Download citation
Download citation
link to html
In the crystalline state, the centrosymmetric mol­ecule 1,2,4,5-tetrakis­(cyano­methyl)­benzene, C14H10N4, has one cyano­methyl group in the benzene plane and one cyano­methyl group rotated 67.2 (2)° out of the benzene plane. Molecules of methyl 3,4,5-tri­acetoxy­benzoate, C14H14O8, form chains with each mol­ecule twisted \pm89.6 (1)° from the preceding mol­ecule. In this orientation, a close C—H...O contact is formed, with an H...O distance of 2.34 Å. The structure of 2-(N-phthalimido­methyl)­benzoic acid, C16H11NO4, reveals hydrogen-bonded dimers linked by the carboxyl groups of adjacent mol­ecules. The O4...O3 distance is 2.636 (2) Å and the O4—H...O3 angle is 171 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014663/bk1493sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014663/bk1493Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014663/bk1493IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014663/bk1493IIIsup4.hkl
Contains datablock f7

CCDC references: 142778; 142779; 142780

Comment top

Derivatized porphyrins play useful roles as models for protein active sites. Particular effort has been paid to models for the heme active sites of myoglobin and hemoglobin (Momenteau & Reed, 1994). This laboratory has synthesized and characterized a number of four-atom-linked capped porphyrins (Johnson et al., 1996), five-atom-linked capped porphyrins (Ma et al., 1996), and five-plus-atom-linked capped porphyrins (Slebodnick et al., 1996). Herein, we report the structures of three precursors characterized in the course of this research, 1,2,4,5-tetrakis(cyanomethyl)benzene, (I), methyl 3,4,5-triacetoxybenzoate, (II) and 2-(N-phthalimidomethyl)benzoic acid, (III). \scheme

Compound (I) was prepared as a precursor for the synthesis of a three-atom-linked capped porphyrin. Fig. 1 is a displacement ellipsoid diagram of (I). The molecule sits on an inversion centre and its symmetry-generated ellipsoids are shown without labels. The benzene ring is planar by symmetry. Selected bond lengths and angles are listed in Table 1. One of the unique cyanomethyl groups remains nearly in the plane of the benzene ring, and this cyanomethyl group is linear, with a C6—C7—N2 angle of 179.8 (2) Å. The other unique cyanomethyl group is twisted 67.2 (2)° relative to the C1—C2 bond in the benzene ring (Table 1). This cyanomethyl group is also linear, with a bond angle of 179.67 (17) Å for C4—C5—N1. Viewed down the c axis, molecules of (I) form long straight columns aligned along the centroids of the benzene rings. The molecules in each column pack tilted at 72.8 (1)° relative to molecules in adjacent columns.

The structure of 1,2,4,5-tetramethylbenzene, durene, has been examined both as a donor in charge transfer complexes (Lefebvre, 1989) and to understand equilibrium conformations of the molecule (Prince et al., 1973, and references therein). There has been interest in 1,2,4,5-tetracyanobenzene (TCNB) as an acceptor in charge transfer complexes (Lefebvre, 1989, and references therein). In the series durene, (I) and TCNB, there is a shift from mildly electron-donating methyl substituents to strongly electron-withdrawing cyano substituents. The changes in electron donation and conjugation have no significant effect on the CC bond lengths in the benzene ring. However, durene structures and (I) exhibit geometric distortion of the benzene ring, presumably resulting from the bulky substituents. In durene structures the angle formed by the unsubstituted C atoms with their nearest C neighbours is approximately 122–123°, with a corresponding reduction of other ring angles. For (I), this angle is 122.14 (14)°.

Compound (II) (Fig. 2) was prepared as a precursor for a capped porphyrin with asymmetric linkages between the benzene `cap' and the porphyrin. In (II), the central benzene ring is planar, with a maximum deviation from the mean plane of 0.007 (1) Å for atom C5. Selected bond lengths and angles are listed in Table 2. The three acetoxy groups are rotated out of the benzene plane by 83.22 (17), −84.37 (17) and −133.03 (14)°, respectively (as measured by torsion angles). In contrast, the carbomethoxy group remains nearly in the plane, with a torsion angle of −3.2 (2)°.

Molecules of (II) are associated in two ways. The first involves a close contact between O2Ai···H10A—C10 [symmetry code: (i) x − 1/2, −1/2 − y, z − 1/2]. The C10—H10A distance is 0.98 Å (fixed with a riding model, see refinement details below) and the O2Ai···H10A distance is 2.34 Å, while the O2Ai···H10A—C10 bond angle is 170°. Molecules of (II) form chains oriented along these contacts and molecules in the chain tilt back and forth 89.6 (1)° relative to each other. The second association is dimeric: molecules generated by (x, y, z) and (-x, 2 − y, 1 − z) form offset dimers. The benzene rings are parallel, but the molecules are rotated 180° with respect to each other and the benzene centroids are slightly offset. The separation between the benzene planes is 3.29 (1) Å.

Compound (III) (Fig. 3) was prepared as a precursor for capped porphyrins containing N atoms at an intermediate position on the `arms' linking the benzene `cap' to the porphyrin. Compound (III) is a primary amine of the form RNH2 protected with phthalimide. The phthalimide group is planar, with a maximum deviation from the 11-atom mean plane of 0.013 (1) Å for atom C6. The benzene of the benzyl group is also planar, with a maximum deviation of 0.007 (1) Å for atom C12. The dihedral angle between these planes is 80.86 (4)°. Selected bond lengths and angles are listed in Table 3. The twist in the molecule occurs at atom C9: the C10—C9—N1—C7 torsion angle is 86.6 (2)°. Molecules of (III) form hydrogen-bonded dimers through their carboxyl groups. The O4—H4B distance is 0.90 (3) Å and the H4B···O3Aii distance is 1.77 (3) Å [symmetry code: (ii) −x, −y + 2,-z − 1]. The O4···O3Aii distance is 2.638 (2) Å, and the O4—H4B···O3Aii bond angle is 163 (2)°. This short distance is normal for strongly hydrogen-bonded carboxylic acid dimers in the crystalline state (Speakman, 1972). Molecules of (III) pack with alternating layers of hydrogen-bonded carboxylbenzyl groups and stacked phthalimide groups (Fig. 4).

Experimental top

Crystals of (I) were prepared by the method of Buckland et al. (1983) and recrystallized from acetonitrile (m.p. 484–487 K, literature m.p. 486–488 K). Compound (II) can be prepared by acylation of the alcohol functions of gallic acid, followed by esterification of the carboxyl group (m.p. 404.0–405.5 K). Crystals of (III) were prepared with the use of the method of Sasaki et al. (1978) to protect 2-methylaminobenzoic acid with phthalimide (m.p. 535.0–537.0 K). Melting points were measured on a Mel-Temp melting point apparatus from Laboratory Instruments, Holliston, Massachusetts, USA.

Refinement top

H atoms were placed at calculated positions and refined with a riding model (Cmethyl—H = 0.98 Å; Cmethylene—H = 0.99 Å; Caromatic—H = 0.95 Å). The Uiso value for a given H atom was assigned as 1.2 times the Uiso of the atom to which it is attached (1.5 for methyl). The methyl groups in (II) were constrained to ideal tetrahedral geometries. The acidic proton H4B in (III) was refined isotropically. Data were collected at 153 K in groups of 606, 435, and 230 frames at ϕ settings of 0°, 90°, and 180°, respectively. Crystals were attached to glass fibres with a minimum of silicone cement.

Computing details top

Data collection: SMART (Bruker, 1997) for (I), (II); SMART version 5.054 (Bruker, 1999) for (III). Cell refinement: SMART (Bruker, 1997) for (I), (II); SMART version 5.054 (Bruker, 1999) for (III). Data reduction: SAINT-Plus (Bruker, 1997) for (I), (II); SAINT-Plus version 6.0 (Bruker, 1999) for (III). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I), (II); SHELXS99 (Sheldrick, 1990) for (III). Program(s) used to refine structure: SHELXTL/PC (Sheldrick, 1997) for (I), (II); SHELXL99 (Sheldrick, 1999) for (III). Molecular graphics: SHELXTL/PC (Sheldrick, 1997) for (I), (II); SHELXTL99 (Sheldrick, 1999) for (III). Software used to prepare material for publication: SHELXTL/PC (Sheldrick, 1997) for (I), (II); SHELXTL99 (Sheldrick, 1999) for (III).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing 50% displacement ellipsoids. Only unique atoms are labelled. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II) showing 50% displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the molecule of (III) showing 50% displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
[Figure 4] Fig. 4. Part of the unit cell of (III), showing the hydrogen-bonded dimers and the stacking of the phthalimide rings.
(I) 1,2,4,5-tetrakis(cyanomethyl)benzene top
Crystal data top
C14H10N4Dx = 1.359 Mg m3
Mr = 234.26Melting point: 485 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.818 (1) ÅCell parameters from 853 reflections
b = 8.377 (1) Åθ = 2.4–28.2°
c = 8.174 (1) ŵ = 0.09 mm1
β = 108.51 (1)°T = 153 K
V = 572.48 (15) Å3Square plate, colourless
Z = 20.12 × 0.11 × 0.06 mm
F(000) = 244
Data collection top
Bruker SMART 1000 CCD
diffractometer
1335 independent reflections
Radiation source: standard-focus sealed tube836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: numerical
face-indexed (SHELXTL/PC; Sheldrick, 1997)
h = 611
Tmin = 0.985, Tmax = 0.995k = 1010
3540 measured reflectionsl = 106
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.04Fo2)2]
1335 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H10N4V = 572.48 (15) Å3
Mr = 234.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.818 (1) ŵ = 0.09 mm1
b = 8.377 (1) ÅT = 153 K
c = 8.174 (1) Å0.12 × 0.11 × 0.06 mm
β = 108.51 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1335 independent reflections
Absorption correction: numerical
face-indexed (SHELXTL/PC; Sheldrick, 1997)
836 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.995Rint = 0.035
3540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
1335 reflectionsΔρmin = 0.16 e Å3
82 parameters
Special details top

Experimental. For all compounds, the crystal to detector distance was 5.023 cm. Each frame covered −0.3° in ω for 20 s for (I), for 15 s for (II) and for 10 s for (III). Anisotropic displacement parameters were used for all non-H atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56432 (18)0.57605 (17)0.15967 (18)0.0195 (4)
C20.66345 (19)0.48312 (17)0.09439 (19)0.0197 (4)
C30.59668 (19)0.40878 (17)0.06516 (18)0.0208 (4)
H3A0.66340.34580.11060.025*
C40.62724 (19)0.66513 (19)0.32959 (18)0.0243 (4)
H4A0.71780.73350.32630.029*
H4B0.54190.73590.34260.029*
C50.6807 (2)0.5601 (2)0.4801 (2)0.0270 (4)
C60.84030 (19)0.46508 (19)0.19484 (19)0.0250 (4)
H6A0.88960.57240.21610.030*
H6B0.85100.41640.30830.030*
C70.92794 (19)0.36768 (19)0.1071 (2)0.0238 (4)
N10.72273 (19)0.47705 (19)0.59774 (19)0.0400 (4)
N20.99652 (16)0.29143 (17)0.03792 (17)0.0316 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (9)0.0198 (8)0.0178 (8)0.0002 (7)0.0066 (7)0.0019 (6)
C20.0180 (9)0.0222 (8)0.0194 (7)0.0002 (6)0.0065 (7)0.0034 (6)
C30.0240 (9)0.0205 (8)0.0206 (8)0.0016 (7)0.0108 (7)0.0014 (6)
C40.0229 (9)0.0271 (9)0.0222 (8)0.0003 (7)0.0059 (7)0.0029 (7)
C50.0242 (10)0.0367 (10)0.0208 (8)0.0023 (8)0.0081 (7)0.0077 (8)
C60.0201 (9)0.0308 (9)0.0230 (8)0.0011 (7)0.0053 (7)0.0003 (7)
C70.0179 (8)0.0259 (8)0.0242 (8)0.0003 (7)0.0019 (7)0.0023 (7)
N10.0423 (11)0.0531 (10)0.0251 (8)0.0058 (8)0.0117 (7)0.0028 (7)
N20.0237 (8)0.0351 (8)0.0336 (8)0.0033 (7)0.0058 (7)0.0015 (7)
Geometric parameters (Å, º) top
C1—C3i1.390 (2)C2—C61.522 (2)
C1—C21.397 (2)C4—C51.464 (2)
C2—C31.396 (2)C6—C71.459 (2)
C3—C1i1.390 (2)C5—N11.149 (2)
C1—C41.518 (2)C7—N21.1447 (19)
C3i—C1—C2119.42 (13)C1—C2—C6120.51 (13)
C3—C2—C1118.44 (14)C5—C4—C1113.60 (12)
C1i—C3—C2122.14 (14)N1—C5—C4179.67 (17)
C3i—C1—C4118.40 (13)C7—C6—C2113.72 (13)
C2—C1—C4122.16 (14)N2—C7—C6179.8 (2)
C3—C2—C6121.05 (14)
C2—C1—C4—C567.20 (19)C1—C4—C5—N116 (34)
Symmetry code: (i) x+1, y+1, z.
(II) methyl 3,4,5-triacetoxybenzenoate top
Crystal data top
C14H14O8Dx = 1.365 Mg m3
Mr = 310.25Melting point = 404.0–405.5 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2233 (7) ÅCell parameters from 4507 reflections
b = 11.747 (1) Åθ = 2.3–25.5°
c = 13.936 (1) ŵ = 0.11 mm1
β = 90.451 (1)°T = 153 K
V = 1509.9 (2) Å3Truncated block, colourless
Z = 40.41 × 0.30 × 0.27 mm
F(000) = 648
Data collection top
Bruker SMART 1000 CCD
diffractometer
2789 independent reflections
Radiation source: standard-focus sealed tube2320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: numerical
face-indexed (SHELXTL/PC; Sheldrick, 1997)
h = 1111
Tmin = 0.959, Tmax = 0.976k = 1410
8088 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.84 w = 1/[σ2(Fo2) + (0.04Fo2)2]
2789 reflections(Δ/σ)max = 0.008
203 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H14O8V = 1509.9 (2) Å3
Mr = 310.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2233 (7) ŵ = 0.11 mm1
b = 11.747 (1) ÅT = 153 K
c = 13.936 (1) Å0.41 × 0.30 × 0.27 mm
β = 90.451 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2789 independent reflections
Absorption correction: numerical
face-indexed (SHELXTL/PC; Sheldrick, 1997)
2320 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.976Rint = 0.016
8088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.84Δρmax = 0.27 e Å3
2789 reflectionsΔρmin = 0.26 e Å3
203 parameters
Special details top

Experimental. For all compounds, the crystal to detector distance was 5.023 cm. Each frame covered −0.3° in ω for 20 s for (I), for 15 s for (II) and for 10 s for (III). Anisotropic displacement parameters were used for all non-H atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24362 (16)0.01512 (12)0.49717 (10)0.0264 (3)
C20.25287 (16)0.02827 (12)0.40426 (10)0.0286 (3)
H2A0.32220.08530.38930.034*
C30.16064 (16)0.01251 (12)0.33484 (10)0.0284 (3)
C40.05958 (15)0.09620 (12)0.35551 (10)0.0265 (3)
C50.05181 (15)0.13963 (12)0.44761 (10)0.0256 (3)
C60.14299 (15)0.09897 (12)0.51927 (10)0.0262 (3)
H6A0.13680.12800.58270.031*
C70.34029 (17)0.03716 (13)0.57130 (11)0.0320 (4)
C80.4074 (2)0.04109 (17)0.73536 (13)0.0515 (5)
H8A0.37430.01080.79690.077*
H8B0.51030.02290.72700.077*
H8C0.39450.12390.73440.077*
C90.09629 (17)0.12726 (13)0.22126 (11)0.0346 (4)
C100.1143 (2)0.16000 (16)0.11909 (12)0.0446 (4)
H10A0.06460.23240.10700.067*
H10B0.21770.16840.10510.067*
H10C0.07260.10080.07780.067*
C110.00377 (18)0.20723 (13)0.22017 (11)0.0340 (4)
C120.1041 (2)0.21837 (16)0.14101 (13)0.0492 (5)
H12A0.06550.26870.09130.074*
H12B0.19420.25060.16610.074*
H12C0.12370.14320.11340.074*
C130.03401 (18)0.31419 (13)0.51374 (11)0.0330 (4)
C140.1729 (2)0.37179 (15)0.53903 (14)0.0492 (5)
H14A0.19700.35480.60590.074*
H14B0.25060.34420.49670.074*
H14C0.16210.45420.53110.074*
O10.32352 (13)0.00964 (10)0.65800 (7)0.0393 (3)
O20.42358 (13)0.11383 (10)0.55515 (8)0.0441 (3)
O30.16832 (12)0.02718 (9)0.24024 (7)0.0339 (3)
O40.03011 (14)0.17685 (11)0.28123 (8)0.0510 (4)
O50.04070 (11)0.12782 (9)0.28506 (7)0.0329 (3)
O60.11505 (15)0.25684 (12)0.22943 (10)0.0599 (4)
O70.06210 (11)0.21413 (9)0.46635 (7)0.0313 (3)
O80.08541 (13)0.34788 (9)0.53050 (8)0.0402 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (8)0.0261 (7)0.0269 (8)0.0037 (6)0.0002 (6)0.0023 (6)
C20.0286 (8)0.0254 (8)0.0319 (8)0.0003 (6)0.0051 (6)0.0006 (6)
C30.0326 (8)0.0296 (8)0.0230 (7)0.0075 (6)0.0036 (6)0.0028 (6)
C40.0259 (8)0.0279 (8)0.0258 (7)0.0054 (6)0.0020 (6)0.0038 (6)
C50.0235 (8)0.0220 (7)0.0312 (8)0.0026 (5)0.0012 (6)0.0008 (6)
C60.0271 (8)0.0268 (8)0.0248 (7)0.0045 (6)0.0006 (6)0.0001 (6)
C70.0315 (9)0.0323 (9)0.0321 (9)0.0016 (7)0.0013 (7)0.0050 (6)
C80.0514 (11)0.0702 (13)0.0329 (9)0.0059 (10)0.0069 (8)0.0175 (9)
C90.0350 (9)0.0360 (9)0.0328 (9)0.0057 (7)0.0042 (7)0.0058 (7)
C100.0499 (11)0.0519 (11)0.0321 (9)0.0128 (8)0.0058 (8)0.0122 (8)
C110.0408 (10)0.0297 (8)0.0313 (8)0.0004 (7)0.0031 (7)0.0041 (6)
C120.0567 (12)0.0489 (11)0.0418 (10)0.0029 (9)0.0148 (9)0.0116 (8)
C130.0386 (9)0.0261 (8)0.0343 (8)0.0014 (7)0.0044 (7)0.0028 (6)
C140.0438 (11)0.0377 (10)0.0664 (12)0.0089 (8)0.0121 (9)0.0043 (8)
O10.0445 (7)0.0473 (7)0.0260 (6)0.0055 (5)0.0040 (5)0.0059 (5)
O20.0415 (7)0.0455 (7)0.0453 (7)0.0139 (6)0.0026 (5)0.0056 (5)
O30.0435 (7)0.0339 (6)0.0243 (5)0.0088 (5)0.0045 (5)0.0042 (4)
O40.0666 (9)0.0484 (7)0.0382 (7)0.0254 (6)0.0172 (6)0.0125 (6)
O50.0325 (6)0.0373 (6)0.0288 (6)0.0068 (5)0.0068 (5)0.0077 (4)
O60.0539 (9)0.0628 (9)0.0628 (9)0.0273 (7)0.0194 (7)0.0331 (7)
O70.0265 (6)0.0282 (6)0.0392 (6)0.0015 (4)0.0004 (5)0.0023 (4)
O80.0385 (7)0.0319 (6)0.0502 (7)0.0032 (5)0.0013 (5)0.0056 (5)
Geometric parameters (Å, º) top
C1—C21.395 (2)C3—O31.4006 (17)
C2—C31.370 (2)C4—O51.3939 (17)
C3—C41.387 (2)C5—O71.3937 (17)
C4—C51.383 (2)C7—O11.3375 (19)
C5—C61.386 (2)C8—O11.4504 (19)
C1—C61.390 (2)C9—O31.3751 (18)
C1—C71.492 (2)C9—C101.485 (2)
C7—O21.2061 (18)C11—O51.3646 (18)
C9—O41.1910 (19)C11—C121.485 (2)
C11—O61.186 (2)C13—O71.3719 (19)
C13—O81.1918 (19)C13—C141.493 (2)
C6—C1—C2120.71 (14)O2—C7—C1123.81 (14)
C6—C1—C7122.35 (13)O1—C7—C1112.56 (13)
C2—C1—C7116.86 (13)O4—C9—O3122.19 (14)
C3—C2—C1119.05 (14)O4—C9—C10127.43 (15)
C2—C3—C4121.06 (13)O3—C9—C10110.37 (13)
C2—C3—O3120.84 (14)O6—C11—O5121.87 (14)
C4—C3—O3118.08 (13)O6—C11—C12127.67 (15)
C5—C4—C3119.61 (13)O5—C11—C12110.46 (14)
C5—C4—O5121.08 (13)O8—C13—O7123.34 (14)
C3—C4—O5119.08 (13)O8—C13—C14126.61 (15)
C4—C5—C6120.40 (13)O7—C13—C14110.05 (14)
C4—C5—O7116.75 (13)C7—O1—C8115.96 (13)
C6—C5—O7122.38 (13)C9—O3—C3115.95 (11)
C5—C6—C1119.16 (13)C11—O5—C4116.60 (11)
O2—C7—O1123.63 (14)C13—O7—C5119.24 (12)
C2—C3—O3—C983.22 (17)C4—C5—O7—C13133.03 (14)
C3—C4—O5—C1184.37 (17)C6—C1—C7—O13.2 (2)
(III) top
Crystal data top
C16H11NO4Dx = 1.464 Mg m3
Mr = 281.26Melting point = 262.0–264.0 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.125 (1) ÅCell parameters from 2323 reflections
b = 13.720 (1) Åθ = 1.7–25.5°
c = 7.7247 (8) ŵ = 0.11 mm1
β = 96.722 (2)°T = 153 K
V = 1276.2 (2) Å3Prism, colourless
Z = 40.33 × 0.17 × 0.08 mm
F(000) = 584
Data collection top
Bruker Smart 1000 CCD
diffractometer
2365 independent reflections
Radiation source: standard-focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: numerical
face indexed (Sheldrick, 1999)
h = 1411
Tmin = 0.974, Tmax = 0.992k = 1615
6929 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms; see below
S = 1.10 w = 1/[σ2(Fo2) + (0.04Fo2)2]
2365 reflections(Δ/σ)max = 0.002
194 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H11NO4V = 1276.2 (2) Å3
Mr = 281.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.125 (1) ŵ = 0.11 mm1
b = 13.720 (1) ÅT = 153 K
c = 7.7247 (8) Å0.33 × 0.17 × 0.08 mm
β = 96.722 (2)°
Data collection top
Bruker Smart 1000 CCD
diffractometer
2365 independent reflections
Absorption correction: numerical
face indexed (Sheldrick, 1999)
1722 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.992Rint = 0.026
6929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H atoms; see below
S = 1.10Δρmax = 0.16 e Å3
2365 reflectionsΔρmin = 0.17 e Å3
194 parameters
Special details top

Experimental. For all compounds, the crystal to detector distance was 5.023 cm. Each frame covered −0.3° in ω for 20 s for (I), for 15 s for (II) and for 10 s for (III). Anisotropic displacement parameters were used for all non-H atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33447 (10)0.89546 (9)0.04519 (16)0.0298 (3)
O10.36585 (9)0.72978 (8)0.03783 (15)0.0426 (3)
O20.35012 (8)1.06013 (8)0.10732 (15)0.0379 (3)
O30.09375 (9)0.95383 (8)0.35903 (14)0.0379 (3)
O40.08878 (9)0.93331 (9)0.36400 (16)0.0411 (3)
H4B0.0886 (17)0.9689 (17)0.470 (3)0.089 (8)*
C10.48849 (11)0.94178 (12)0.22925 (19)0.0303 (4)
C20.56875 (12)0.99243 (13)0.3340 (2)0.0363 (4)
H2A0.56491.06120.34660.044*
C30.65545 (13)0.93882 (15)0.4204 (2)0.0435 (5)
H3A0.71190.97120.49460.052*
C40.66073 (13)0.83854 (15)0.3998 (2)0.0459 (5)
H4A0.72100.80360.46030.055*
C50.58008 (13)0.78766 (13)0.2928 (2)0.0404 (4)
H5A0.58420.71900.27830.049*
C60.49380 (12)0.84173 (12)0.2085 (2)0.0318 (4)
C70.39433 (13)0.81023 (12)0.0895 (2)0.0324 (4)
C80.38611 (12)0.97760 (11)0.1248 (2)0.0294 (4)
C90.23565 (12)0.90143 (11)0.0805 (2)0.0308 (4)
H9A0.24310.85460.17590.037*
H9B0.23130.96760.13190.037*
C100.12754 (12)0.88038 (10)0.0048 (2)0.0280 (4)
C110.12953 (13)0.84994 (11)0.1677 (2)0.0335 (4)
H11A0.19890.84230.23730.040*
C120.03246 (13)0.83054 (11)0.2396 (2)0.0364 (4)
H12A0.03570.81090.35810.044*
C130.06892 (13)0.83963 (11)0.1396 (2)0.0382 (4)
H13A0.13540.82500.18830.046*
C140.07375 (13)0.87000 (11)0.0313 (2)0.0347 (4)
H14A0.14370.87680.09960.042*
C150.02401 (12)0.89096 (10)0.1047 (2)0.0287 (4)
C160.01405 (13)0.92803 (11)0.2857 (2)0.0312 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0267 (7)0.0273 (7)0.0341 (8)0.0004 (5)0.0016 (6)0.0020 (6)
O10.0419 (7)0.0307 (7)0.0547 (8)0.0014 (5)0.0029 (6)0.0026 (6)
O20.0366 (7)0.0296 (7)0.0460 (7)0.0010 (5)0.0007 (5)0.0008 (5)
O30.0290 (6)0.0499 (8)0.0340 (7)0.0018 (5)0.0007 (5)0.0038 (5)
O40.0280 (6)0.0490 (8)0.0440 (8)0.0021 (5)0.0058 (5)0.0071 (6)
C10.0243 (8)0.0398 (10)0.0272 (8)0.0010 (7)0.0044 (6)0.0034 (7)
C20.0275 (9)0.0479 (11)0.0336 (9)0.0039 (7)0.0043 (7)0.0020 (8)
C30.0274 (9)0.0706 (14)0.0323 (10)0.0020 (8)0.0019 (7)0.0002 (9)
C40.0269 (9)0.0720 (14)0.0384 (11)0.0109 (8)0.0020 (8)0.0151 (10)
C50.0332 (9)0.0469 (11)0.0423 (10)0.0091 (8)0.0091 (8)0.0115 (8)
C60.0263 (9)0.0392 (10)0.0306 (9)0.0026 (7)0.0063 (7)0.0070 (7)
C70.0325 (9)0.0307 (10)0.0348 (10)0.0033 (7)0.0078 (7)0.0039 (7)
C80.0276 (8)0.0323 (9)0.0287 (9)0.0020 (7)0.0046 (7)0.0010 (7)
C90.0279 (9)0.0318 (9)0.0313 (9)0.0011 (6)0.0019 (7)0.0012 (7)
C100.0303 (8)0.0202 (8)0.0333 (9)0.0005 (6)0.0029 (7)0.0028 (6)
C110.0365 (9)0.0283 (9)0.0352 (10)0.0004 (7)0.0014 (7)0.0013 (7)
C120.0458 (10)0.0276 (9)0.0370 (10)0.0019 (7)0.0099 (8)0.0004 (7)
C130.0375 (10)0.0310 (9)0.0483 (11)0.0036 (7)0.0138 (8)0.0006 (8)
C140.0300 (9)0.0287 (9)0.0450 (11)0.0004 (7)0.0027 (7)0.0037 (7)
C150.0285 (8)0.0218 (8)0.0354 (9)0.0003 (6)0.0015 (7)0.0039 (7)
C160.0282 (9)0.0279 (9)0.0364 (9)0.0015 (7)0.0013 (7)0.0037 (7)
Geometric parameters (Å, º) top
O1—C71.2101 (18)C6—C71.492 (2)
O2—C81.2153 (17)C1—C61.384 (2)
O3—C161.2279 (17)C1—C81.4829 (19)
O3—O4i2.6361 (16)N1—C81.3965 (19)
O4—C161.3224 (17)C9—H9A0.9900
O4—H4B0.95 (2)C9—H9B0.9900
C1—C21.379 (2)C10—C111.394 (2)
C2—C31.388 (2)C10—C151.402 (2)
C2—H2A0.9500C11—C121.385 (2)
C3—C41.387 (3)C11—H11A0.9500
C3—H3A0.9500C12—C131.379 (2)
C4—C51.392 (2)C12—H12A0.9500
C4—H4A0.9500C13—C141.379 (2)
C5—C61.382 (2)C13—H13A0.9500
C5—H5A0.9500C14—C151.402 (2)
C9—C101.524 (2)C14—H14A0.9500
N1—C91.4536 (18)C15—C161.480 (2)
N1—C71.3976 (19)
C8—N1—C7111.97 (12)N1—C8—C1106.01 (13)
C8—N1—C9122.74 (12)N1—C9—C10114.30 (13)
C7—N1—C9125.07 (12)N1—C9—H9A108.7
C16—O3—O4i126.80 (10)C10—C9—H9A108.7
C16—O4—H4B108.9 (12)N1—C9—H9B108.7
C2—C1—C6121.91 (14)C10—C9—H9B108.7
C2—C1—C8129.85 (15)H9A—C9—H9B107.6
C1—C2—C3117.25 (16)C11—C10—C15118.13 (14)
C1—C2—H2A121.4C11—C10—C9120.28 (13)
C3—C2—H2A121.4C15—C10—C9121.59 (14)
C4—C3—C2120.85 (16)C12—C11—C10121.38 (14)
C4—C3—H3A119.6C12—C11—H11A119.3
C2—C3—H3A119.6C10—C11—H11A119.3
C3—C4—C5121.80 (15)C13—C12—C11120.09 (16)
C3—C4—H4A119.1C13—C12—H12A120.0
C5—C4—H4A119.1C11—C12—H12A120.0
C6—C5—C4116.81 (17)C14—C13—C12119.94 (15)
C6—C5—H5A121.6C14—C13—H13A120.0
C4—C5—H5A121.6C12—C13—H13A120.0
C5—C6—C1121.38 (15)C13—C14—C15120.39 (14)
C5—C6—C7130.35 (16)C13—C14—H14A119.8
O1—C7—N1124.23 (14)C15—C14—H14A119.8
O1—C7—C6130.25 (14)C10—C15—C14120.05 (14)
N1—C7—C6105.52 (13)C10—C15—C16121.64 (14)
C1—C6—C7108.25 (12)C14—C15—C16118.25 (13)
C6—C1—C8108.24 (13)O3—C16—O4121.61 (15)
O2—C8—N1124.49 (14)O3—C16—C15123.59 (14)
O2—C8—C1129.50 (14)O4—C16—C15114.78 (14)
C11—C10—C9—N15.3 (2)C10—C9—N1—C786.64 (17)
Symmetry code: (i) x, y+2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.95 (2)1.69 (2)2.6361 (16)171 (2)
Symmetry code: (i) x, y+2, z1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H10N4C14H14O8C16H11NO4
Mr234.26310.25281.26
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)153153153
a, b, c (Å)8.818 (1), 8.377 (1), 8.174 (1)9.2233 (7), 11.747 (1), 13.936 (1)12.125 (1), 13.720 (1), 7.7247 (8)
β (°) 108.51 (1) 90.451 (1) 96.722 (2)
V3)572.48 (15)1509.9 (2)1276.2 (2)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.110.11
Crystal size (mm)0.12 × 0.11 × 0.060.41 × 0.30 × 0.270.33 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Bruker Smart 1000 CCD
diffractometer
Absorption correctionNumerical
face-indexed (SHELXTL/PC; Sheldrick, 1997)
Numerical
face-indexed (SHELXTL/PC; Sheldrick, 1997)
Numerical
face indexed (Sheldrick, 1999)
Tmin, Tmax0.985, 0.9950.959, 0.9760.974, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3540, 1335, 836 8088, 2789, 2320 6929, 2365, 1722
Rint0.0350.0160.026
(sin θ/λ)max1)0.6650.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.098, 1.00 0.043, 0.116, 1.84 0.036, 0.089, 1.10
No. of reflections133527892365
No. of parameters82203194
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms; see below
Δρmax, Δρmin (e Å3)0.26, 0.160.27, 0.260.16, 0.17

Computer programs: SMART (Bruker, 1997), SMART version 5.054 (Bruker, 1999), SAINT-Plus (Bruker, 1997), SAINT-Plus version 6.0 (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXS99 (Sheldrick, 1990), SHELXTL/PC (Sheldrick, 1997), SHELXL99 (Sheldrick, 1999), SHELXTL99 (Sheldrick, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—C21.397 (2)C4—C51.464 (2)
C2—C31.396 (2)C6—C71.459 (2)
C3—C1i1.390 (2)C5—N11.149 (2)
C1—C41.518 (2)C7—N21.1447 (19)
C2—C61.522 (2)
C3i—C1—C2119.42 (13)C3—C2—C6121.05 (14)
C3—C2—C1118.44 (14)N1—C5—C4179.67 (17)
C1i—C3—C2122.14 (14)N2—C7—C6179.8 (2)
C2—C1—C4—C567.20 (19)C1—C4—C5—N116 (34)
Symmetry code: (i) x+1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
C1—C21.395 (2)C11—O61.186 (2)
C2—C31.370 (2)C13—O81.1918 (19)
C3—C41.387 (2)C3—O31.4006 (17)
C4—C51.383 (2)C4—O51.3939 (17)
C5—C61.386 (2)C5—O71.3937 (17)
C1—C61.390 (2)C9—O31.3751 (18)
C1—C71.492 (2)C11—O51.3646 (18)
C7—O21.2061 (18)C13—O71.3719 (19)
C9—O41.1910 (19)
O2—C7—O1123.63 (14)C7—O1—C8115.96 (13)
O4—C9—C10127.43 (15)C9—O3—C3115.95 (11)
O6—C11—C12127.67 (15)C11—O5—C4116.60 (11)
O8—C13—C14126.61 (15)C13—O7—C5119.24 (12)
C2—C3—O3—C983.22 (17)C4—C5—O7—C13133.03 (14)
C3—C4—O5—C1184.37 (17)C6—C1—C7—O13.2 (2)
Selected geometric parameters (Å, º) for (III) top
O1—C71.2101 (18)N1—C71.3976 (19)
O2—C81.2153 (17)C6—C71.492 (2)
O3—C161.2279 (17)C1—C61.384 (2)
O4—C161.3224 (17)C1—C81.4829 (19)
C9—C101.524 (2)N1—C81.3965 (19)
N1—C91.4536 (18)
C8—N1—C7111.97 (12)N1—C8—C1106.01 (13)
N1—C7—C6105.52 (13)N1—C9—C10114.30 (13)
C1—C6—C7108.25 (12)O3—C16—O4121.61 (15)
C6—C1—C8108.24 (13)
C10—C9—N1—C786.64 (17)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.95 (2)1.69 (2)2.6361 (16)171 (2)
Symmetry code: (i) x, y+2, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds