Download citation
Download citation
link to html
The title compound, C9H19N3O·C4H7NO2, displays strong intramolecular O—H...N [O...N 2.6743 (13) Å] and N—H...N [N...N 2.6791 (15) Å] hydrogen bonds, and strong intermolecular O—H...N [O...N 2.7949 (15) Å] and N—H...O [N...O 3.0924 (16) Å] hydrogen bonds. This creates chains of per­hydro­pyrimidine mol­ecules, linked by hydrogen bonds. Each chain is linked to a partner chain, through hydrogen bonds to two butane-2,3-dione monooxime mol­ecules, in a structure reminiscent of a ladder.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101012926/bj1033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101012926/bj1033Isup2.hkl
Contains datablock I

CCDC reference: 174848

Comment top

Some recently reviewed data shows that oximes, although being classical ligands (Chakravorty, 1974; Keeney et al., 1984), display a variety of reactivity modes unusual even in the context of modern coordination chemistry (Kukushkin et al., 1996, 1999; Costes et al., 1997). As far as the redox conversions of oxime species are concerned, they can be either reduced or oxidized in metal-mediated reactions. We report here the structure of the molecular complex of 2-[1-(hydroxyimino)ethyl]-2,5,5-trimethylperhydropyrimidine and butane-2,3-dione monoxime, (I). \sch

The structure of (I) has an asymmetric unit containing one 2-[1-(hydroxyimino)ethyl]-2,5,5-trimethylperhydropyrimidine fragment and one butane-2,3-dione monoxime fragment, as shown in Fig. 1. The torsion angles O2—N4—C12—C10 [-177.73 (11)°], O3—C10—C12—N4 [-174.18 (14)°] and C11—C10—C12—C13 [-174.25 (14)°] indicate that the butane-2,3-dione monoxime molecule is nearly planar. The conformation of the perhydropyrimidine molecule is defined by the torsion angles C3—N2—C4—C5 [-56.05 (14)°], C3—N3—C6—C5 [55.30 (14)°], C4—N2—C3—C1 [-69.57 (13)°] and C8—C5—C6—N3 [67.81 (14)°]. The perhydropyrimidine moiety adopts an aminal structure, with the six-membered ring in a chair conformation and the oxime fragment, C(CH3)NOH, appearing as an axial substituent.

The perhydropyrimidine molecules form hydrogen-bonded chains which run parallel to [100]. These chains are cross-linked along the [001] direction via hydrogen bonds involving the butane-2,3-dione monoxime moieties, forming a pattern reminiscent of a ladder (Fig. 2).

A major point of interest is the presence of a hydrogen contact between the equatorial H atom on the ring atom N2 with atom N1 of the axial oxime group (Fig. 1). This bond is rather weak, with an H···N1 (acceptor) separation of 2.37 (2) Å. However, this hydrogen bond locks the ring in a chair conformation, in which the side-chain containing the oxime is axial and inhibits the rotation of the oxime substituent around the C1—C3 bond which, due to its length of 1.5366 (16) Å, must be considered as a single bond.

Another hydrogen bond is formed between atom O2 of the butane-2,3-dione monoxime molecule and the ring atom N2. This bond, with an H···N2 (acceptor) separation of 1.77 (2) Å, is stronger than the intramolecular bond considered above (Ishida & Kashino 1999; Lavender et al., 1999).

Intermolecular hydrogen bonding occurs between the ring atom N2 and atom O3i of a symmetry-related butane-2,3-dione monoxime molecule [symmetry code: (i) 1 - x, 1 - y, 1 - z]. This bond is weak, with an H···N1 (acceptor) separation of 2.25 (2) Å. It should be noted that considering these hydrogen bonds N2—H···N1, N2—H···O3i and O2—H···N2, would lead erroneously to the conclusion that N2 and N3 have distinctly different environments, when, in fact, these atoms are equivalent. This is reflected in the lengthening of the N2—C3 bond [1.4803 (14) Å] with respect to the N3—C3 bond [1.4654 (14) Å].

C—H···N and C—H···O hydrogen bonds are also formed (Table 2). In the present study, the intramolecular and intermolecular hydrogen-bond lengths are comparable with the values found in related complexes (Steiner, 2000, 2001; Elerman et al., 1998). The bond lengths and angles within the ring and oxime fragments compare well with those reported for a six-membered aminal (Fenton et al., 1985; Raston et al., 1978).

Experimental top

Butane-2,3-dione monoxime (11.73 mmol) was dissolved in ethanol (200 ml) and 2,2-dimethyl-1,3-propanediamine (5.86 mmol) in ethanol (100 ml) was added dropwise. The solution was refluxed for 2 h and then allowed to cool to room temperature. Colourless single crystals of (I) were obtained by slow evaporation.

Refinement top

H atoms bound to N and O were refined isotropically using full matrix least-squares. H atoms bound to C were allowed to ride on the parent atom (C—H = 0.96 Å) and their displacement parameters were constrained to follow the relationship Uiso(H) = 1.2Ueq(C). NB It appears from the Uiso and bond distance and angle tables that H atoms on C were in fact refined - please clarify.

Computing details top

Data collection: DIP2000 software (Enraf-Nonius, 1995) and DENZO (Otwinowski & Minor, 1996); cell refinement: DIP2000 software and DENZO; data reduction: DIP2000 software and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and the dashed line indicates the N2—H···N1 intramolecular hydrogen bond.
[Figure 2] Fig. 2. The unit cell packing in (I). Dashed and double-dashed lines indicate hydrogen bonds.
2-[1-(Hydroxyimino)ethyl]-2,5,5-trimethylperhydropyrimidine-butane-2,3-dione monoxime (1/1) top
Crystal data top
C9H19N3O·C4H7NO2Z = 2
Mr = 286.38F(000) = 312.06
Triclinic, P1Dx = 1.203 Mg m3
a = 6.4630 (3) ÅMo Kα radiation, λ = 0.71069 Å
b = 8.3080 (5) ÅCell parameters from 9950 reflections
c = 16.3530 (9) Åθ = 0–27°
α = 77.095 (3)°µ = 0.09 mm1
β = 86.747 (3)°T = 150 K
γ = 67.554 (3)°Block, colourless
V = 790.65 (8) Å30.6 × 0.4 × 0.4 mm
Data collection top
Enraf-Nonius DIP2000
diffractometer
2703 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.02
ω scansθmax = 26.6°, θmin = 0.0°
Absorption correction: multi-scan
(North et al., 1968)
h = 08
Tmin = 0.950, Tmax = 0.965k = 910
9950 measured reflectionsl = 2020
2989 independent reflections
Refinement top
Refinement on FAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.045 Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979), 3.62 1.39 2.47
wR(F2) = 0.048(Δ/σ)max = 0.006
S = 0.94Δρmax = 0.24 e Å3
2703 reflectionsΔρmin = 0.26 e Å3
263 parameters
Crystal data top
C9H19N3O·C4H7NO2γ = 67.554 (3)°
Mr = 286.38V = 790.65 (8) Å3
Triclinic, P1Z = 2
a = 6.4630 (3) ÅMo Kα radiation
b = 8.3080 (5) ŵ = 0.09 mm1
c = 16.3530 (9) ÅT = 150 K
α = 77.095 (3)°0.6 × 0.4 × 0.4 mm
β = 86.747 (3)°
Data collection top
Enraf-Nonius DIP2000
diffractometer
2989 independent reflections
Absorption correction: multi-scan
(North et al., 1968)
2703 reflections with I > 3σ(I)
Tmin = 0.950, Tmax = 0.965Rint = 0.02
9950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045263 parameters
wR(F2) = 0.048All H-atom parameters refined
S = 0.94Δρmax = 0.24 e Å3
2703 reflectionsΔρmin = 0.26 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65024 (15)0.66126 (11)0.06487 (5)0.0235
O20.27549 (16)0.32646 (12)0.41728 (5)0.0273
O30.27105 (17)0.51383 (14)0.65872 (6)0.0342
N10.54651 (17)0.58632 (12)0.13235 (6)0.0191
N20.36965 (17)0.41213 (13)0.25589 (6)0.0198
N30.04684 (18)0.50364 (13)0.16271 (6)0.0205
N40.26012 (18)0.46414 (14)0.45491 (6)0.0237
C10.3404 (2)0.62220 (14)0.11690 (7)0.0187
C20.2177 (2)0.73197 (18)0.03564 (8)0.0284
C30.2154 (2)0.55804 (15)0.19176 (7)0.0186
C40.4766 (2)0.24186 (15)0.22800 (8)0.0222
C50.3030 (2)0.17980 (15)0.19993 (7)0.0227
C60.1473 (2)0.33454 (16)0.13426 (7)0.0232
C70.0935 (2)0.71419 (17)0.23391 (9)0.0281
C80.1680 (2)0.12703 (17)0.27373 (8)0.0263
C90.4235 (3)0.02104 (18)0.15906 (9)0.0336
C100.2488 (2)0.55543 (18)0.58214 (8)0.0265
C110.1928 (2)0.74513 (19)0.53542 (9)0.0325
C120.2726 (2)0.41425 (17)0.53552 (7)0.0243
C130.3068 (3)0.23039 (19)0.58397 (8)0.0312
H110.788 (4)0.628 (3)0.0895 (13)0.051 (4)*
H210.294 (4)0.371 (3)0.3617 (14)0.051 (4)*
H310.047 (3)0.499 (2)0.2050 (11)0.029 (3)*
H20.475 (3)0.446 (2)0.268 (1)0.029 (3)*
H1110.232 (3)0.754 (3)0.4780 (13)0.0461 (12)*
H1120.279 (3)0.800 (2)0.5626 (11)0.0461 (12)*
H1130.034 (4)0.803 (3)0.5398 (12)0.0461 (12)*
H1310.363 (3)0.215 (3)0.6407 (12)0.0461 (12)*
H1320.408 (4)0.140 (3)0.5572 (12)0.0461 (12)*
H1330.163 (4)0.215 (3)0.5927 (12)0.0461 (12)*
H810.051 (3)0.092 (3)0.2546 (12)0.0461 (12)*
H820.085 (3)0.226 (3)0.3033 (12)0.0461 (12)*
H830.267 (3)0.030 (3)0.3144 (12)0.0461 (12)*
H410.570 (3)0.151 (2)0.275 (1)0.031 (2)*
H420.581 (3)0.250 (2)0.182 (1)0.031 (2)*
H710.201 (3)0.746 (3)0.2588 (12)0.0461 (12)*
H720.001 (3)0.822 (3)0.1932 (12)0.0461 (12)*
H730.009 (3)0.687 (3)0.2765 (12)0.0461 (12)*
H2010.059 (4)0.771 (3)0.0434 (12)0.0461 (12)*
H2020.262 (3)0.832 (3)0.0156 (12)0.0461 (12)*
H2030.257 (3)0.660 (3)0.0066 (12)0.0461 (12)*
H610.231 (3)0.350 (2)0.0825 (11)0.031 (2)*
H620.017 (3)0.303 (2)0.120 (1)0.031 (2)*
H910.518 (3)0.049 (3)0.1112 (12)0.0461 (12)*
H920.520 (3)0.083 (3)0.1986 (12)0.0461 (12)*
H930.308 (3)0.016 (3)0.1384 (12)0.0461 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (4)0.0304 (4)0.0203 (4)0.0141 (4)0.0041 (4)0.0015 (3)
O20.0335 (5)0.0379 (5)0.0177 (4)0.0205 (4)0.0028 (4)0.0084 (4)
O30.0309 (5)0.0551 (6)0.0238 (4)0.0201 (5)0.0021 (4)0.0162 (4)
N10.0207 (5)0.0220 (4)0.0174 (4)0.0114 (4)0.0039 (4)0.0043 (3)
N20.0207 (5)0.0256 (5)0.0174 (4)0.0128 (4)0.0007 (4)0.0058 (4)
N30.0172 (5)0.0232 (5)0.0234 (5)0.0101 (4)0.0004 (4)0.0052 (4)
N40.0192 (5)0.0348 (5)0.0209 (5)0.0133 (4)0.0019 (4)0.0086 (4)
C10.0205 (6)0.0189 (5)0.0187 (5)0.0087 (4)0.0014 (5)0.0058 (4)
C20.0249 (7)0.0339 (6)0.0249 (6)0.0134 (5)0.0034 (5)0.0014 (5)
C30.0182 (5)0.0211 (5)0.0197 (5)0.0099 (4)0.0021 (5)0.0066 (4)
C40.0195 (6)0.0227 (5)0.0226 (5)0.0072 (4)0.0007 (5)0.0029 (4)
C50.0258 (6)0.0215 (5)0.0235 (5)0.0110 (5)0.0038 (5)0.0074 (4)
C60.0265 (6)0.0251 (6)0.0225 (6)0.0132 (5)0.0013 (5)0.0072 (4)
C70.0304 (7)0.0269 (6)0.0325 (6)0.0141 (5)0.0118 (6)0.0144 (5)
C80.0291 (7)0.0252 (6)0.0276 (6)0.0143 (5)0.0039 (6)0.0051 (5)
C90.0400 (8)0.0255 (6)0.0381 (7)0.0130 (6)0.0104 (7)0.0137 (6)
C100.0167 (6)0.0419 (7)0.0253 (6)0.0134 (5)0.0026 (5)0.0124 (5)
C110.0262 (7)0.0394 (7)0.0363 (7)0.0146 (6)0.0052 (6)0.0141 (6)
C120.0174 (6)0.0366 (7)0.0199 (5)0.0109 (5)0.0006 (5)0.0070 (5)
C130.0323 (7)0.0368 (7)0.0214 (6)0.0113 (6)0.0016 (6)0.0035 (5)
Geometric parameters (Å, º) top
O1—N11.4081 (12)C12—C131.4938 (19)
O1—H110.91 (2)C5—C81.5320 (17)
O2—N41.3848 (13)C5—C91.5306 (17)
O2—H210.92 (2)C13—H1310.980 (19)
O3—C101.2237 (16)C13—H1320.96 (2)
N1—C11.2759 (16)C13—H1330.98 (2)
N2—C31.4803 (14)C8—H811.00 (2)
N2—C41.4808 (15)C8—H821.00 (2)
N2—H20.879 (18)C8—H830.96 (2)
N3—C31.4654 (14)C4—H410.989 (17)
N3—C61.4740 (15)C4—H420.995 (18)
N3—H310.898 (18)C7—H710.97 (2)
N4—C121.2879 (16)C7—H720.99 (2)
C1—C21.5010 (16)C7—H730.98 (2)
C3—C11.5366 (16)C2—H2010.96 (2)
C5—C41.5301 (16)C2—H2020.97 (2)
C5—C61.5286 (16)C2—H2030.975 (19)
C3—C71.5284 (16)C6—H610.990 (17)
C10—C111.5023 (19)C6—H621.024 (17)
C10—C121.4930 (17)C9—H911.01 (2)
C11—H1110.95 (2)C9—H920.97 (2)
C11—H1121.016 (19)C9—H931.01 (2)
C11—H1130.96 (2)
N1—O1—H1199.1 (13)C12—C13—H132112.3 (11)
N4—O2—H21102.7 (12)H131—C13—H132110.5 (16)
O1—N1—C1113.06 (9)C12—C13—H133110.8 (11)
C3—N2—C4113.52 (8)H131—C13—H133104.3 (16)
C3—N2—H2108.2 (10)H132—C13—H133109.8 (16)
C4—N2—H2108.4 (11)C5—C8—H81111.2 (11)
C3—N3—C6112.5 (1)C5—C8—H82113.9 (11)
C3—N3—H31106.8 (10)H81—C8—H82105.0 (16)
C6—N3—H31112.9 (10)C5—C8—H83109.4 (12)
O2—N4—C12111.6 (1)H81—C8—H83109.8 (16)
N1—C1—C3114.66 (9)H82—C8—H83107.3 (15)
N1—C1—C2124.41 (11)N2—C4—H41108.1 (9)
C3—C1—C2120.7 (1)C5—C4—H41109.7 (9)
N2—C3—C7107.16 (9)N2—C4—H42112.2 (9)
N2—C3—C1112.22 (9)C5—C4—H42108.8 (9)
N2—C4—C5111.8 (1)H41—C4—H42106.0 (13)
N3—C3—N2110.88 (9)C3—C7—H71110.1 (12)
N3—C3—C1110.26 (9)C3—C7—H72111.9 (11)
N3—C3—C7107.9 (1)H71—C7—H72107.0 (16)
N3—C6—C5113.85 (9)C3—C7—H73111.9 (11)
N4—C12—C10115.69 (11)H71—C7—H73110.3 (16)
N4—C12—C13125.26 (12)H72—C7—H73105.4 (16)
C1—C3—C7108.25 (9)C1—C2—H201109.8 (11)
O3—C10—C11121.16 (12)C1—C2—H202109.9 (11)
O3—C10—C12118.67 (12)H201—C2—H202111.1 (16)
C11—C10—C12120.15 (11)C1—C2—H203109.4 (11)
C10—C11—H111112.7 (11)H201—C2—H203109.0 (16)
C10—C11—H112109.0 (11)H202—C2—H203107.6 (16)
H111—C11—H112107.6 (15)N3—C6—H61110.4 (9)
C10—C11—H113105.4 (11)C5—C6—H61108.8 (10)
H111—C11—H113110.4 (17)N3—C6—H62106.5 (9)
H112—C11—H113111.9 (15)C5—C6—H62108.9 (9)
C10—C12—C13119.05 (11)H61—C6—H62108.3 (13)
C8—C5—C4111.6 (1)C5—C9—H91112.7 (11)
C8—C5—C6110.1 (1)C5—C9—H92112.6 (11)
C4—C5—C6107.24 (9)H91—C9—H92107.3 (16)
C8—C5—C9110.0 (1)C5—C9—H93108.8 (11)
C4—C5—C9108.92 (11)H91—C9—H93109.6 (15)
C6—C5—C9108.9 (1)H92—C9—H93105.6 (15)
C12—C13—H131108.8 (11)
O1—N1—C1—C20.22 (16)C2—C1—C3—N339.37 (14)
O1—N1—C1—C3174.46 (9)C2—C1—C3—C778.42 (14)
C4—N2—C3—N354.24 (13)N2—C4—C5—C653.34 (13)
C4—N2—C3—C169.57 (13)N2—C4—C5—C867.33 (13)
C4—N2—C3—C7171.73 (11)N2—C4—C5—C9171.02 (10)
C3—N2—C4—C556.05 (14)C4—C5—C6—N353.79 (14)
C6—N3—C3—N252.95 (12)C8—C5—C6—N367.81 (14)
C6—N3—C3—C171.98 (12)C9—C5—C6—N3171.49 (12)
C6—N3—C3—C7170.00 (10)O2—N4—C12—C10177.73 (11)
C3—N3—C6—C555.30 (14)O2—N4—C12—C131.9 (2)
N1—C1—C3—N221.58 (14)O3—C10—C12—N4176.18 (14)
N1—C1—C3—N3145.73 (10)O3—C10—C12—C134.2 (2)
N1—C1—C3—C796.47 (12)C11—C10—C12—N45.37 (19)
C2—C1—C3—N2163.52 (11)C11—C10—C12—C13174.25 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.88 (2)2.37 (2)2.6791 (15)101 (1)
N2—H2···O3i0.88 (2)2.25 (2)3.0924 (16)161 (1)
O1—H11···N3ii0.91 (3)1.91 (2)2.7949 (15)162 (2)
O2—H21···N20.92 (2)1.77 (2)2.6743 (13)168 (2)
C6—H61···O1iii0.99 (2)2.50 (2)3.4377 (14)159 (2)
C11—H111···N40.95 (2)2.46 (2)2.8115 (18)102 (2)
C13—H131···O30.98 (2)2.40 (2)2.8162 (19)105 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H19N3O·C4H7NO2
Mr286.38
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.4630 (3), 8.3080 (5), 16.3530 (9)
α, β, γ (°)77.095 (3), 86.747 (3), 67.554 (3)
V3)790.65 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.4 × 0.4
Data collection
DiffractometerEnraf-Nonius DIP2000
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.950, 0.965
No. of measured, independent and
observed [I > 3σ(I)] reflections
9950, 2989, 2703
Rint0.02
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.048, 0.94
No. of reflections2703
No. of parameters263
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: DIP2000 software (Enraf-Nonius, 1995) and DENZO (Otwinowski & Minor, 1996), DIP2000 software and DENZO, SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 1996), ORTEP-3 (Farrugia, 1997), CRYSTALS.

Selected geometric parameters (Å, º) top
O1—N11.4081 (12)N3—C61.4740 (15)
O2—N41.3848 (13)N4—C121.2879 (16)
O3—C101.2237 (16)C1—C21.5010 (16)
N1—C11.2759 (16)C3—C11.5366 (16)
N2—C31.4803 (14)C5—C41.5301 (16)
N2—C41.4808 (15)C5—C61.5286 (16)
N3—C31.4654 (14)C10—C121.4930 (17)
O1—N1—C1113.06 (9)N2—C4—C5111.8 (1)
C3—N2—C4113.52 (8)N3—C3—N2110.88 (9)
C3—N3—C6112.5 (1)N3—C3—C1110.26 (9)
O2—N4—C12111.6 (1)N3—C3—C7107.9 (1)
N1—C1—C3114.66 (9)N3—C6—C5113.85 (9)
N1—C1—C2124.41 (11)N4—C12—C10115.69 (11)
N2—C3—C7107.16 (9)O3—C10—C11121.16 (12)
N2—C3—C1112.22 (9)O3—C10—C12118.67 (12)
C4—N2—C3—C169.57 (13)C8—C5—C6—N367.81 (14)
C3—N2—C4—C556.05 (14)O2—N4—C12—C10177.73 (11)
C6—N3—C3—C171.98 (12)O3—C10—C12—N4176.18 (14)
C3—N3—C6—C555.30 (14)C11—C10—C12—C13174.25 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.88 (2)2.37 (2)2.6791 (15)101 (1)
N2—H2···O3i0.88 (2)2.25 (2)3.0924 (16)161 (1)
O1—H11···N3ii0.91 (3)1.91 (2)2.7949 (15)162 (2)
O2—H21···N20.92 (2)1.77 (2)2.6743 (13)168 (2)
C6—H61···O1iii0.99 (2)2.50 (2)3.4377 (14)159 (2)
C11—H111···N40.95 (2)2.46 (2)2.8115 (18)102 (2)
C13—H131···O30.98 (2)2.40 (2)2.8162 (19)105 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds