Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, (C6H11N2)3[LaCl6], centrosymmetric octahedral hexa­chloro­lanthanate anions are located at the corners and face-centers of the monoclinic unit cell. The ring H atoms of the cations interact with the Cl atoms of the anions via hydrogen bonding, and bifurcation of the hydrogen bonding is observed. Cation–cation interactions via hydrogen bonding between the ring H atoms and π-electrons of aromatic rings are also observed as in other imidazolium salts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101020601/bj1036sup1.cif
Contains datablocks I, shelxl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020601/bj1036Isup2.hkl
Contains datablock I

CCDC reference: 182984

Comment top

Various imidazolium salts are known as room temperature ionic liquids and some of them exhibit interesting characteristics in regard to practical applications in many fields of chemistry and electrochemistry (Welton, 1999; Hagiwara et al., 2000). Studies of the interactions between the ions are important to understand the physical and chemical properties of ionic liquids. The structural analysis of the solid imidazolium salts provides important information regarding the ionic interactions. Electrochemical behavior of lanthanum ion in LaCl3 saturated 1-ethyl-3-methylimidazolium chloride—AlCl3 ionic liquid system has been reported recently (Tsuda et al., 2000; Tsuda et al., 2001). In this study, the solid imidazolium salt, tris(1-ethyl-3-methylimidazolium) hexachlorolanthanate, [(EMI)3LaCl6], (I), has been prepared and the structure of it has been determined by X-ray single crystallography.

The title structure is built up from EMI cations and slightly distorted LaCl6 octahedra. The structure contains three crystallographically independent EMI cations (Fig.1 and Fig.2). Typical C–C(N) bond distances are observed for the imidazolium cations (Dymek et al., 1989; Ortwerth et al., 1998). The averaged bond distances of N1–C2, N11–C12 and N21–C22 (1.306 Å), and C2–N3, C12–N13 and C22–N23 (1.309 Å) are shorter than those of N3–C4, N13–C14 and N23–C24 (1.357 Å), C4–C5, C14–C15 and C24–C25 (1.331 Å), and C5–N1, C15–N11 and C25–N21 (1.365 Å). The beta carbon of each ethyl substituent is above or below the plane of the five-membered ring with torsion angles of -117.8 (9)° for C2–N1–C6–C7, -94.8 (6)° for C12–N11–C16–C17 and 92.2 (9)° for C22–N21–C16–C17. LaCl6 shows the expected octahedral geometry with La–Cl bond distances of 2.76–2.81 Å and cis Cl–La–Cl angular distortions < 3°. LaCl6 anions are located at the corners and face centers of the monoclinic unit cell.

One would expect the cation-anion interactions in EMI salts to be dominated by the hydrogen bonding between the ring protons and anions since the ring protons have more positive charge than the others of the side-chain alkyl groups. The strength of hydrogen bonding depends on the basicity of hydrogen acceptor. Strong hydrogen acceptors like atomic halide ions can make strong hydrogen bondings, while larger molecular anions do not (Abdul-Sada et al., 1986; Dymek et al., 1989; Fuller et al., 1994; Ortwerth et al., 1998). Table 1 shows hydrogen-bonding geometry in (I). All chlorine atoms except Cl1 are involved in shorter contacts with ring protons; Cl1 does not interact with ring protons. However, it takes a shorter distance with one of the H atoms (H8b) on the methyl group of a cation. Thus, hydrogen bonding is observed between some H atoms attached on the side-chain alkyl groups and Cl atoms in LaCl6. For example, 2.856 for Cl1–H8b, 2.862 for Cl2i–H28c, 2.864 for Cl4iii–H8a, and 2.861 Å for Cl6v–H27b [symmetry codes: (i) x, -y - 1/2, z - 1/2; (iii) -x, y + 1/2, -z + 3/2; (v) -x, -y, -z + 1] are short enough to admit the formation of a bond stronger than a van der Waals interaction. The bifurcation of C–H—Cl bonds is observed, namely, one ring proton (H12) is interacted with two Cl atoms {Cl4iv and Cl5ii [symmetry codes: (ii) -x, y - 1/2, -z + 3/2; (iv) x, -y - 1/2, z - 1/2]} of LaCl6.

In some EMI salts, a cation interacts with the neighboring cations via hydrogen bonding between the ring proton and π electron cloud. As a result of the compensation by coulombic repulsion between the cations, the bonding is attenuated to the van der Waals interaction. A similar cation–cation interaction exists locally in the unit cell of the title compound, although the peculiar cation stacking through the crystal, which is observed in other EMI salts (Wilkes et al., 1992; Fuller et al., 1994), is not observed. H24iv [Symmetry code: (iv) x, -y - 1/2, z + 1/2] interacts with the π electrons on the N11–C12–N13–C14–C15 imidazolium ring. Two imidazolium rings are not parallel to each other and the nearest distance between C and N belonging to different rings (C24iv and N13 [Symmetry code: (iv) x, -y - 1/2, z + 1/2]) takes the sum of the van der Waals distances of C and N, 3.371 (7) Å.

Experimental top

Compound (I) was synthesized by recrystallization in an LaCl3-saturated basic EMICl-AlCl3 ionic liquid (40 mol% AlCl3). LaCl3 dissolves well into the basic system (Tsuda et al., 2000). According to the result of thermogravimetric analysis and differential thermal analysis, compound (I) decomposes at around 600 K without melting. Rigid crystals of (I) were obtained from the basic system supersaturated by LaCl3, and some of them grew into large blocks with 10 mm e dge length. A suitable crystal was mounted and sealed in a quartz capillary.

Refinement top

The space group P21/c was determined by systematic extinctions. All the H atoms were refined using appropriate riding models with C—H distances of 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for aromatic groups. The displacement parameters of H atoms were fixed at 1.2 Ueq of their parent atoms (1.5 Ueq for methyl groups).

Computing details top

Data collection: KappaCCD (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altmare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of LaCl63- anion and EMI+ cations around La1 cited in (I). The dashed lines denote the hydrogen bonding. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as small circles of arbitrary radii. [Symmetry code: (iii) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. The molecular structure of LaCl63- anion and EMI+ cation around La2 cited in (I). The dashed lines denote the hydrogen bonding. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as small circles of arbitrary radii. [Symmetry code: (iii) -x, -y, -z.]
Tris(1-ethyl-3-methylimidazolium) hexachlorolanthanate top
Crystal data top
[LaCl6(C6H11N2)2]F(000) = 1368
Mr = 685.11Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 15.5660 (1) ÅCell parameters from 8989 reflections
b = 12.6640 (1) Åθ = 1.3–30.5°
c = 15.0460 (2) ŵ = 2.00 mm1
β = 90.4600 (6)°T = 293 K
V = 2965.89 (5) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
6823 independent reflections
Radiation source: fine-focus sealed tube5505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
CCD scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
SORTAV Blessing (1995)
h = 020
Tmin = 0.967, Tmax = 1.029k = 016
71635 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.38 w = 1/[σ2(Fo2) + (0.0112P)2 + 5.194P]
where P = (Fo2 + 2Fc2)/3
6823 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[LaCl6(C6H11N2)2]V = 2965.89 (5) Å3
Mr = 685.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.5660 (1) ŵ = 2.00 mm1
b = 12.6640 (1) ÅT = 293 K
c = 15.0460 (2) Å0.25 × 0.20 × 0.20 mm
β = 90.4600 (6)°
Data collection top
Nonius KappaCCD
diffractometer
6823 independent reflections
Absorption correction: multi-scan
SORTAV Blessing (1995)
5505 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 1.029Rint = 0.039
71635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.38Δρmax = 0.64 e Å3
6823 reflectionsΔρmin = 0.60 e Å3
283 parameters
Special details top

Experimental. The sealed capillary was fixed on a brass pin with adhesive to mount on a goniometer head.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.50000.00000.50000.03719 (9)
La20.00000.00001.00000.03373 (8)
Cl10.33473 (7)0.03104 (10)0.43141 (9)0.0582 (3)
Cl20.43015 (8)0.04656 (13)0.66577 (8)0.0710 (4)
Cl30.49309 (8)0.21254 (10)0.44971 (9)0.0643 (3)
Cl40.02782 (8)0.18546 (9)0.90220 (7)0.0550 (3)
Cl50.01164 (10)0.12304 (10)0.84677 (8)0.0683 (4)
Cl60.17620 (8)0.01011 (12)0.97618 (12)0.0791 (4)
N10.3109 (3)0.2335 (4)0.7398 (5)0.0985 (19)
C20.3030 (5)0.2136 (5)0.6553 (6)0.097 (2)
H20.34780.19100.61950.117*
N30.2256 (4)0.2290 (4)0.6270 (3)0.0792 (14)
C40.1794 (4)0.2592 (7)0.6974 (4)0.104 (3)
H40.12110.27520.69670.125*
C50.2306 (4)0.2623 (8)0.7680 (5)0.135 (4)
H50.21520.28050.82560.162*
C60.3874 (6)0.2244 (8)0.7981 (8)0.153 (5)
H6A0.43650.20440.76260.183*
H6B0.39960.29280.82450.183*
C70.3759 (6)0.1471 (10)0.8686 (7)0.163 (5)
H7A0.42700.14390.90460.245*
H7B0.36490.07900.84290.245*
H7C0.32810.16740.90470.245*
C80.1912 (6)0.2135 (6)0.5356 (4)0.125 (3)
H8A0.13110.23050.53430.187*
H8B0.19900.14120.51820.187*
H8C0.22120.25880.49520.187*
N110.0609 (2)0.0888 (3)0.6459 (2)0.0464 (9)
C120.0951 (3)0.1562 (3)0.5899 (3)0.0470 (10)
H120.06540.20880.55930.056*
N130.1781 (2)0.1375 (3)0.5840 (2)0.0462 (8)
C140.1980 (3)0.0548 (4)0.6383 (3)0.0583 (13)
H140.25210.02490.64670.070*
C150.1248 (3)0.0250 (4)0.6773 (3)0.0618 (13)
H150.11880.02940.71830.074*
C160.0309 (3)0.0822 (4)0.6688 (3)0.0606 (13)
H16A0.03640.06360.73100.073*
H16B0.05760.15060.65990.073*
C170.0764 (4)0.0020 (5)0.6132 (4)0.0799 (17)
H17A0.13590.00030.62940.120*
H17B0.07170.02070.55160.120*
H17C0.05090.06610.62280.120*
C180.2385 (4)0.1977 (4)0.5299 (4)0.0703 (15)
H18A0.29490.16790.53600.106*
H18B0.22070.19500.46870.106*
H18C0.23940.26980.54960.106*
N210.3154 (3)0.1169 (4)0.2280 (3)0.0757 (13)
C220.3465 (4)0.1947 (6)0.2746 (4)0.0791 (18)
H220.40440.20490.28790.095*
N230.2835 (3)0.2571 (4)0.3000 (3)0.0663 (12)
C240.2083 (3)0.2151 (5)0.2682 (4)0.0676 (15)
H240.15330.24190.27660.081*
C250.2289 (4)0.1287 (5)0.2230 (4)0.0726 (15)
H250.19080.08420.19320.087*
C260.3662 (6)0.0247 (7)0.1923 (5)0.120 (3)
H26A0.33020.03780.19210.144*
H26B0.41500.01130.23120.144*
C270.3958 (5)0.0442 (8)0.1050 (6)0.139 (3)
H27A0.42820.01560.08480.208*
H27B0.34760.05550.06600.208*
H27C0.43180.10580.10520.208*
C280.2941 (5)0.3540 (5)0.3507 (4)0.099 (2)
H28A0.23890.38510.36100.148*
H28B0.32140.33830.40660.148*
H28C0.32920.40240.31800.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02820 (15)0.04584 (19)0.03762 (17)0.00164 (15)0.00583 (12)0.00185 (16)
La20.03455 (16)0.03272 (16)0.03392 (16)0.00555 (14)0.00035 (12)0.00061 (14)
Cl10.0344 (5)0.0693 (8)0.0707 (8)0.0046 (5)0.0045 (5)0.0045 (6)
Cl20.0543 (7)0.1141 (11)0.0448 (6)0.0061 (7)0.0136 (5)0.0126 (7)
Cl30.0614 (7)0.0501 (7)0.0814 (9)0.0003 (6)0.0059 (6)0.0063 (6)
Cl40.0691 (8)0.0461 (6)0.0497 (6)0.0116 (5)0.0023 (5)0.0130 (5)
Cl50.1075 (11)0.0514 (7)0.0465 (6)0.0192 (7)0.0240 (7)0.0109 (5)
Cl60.0387 (6)0.0841 (10)0.1144 (12)0.0020 (7)0.0122 (7)0.0064 (9)
N10.045 (3)0.092 (4)0.157 (6)0.009 (3)0.004 (3)0.051 (4)
C20.086 (5)0.073 (4)0.134 (6)0.004 (4)0.052 (5)0.025 (4)
N30.088 (4)0.059 (3)0.091 (4)0.017 (3)0.032 (3)0.011 (3)
C40.069 (4)0.162 (7)0.081 (4)0.035 (4)0.012 (3)0.042 (5)
C50.070 (4)0.238 (11)0.096 (5)0.067 (6)0.009 (4)0.070 (6)
C60.077 (5)0.131 (8)0.251 (14)0.012 (6)0.027 (8)0.080 (9)
C70.111 (8)0.212 (13)0.167 (10)0.032 (9)0.051 (7)0.055 (9)
C80.199 (9)0.111 (6)0.064 (4)0.069 (6)0.024 (5)0.010 (4)
N110.047 (2)0.048 (2)0.044 (2)0.0035 (17)0.0074 (16)0.0033 (17)
C120.054 (3)0.043 (2)0.044 (2)0.009 (2)0.006 (2)0.0001 (19)
N130.050 (2)0.0397 (19)0.049 (2)0.0031 (16)0.0125 (17)0.0008 (16)
C140.047 (3)0.056 (3)0.072 (3)0.014 (2)0.004 (2)0.014 (3)
C150.055 (3)0.064 (3)0.066 (3)0.008 (2)0.007 (2)0.023 (3)
C160.051 (3)0.070 (3)0.061 (3)0.004 (2)0.016 (2)0.004 (3)
C170.060 (3)0.087 (4)0.093 (4)0.013 (3)0.010 (3)0.007 (4)
C180.076 (4)0.056 (3)0.079 (4)0.004 (3)0.032 (3)0.006 (3)
N210.066 (3)0.101 (4)0.060 (3)0.011 (3)0.008 (2)0.004 (3)
C220.057 (3)0.122 (6)0.058 (3)0.006 (4)0.001 (3)0.004 (4)
N230.076 (3)0.082 (3)0.042 (2)0.009 (3)0.008 (2)0.006 (2)
C240.050 (3)0.088 (4)0.065 (3)0.002 (3)0.008 (3)0.018 (3)
C250.063 (4)0.083 (4)0.071 (4)0.012 (3)0.006 (3)0.009 (3)
C260.125 (7)0.150 (8)0.087 (5)0.049 (6)0.011 (5)0.002 (5)
C270.078 (5)0.200 (10)0.138 (8)0.008 (6)0.012 (5)0.037 (7)
C280.147 (7)0.089 (5)0.061 (4)0.024 (5)0.024 (4)0.003 (3)
Geometric parameters (Å, º) top
La1—Cl22.7919 (11)C12—H120.9300
La1—Cl2i2.7919 (11)N13—C141.363 (6)
La1—Cl12.7920 (11)N13—C181.462 (6)
La1—Cl1i2.7920 (11)C14—C151.340 (6)
La1—Cl3i2.7977 (13)C14—H140.9300
La1—Cl32.7978 (13)C15—H150.9300
La2—Cl6ii2.7662 (12)C16—C171.491 (7)
La2—Cl62.7662 (12)C16—H16A0.9700
La2—Cl52.7898 (11)C16—H16B0.9700
La2—Cl5ii2.7898 (11)C17—H17A0.9600
La2—Cl4ii2.8069 (11)C17—H17B0.9600
La2—Cl42.8069 (11)C17—H17C0.9600
N1—C21.302 (9)C18—H18A0.9600
N1—C51.373 (8)C18—H18B0.9600
N1—C61.478 (10)C18—H18C0.9600
C2—N31.289 (8)N21—C221.300 (7)
C2—H20.9300N21—C251.357 (7)
N3—C41.341 (7)N21—C261.510 (9)
N3—C81.485 (8)C22—N231.320 (7)
C4—C51.323 (9)C22—H220.9300
C4—H40.9300N23—C241.368 (7)
C5—H50.9300N23—C281.453 (7)
C6—C71.456 (13)C24—C251.329 (8)
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C25—H250.9300
C7—H7A0.9600C26—C271.417 (10)
C7—H7B0.9600C26—H26A0.9700
C7—H7C0.9600C26—H26B0.9700
C8—H8A0.9600C27—H27A0.9600
C8—H8B0.9600C27—H27B0.9600
C8—H8C0.9600C27—H27C0.9600
N11—C121.316 (5)C28—H28A0.9600
N11—C151.364 (6)C28—H28B0.9600
N11—C161.475 (6)C28—H28C0.9600
C12—N131.317 (5)
Cl2—La1—Cl2i180.0C15—N11—C16126.3 (4)
Cl2—La1—Cl189.75 (4)N11—C12—N13109.2 (4)
Cl2i—La1—Cl190.25 (4)N11—C12—H12125.4
Cl2—La1—Cl1i90.25 (4)N13—C12—H12125.4
Cl2i—La1—Cl1i89.75 (4)C12—N13—C14108.5 (4)
Cl1—La1—Cl1i180.0C12—N13—C18125.4 (4)
Cl2—La1—Cl3i88.62 (5)C14—N13—C18126.2 (4)
Cl2i—La1—Cl3i91.38 (5)C15—C14—N13106.8 (4)
Cl1—La1—Cl3i89.88 (4)C15—C14—H14126.6
Cl1i—La1—Cl3i90.12 (4)N13—C14—H14126.6
Cl2—La1—Cl391.38 (5)C14—C15—N11107.6 (4)
Cl2i—La1—Cl388.62 (5)C14—C15—H15126.2
Cl1—La1—Cl390.12 (4)N11—C15—H15126.2
Cl1i—La1—Cl389.88 (4)N11—C16—C17111.4 (4)
Cl3i—La1—Cl3180.0N11—C16—H16A109.3
Cl6ii—La2—Cl6180.00 (6)C17—C16—H16A109.3
Cl6ii—La2—Cl590.59 (5)N11—C16—H16B109.3
Cl6—La2—Cl589.41 (5)C17—C16—H16B109.3
Cl6ii—La2—Cl5ii89.41 (5)H16A—C16—H16B108.0
Cl6—La2—Cl5ii90.59 (5)C16—C17—H17A109.5
Cl5—La2—Cl5ii179.999 (1)C16—C17—H17B109.5
Cl6ii—La2—Cl4ii92.89 (4)H17A—C17—H17B109.5
Cl6—La2—Cl4ii87.12 (4)C16—C17—H17C109.5
Cl5—La2—Cl4ii88.69 (4)H17A—C17—H17C109.5
Cl5ii—La2—Cl4ii91.31 (4)H17B—C17—H17C109.5
Cl6ii—La2—Cl487.11 (4)N13—C18—H18A109.5
Cl6—La2—Cl492.88 (4)N13—C18—H18B109.5
Cl5—La2—Cl491.31 (4)H18A—C18—H18B109.5
Cl5ii—La2—Cl488.69 (4)N13—C18—H18C109.5
Cl4ii—La2—Cl4180.0H18A—C18—H18C109.5
C2—N1—C5105.9 (6)H18B—C18—H18C109.5
C2—N1—C6129.4 (7)C22—N21—C25108.2 (5)
C5—N1—C6124.6 (7)C22—N21—C26125.7 (6)
N3—C2—N1112.0 (6)C25—N21—C26125.9 (6)
N3—C2—H2124.0N21—C22—N23109.6 (5)
N1—C2—H2124.0N21—C22—H22125.2
C2—N3—C4106.7 (6)N23—C22—H22125.2
C2—N3—C8127.9 (6)C22—N23—C24107.5 (5)
C4—N3—C8125.3 (6)C22—N23—C28125.2 (6)
C5—C4—N3108.6 (6)C24—N23—C28127.3 (6)
C5—C4—H4125.7C25—C24—N23106.9 (5)
N3—C4—H4125.7C25—C24—H24126.6
C4—C5—N1106.7 (6)N23—C24—H24126.6
C4—C5—H5126.6C24—C25—N21107.8 (5)
N1—C5—H5126.6C24—C25—H25126.1
C7—C6—N1112.4 (9)N21—C25—H25126.1
C7—C6—H6A109.1C27—C26—N21111.7 (7)
N1—C6—H6A109.1C27—C26—H26A109.3
C7—C6—H6B109.1N21—C26—H26A109.3
N1—C6—H6B109.1C27—C26—H26B109.3
H6A—C6—H6B107.9N21—C26—H26B109.3
C6—C7—H7A109.5H26A—C26—H26B107.9
C6—C7—H7B109.5C26—C27—H27A109.5
H7A—C7—H7B109.5C26—C27—H27B109.5
C6—C7—H7C109.5H27A—C27—H27B109.5
H7A—C7—H7C109.5C26—C27—H27C109.5
H7B—C7—H7C109.5H27A—C27—H27C109.5
N3—C8—H8A109.5H27B—C27—H27C109.5
N3—C8—H8B109.5N23—C28—H28A109.5
H8A—C8—H8B109.5N23—C28—H28B109.5
N3—C8—H8C109.5H28A—C28—H28B109.5
H8A—C8—H8C109.5N23—C28—H28C109.5
H8B—C8—H8C109.5H28A—C28—H28C109.5
C12—N11—C15107.9 (4)H28B—C28—H28C109.5
C12—N11—C16125.8 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8b···Cl10.962.863.584 (8)133
C14—H14···Cl20.932.803.636 (5)150
C28—H28c···Cl2iii0.962.863.729 (7)151
C2—H2···Cl3i0.932.713.557 (8)152
C22—H22···Cl30.932.793.479 (6)132
C4—H4···Cl4iv0.932.793.614 (6)148
C8—H8a···Cl4iv0.962.863.766 (9)157
C12—H12···Cl4iii0.932.783.612 (4)150
C24—H24···Cl4iii0.932.883.693 (5)147
C12—H12···Cl5v0.932.833.393 (4)120
C15—H15···Cl50.932.833.632 (5)146
C25—H25···Cl6vi0.932.823.565 (6)138
C27—H27b···Cl6vi0.962.863.686 (8)145
Symmetry codes: (i) x+1, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z+3/2; (v) x, y1/2, z+3/2; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[LaCl6(C6H11N2)2]
Mr685.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.5660 (1), 12.6640 (1), 15.0460 (2)
β (°) 90.4600 (6)
V3)2965.89 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SORTAV Blessing (1995)
Tmin, Tmax0.967, 1.029
No. of measured, independent and
observed [I > 2σ(I)] reflections
71635, 6823, 5505
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.086, 1.38
No. of reflections6823
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.60

Computer programs: KappaCCD (Nonius, 1997), DENZO-SMN (Otwinowski & Minor 1997), DENZO-SMN, SIR92 (Altmare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8b···Cl1.962.8563.584 (8)133
C14—H14···Cl2.932.7983.636 (5)150
C28—H28c···Cl2i.962.8623.729 (7)151
C2—H2···Cl3ii.932.7083.557 (8)152
C22—H22···Cl3.932.7913.479 (6)132
C4—H4···Cl4iii.932.7893.614 (6)148
C8—H8a···Cl4iii.962.8643.766 (9)157
C12—H12···Cl4i.932.7753.612 (4)150
C24—H24···Cl4i.932.8803.693 (5)147
C12—H12···Cl5iv.932.8283.393 (4)120
C15—H15···Cl5.932.8253.632 (5)146
C25—H25···Cl6v.932.8223.565 (6)138
C27—H27b···Cl6v.962.8613.686 (8)145
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+3/2; (iv) x, y1/2, z+3/2; (v) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds