.096 (5)0.079 (4)0.038 (3)0.001 (3)0.016 (4)
C20.043 (3)0.063 (3)0.056 (3)0.022 (3)0.001 (2)0.007 (3)
C30.047 (3)0.061 (3)0.063 (3)0.026 (3)0.011 (3)0.004 (3)
C40.069 (4)0.077 (4)0.111 (5)0.048 (4)0.013 (4)0.000 (4)
C50.078 (4)0.086 (4)0.055 (3)0.043 (4)0.000 (3)0.025 (3)
C60.072 (4)0.071 (4)0.051 (3)0.024 (3)0.005 (3)0.022 (3)
C70.065 (4)0.081 (4)0.051 (3)0.032 (3)0.012 (3)0.009 (3)
C80.084 (5)0.095 (5)0.121 (6)0.057 (4)0.013 (4)0.015 (4)
C90.052 (3)0.065 (3)0.063 (3)0.033 (3)0.005 (3)0.012 (3)
C100.070 (4)0.061 (3)0.062 (3)0.039 (3)0.015 (3)0.006 (3)
C110.112 (6)0.112 (6)0.118 (6)0.086 (5)0.023 (5)0.003 (5)
C120.048 (3)0.072 (4)0.073 (4)0.023 (3)0.006 (3)0.015 (3)
C130.096 (5)0.081 (5)0.087 (5)0.042 (4)0.032 (4)0.034 (4)
C140.074 (4)0.066 (4)0.081 (4)0.023 (3)0.014 (3)0.010 (3)
C150.131 (8)0.102 (6)0.118 (7)0.039 (6)0.033 (6)0.041 (5)
C160.152 (10)0.132 (9)0.142 (9)0.053 (7)0.028 (8)0.053 (7)
C170.56 (12)0.16 (5)0.11 (3)0.21 (7)0.08 (5)0.03 (3)
C17'0.22 (2)0.14 (2)0.20 (3)0.095 (17)0.030 (17)0.11 (2)
Cl10.0539 (8)0.0567 (8)0.0736 (9)0.0297 (6)0.0053 (6)0.0006 (7)
O110.077 (3)0.090 (3)0.096 (3)0.035 (3)0.021 (3)0.018 (3)
O120.152 (5)0.084 (4)0.145 (5)0.050 (4)0.079 (4)0.002 (3)
O130.131 (5)0.095 (4)0.158 (5)0.074 (4)0.038 (4)0.041 (4)
O140.101 (4)0.146 (6)0.179 (7)0.045 (4)0.062 (4)0.028 (5)
Geometric parameters (Å, º) top
Co1—N11.882 (4)C3—C41.502 (8)
Co1—N21.919 (4)C5—C61.510 (8)
Co1—N31.914 (4)C6—C71.506 (8)
Co1—N41.876 (4)C8—C91.509 (8)
Co1—C122.023 (5)C9—C101.454 (8)
Co1—O1W2.116 (4)C10—C111.492 (8)
N1—O11.337 (5)C12—C131.444 (8)
N1—C21.299 (7)C13—C141.479 (8)
N2—C31.291 (6)C14—C151.499 (11)
N2—C51.464 (7)C15—C161.435 (12)
N3—C71.455 (7)C16—C171.36 (5)
N3—C91.289 (7)C16—C17'1.52 (2)
N4—O21.330 (5)Cl1—O131.379 (5)
N4—C101.298 (7)Cl1—O141.396 (6)
C1—C21.508 (7)Cl1—O121.409 (5)
C2—C31.452 (8)Cl1—O111.411 (4)
N4—Co1—N197.5 (2)N1—C2—C1123.3 (5)
N4—Co1—N381.31 (19)C3—C2—C1124.6 (5)
N1—Co1—N3177.83 (17)N2—C3—C2114.6 (5)
N4—Co1—N2177.75 (18)N2—C3—C4125.1 (5)
N1—Co1—N281.39 (19)C2—C3—C4120.3 (5)
N3—Co1—N299.68 (18)N2—C5—C6111.4 (4)
N4—Co1—C1292.7 (2)C7—C6—C5115.7 (5)
N1—Co1—C1291.1 (2)N3—C7—C6112.0 (5)
N3—Co1—C1290.8 (2)N3—C9—C10114.5 (5)
N2—Co1—C1289.3 (2)N3—C9—C8124.1 (6)
N4—Co1—O1W86.7 (2)C10—C9—C8121.4 (5)
N1—Co1—O1W87.86 (19)N4—C10—C9111.7 (5)
N3—Co1—O1W90.23 (18)N4—C10—C11122.7 (6)
N2—Co1—O1W91.29 (19)C9—C10—C11125.6 (6)
C12—Co1—O1W178.7 (2)C13—C12—Co1121.6 (4)
C2—N1—O1119.8 (4)C12—C13—C14118.0 (6)
C2—N1—Co1117.1 (4)C13—C14—C15116.6 (6)
O1—N1—Co1123.1 (4)C16—C15—C14120.1 (9)
C3—N2—C5122.4 (5)C17—C16—C15118 (4)
C3—N2—Co1114.7 (4)C17—C16—C17'46.7 (19)
C5—N2—Co1122.9 (4)C15—C16—C17'115.7 (14)
C9—N3—C7122.7 (5)O13—Cl1—O14110.0 (4)
C9—N3—Co1114.9 (4)O13—Cl1—O12110.7 (4)
C7—N3—Co1122.4 (4)O14—Cl1—O12107.9 (5)
C10—N4—O2119.7 (5)O13—Cl1—O11110.8 (3)
C10—N4—Co1117.4 (4)O14—Cl1—O11109.5 (4)
O2—N4—Co1122.7 (4)O12—Cl1—O11107.8 (3)
N1—C2—C3112.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.15 (9)1.31 (9)2.443 (8)167 (8)
O1W—H1WA···O120.79 (7)2.04 (7)2.819 (8)171 (8)
O1W—H1WB···O14i0.75 (9)2.20 (9)2.940 (10)166 (8)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C11H19N4O2)(C6H13)H2O]ClO4
Mr500.86
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)42.064 (6), 7.052 (3)
V3)10806 (5)
Z18
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.8 × 0.4 × 0.4
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements) via ψ-scan (North et al., 1968)
Tmin, Tmax0.687, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
4691, 4077, 2891
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.183, 1.03
No. of reflections4077
No. of parameters298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Calculated w = 1/[σ2(Fo2) + (0.0828P)2 + 52.947P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.69, 0.41

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1995), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—N11.882 (4)N1—C21.299 (7)
Co1—N21.919 (4)N2—C31.291 (6)
Co1—N31.914 (4)N2—C51.464 (7)
Co1—N41.876 (4)N3—C71.455 (7)
Co1—C122.023 (5)N3—C91.289 (7)
Co1—O1W2.116 (4)N4—O21.330 (5)
N1—O11.337 (5)N4—C101.298 (7)
N4—Co1—N197.5 (2)N3—Co1—C1290.8 (2)
N4—Co1—N381.31 (19)N2—Co1—C1289.3 (2)
N1—Co1—N3177.83 (17)N4—Co1—O1W86.7 (2)
N4—Co1—N2177.75 (18)N1—Co1—O1W87.86 (19)
N1—Co1—N281.39 (19)N3—Co1—O1W90.23 (18)
N3—Co1—N299.68 (18)N2—Co1—O1W91.29 (19)
N4—Co1—C1292.7 (2)C12—Co1—O1W178.7 (2)
N1—Co1—C1291.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.15 (9)1.31 (9)2.443 (8)167 (8)
O1W—H1WA···O120.79 (7)2.04 (7)2.819 (8)171 (8)
O1W—H1WB···O14i0.75 (9)2.20 (9)2.940 (10)166 (8)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds