Download citation
Download citation
link to html
The short carbonyl bond in the title compound, [Cu2(C7H4­NO3S)4(C3H4N2)4] [Liu, Huang, Li & Lin (1991). Acta Cryst. C47, 41–43], is an artifact of disorder in the iso­thia­zol-3(2H)-one 1,1-dioxide part of the 1,2-benziso­thia­zol-3(2H)-one entity. In the present redetermination, all bond dimensions in the centrosymmetric dinuclear mol­ecule are normal. The five-coordinate Cu atom shows trigonal–bipyramidal coordination. Hydro­gen bonds from the imidazole donor ligand link adjacent mol­ecules into a two-dimensional layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009507/bj1032sup1.cif
Contains datablocks I, wgu50m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009507/bj1032Isup2.hkl
Contains datablock I

CCDC reference: 173340

Comment top

The first-row transition metal derivatives of the artificial sweetener saccharin, 1,2-benzisothiazol-3(2H)-one 1,1-dioxide, are protease inhibitors (Supuran, 1993; Supuran et al., 1993), and superoxide dismutase-like activity has been noted for these and other metal saccharinates (Apella et al., 1993). Because imido, carbonyl and sulfonyl functionalities exist in the deprotonated saccharinate ion, the coordination chemistry of metal saccharinates is extremely rich, and the crystallographic literature presents an extraordinary variety of bonding motifs. The bonding modes can also be conveniently assigned using vibrational spectroscopy; IR measurements have also aided in unravelling the factors that govern which of the competing vicinal groups will bind to the metal atom (Jovanovski et al., 1990; Jovanovski & Šoptrajanov, 1988; Naumov & Jovanovski, 2000a,b, 2001a,b). Linking the vibrational spectral features with the X-ray results are the semi-empirical and Hartree-Fock/density functional theory (HF/DFT) ab initio force field calculations (Binev et al., 1996; Naumov & Jovanovski, 2000b,c); the calculations are particularly successful with systems such as the copper saccharinates (Naumov et al., 2001).

Our interest in the title compound, (I), arose from the disagreement in one of the two carbonyl bond distances between the X-ray structure determined by Liu et al. (1991) [R = 0.049 for 3275 reflections with I > 2σ(I)] and the structure calculated from the IR and Raman spectra (Naumov & Jovanovski, 1999a; Naumov et al., 2001). The distance in the bridging saccharinate group was normal [1.223 (5) Å], whereas that of the N-coordinated saccharinate was extremely short [1.103 (6) Å]. There were no other unusual features in the structure of (I), except for a somewhat long C—C distance and a somewhat short C—S distance in the latter group. The peculiarity was not commented on by Liu et al. (1991) in their study of (I), but the short carbonyl bond was later employed by others (Zhang et al., 1995) to explain a `space obstacle' effect arising from the neighbouring imidazole ring. The distance is short in comparison with distances found in other saccharinates [mean C—O 1.23 (2) Å; Naumov & Jovanovski, 2000a] and is even shorter than some severely electronically contracted carbonyl compounds, such as carbonyl difluoride [1.172 (1) Å] and carbonyl dichloride [1.176 (2) Å] (Kwiatkowski & Leszczynski, 1994). In fact, this bond would have a bond order (Paolini, 1990) of 2.75; however, a triple bond would not be possible, owing to the nitranionic resonance structure. The short bond contrasts with the normal distance noted in the analogous cadmium complex (Li et al., 1997). Under a more detailed analysis of the vibrational spectrum, the curve-fitted carbonyl stretching interval of the copper complex revealed a third, minor, Raman-active carbonyl component. Nevertheless, the spectrum presented convincing evidence for a normal length of 1.21–1.22 Å in all three carbonyl groups. \sch

As steric effects alone cannot account for the short bond, we carried out a re-refinement from the deposited structure factors (Supplementary Publication No. SUP 52964). However, these calculations merely confirmed the apparent correctness of the original refinements. Nonetheless, we were still doubtful of the structure, hence the present measurements. In our re-examination, the refinement on all reflections has revealed the cause of the anomaly: the isothiazolyl-3(2H)-one 1,1-dioxide portion of the monodentate saccharinate entity is disordered across a pseudo mirror plane, the ratio of the two forms being 7:1. Fig. 1 shows the structure; the minor component is now shown. One of the sulfonyl O atoms from the ordered saccharinate entity forms a strong hydrogen bond with the imidazole ring of an adjacent molecule [N···O 2.965 (4) and H···O 2.15 (6) Å, and N—H···O 171 (5)°].

The DFT calculations correctly model the isolated saccharinate ion (Fig. 2 and Table 3), whose carbonyl distance is 1.241 Å. When the anion is coordinated to a metal atom through its N atom, this bond contracts in the crystal structures (Naumov & Jovanovski, 2000a). Several restricted optimizations from modelled or previously optimized input with the anomalous parameter set to 1.103 Å, when tested on various basis sets, led either to divergence (correlated methods) or to unrealistic local minima and loss of the planarity of the o-phenylene ring (Hartree-Fock methods). The theoretical results unambiguously rule out the possibility of a stable ground-state planar saccharinate species having the short carbonyl bond length.

In contrast with the plethora of wrong spectroscopic assignments that have later been corrected by crystallographic analyses, this re-investigation represents an unusual case of a crystal structure revision that was initiated by spectroscopic assignments.

Experimental top

Tetraaquabis(saccharinato)copper dihydrate was synthesized from copper(II) nitrate and sodium saccharinate in water. Lilac-coloured crystals of (I) were grown from an aqueous mixture of the copper complex and imidazole in a 1:2 molar ratio. Elemental (C, H, N, S) analysis, 1H NMR and UV-vis spectroscopic measurements, and thermal analyses all confirmed the composition as [Cu2(C7H4SO3N)4(C3H4N2)4]. For the density functional theory (DFT) quantum-chemical calculations, the global minimum of an isolated saccharinate molecule in its ground electronic state was located using a stepwise unrestricted optimization procedure in which the energy derivatives up to the B3LYP/6–31++G(d,p) level (Becke, 1993) were computed analytically with the GAUSSIAN98 program suite (Frisch et al., 1998) running on an ORIGIN2000 supercomputer. Harmonic vibrational analysis at the same level confirmed that the stationary point represented a minimum. The computations were repeated with the deviant C—O distance frozen at 1.103 Å, which is the distance given in the earlier report (Liu et al., 1991).

Refinement top

One of the two 1,2-benzisothiazol-3(2H)-one 1,1-dioxide anions is disordered in the sulfonyl (SO2) and carbonyl (CO) groups; the ratio of the occupancy of the major (unprimed) to the minor (primed) components refined to 7:1. The sulfonyl and carbonyl groups are disordered across a pseudo mirror plane. A number of restraints were applied to treat the disorder: the displacement parameters of atom S1 were set equal to those of atom C7' and those of atom S1' equal to those of atom C7. The displacement parameters of the unprimed O atoms were set equal to those of the primed O atoms. 1,2-Related and 1,3-related bond distances involving atoms S1, C7 and O1 were restrained to be equal to those of the corresponding primed atoms by SADI 0.005 and SADI 0.010 instructions in SHELXL97 (Sheldrick, 1997). A larger deviation in the SADI instructions gave somewhat unsatisfactory angles at the minor carbonyl C atom. The isothiazolyl C5—C6—C7(S1')-N1—S1(C7') unit (r.m.s. deviation 0.020 Å) was restrained to be flat by a FLAT 0.01 instruction. The 1,2-phenylene ring (r.m.s. deviation 0.004 Å) is coplanar with this unit [dihedral angle 2.5 (2)°] and it is not spilt into two components. H atoms were treated as riding, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) equal to 1.2 times Ueq of the parent atom. Query.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular view of the title compound, with displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) plot showing the disorder in the saccharinato group of (I); the benzisothiazolyl plane is tilted by 8(1)°.
Bis[µ-1,2-benzisothiazol-3(2H)-one 1,1-dioxido-κN:κO]bis{[1,2-benzisothiazol-3(2H)-one 1,1-dixoido-κN]bis(imidazole)copper(II)} top
Crystal data top
[Cu2(C7H4NO3S)4(C3H4N2)4]F(000) = 1148
Mr = 1128.10Dx = 1.717 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1176 (1) ÅCell parameters from 8192 reflections
b = 11.5112 (1) Åθ = 2.1–28.3°
c = 17.1203 (1) ŵ = 1.25 mm1
β = 95.346 (1)°T = 298 K
V = 2181.47 (3) Å3Parallelepiped, blue
Z = 20.44 × 0.36 × 0.24 mm
Data collection top
Siemens CCD area-detector
diffractometer
5330 independent reflections
Radiation source: fine-focus sealed tube4073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scanθmax = 28.3°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.610, Tmax = 0.754k = 1315
15502 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0821P)2]
where P = (Fo2 + 2Fc2)/3
5330 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.65 e Å3
16 restraintsΔρmin = 1.24 e Å3
Crystal data top
[Cu2(C7H4NO3S)4(C3H4N2)4]V = 2181.47 (3) Å3
Mr = 1128.10Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.1176 (1) ŵ = 1.25 mm1
b = 11.5112 (1) ÅT = 298 K
c = 17.1203 (1) Å0.44 × 0.36 × 0.24 mm
β = 95.346 (1)°
Data collection top
Siemens CCD area-detector
diffractometer
5330 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4073 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.754Rint = 0.068
15502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05116 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.98Δρmax = 0.65 e Å3
5330 reflectionsΔρmin = 1.24 e Å3
332 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.14122 (3)0.15548 (3)0.04009 (2)0.0225 (1)
S10.32211 (8)0.34788 (7)0.12327 (5)0.0285 (3)0.870 (3)
S1'0.3897 (5)0.2427 (4)0.0156 (3)0.0342 (9)0.130 (3)
S20.02090 (7)0.23445 (7)0.17712 (5)0.0327 (2)
O10.3807 (3)0.1990 (3)0.0588 (2)0.0469 (8)0.870 (3)
O1'0.259 (1)0.388 (2)0.143 (1)0.0469 (8)0.13
O20.2457 (2)0.4488 (3)0.1221 (2)0.0492 (8)0.870 (3)
O2'0.362 (2)0.280 (2)0.0950 (5)0.0492 (8)0.13
O30.3268 (3)0.2815 (3)0.1942 (2)0.0465 (8)0.870 (3)
O3'0.444 (2)0.1295 (9)0.008 (1)0.0465 (8)0.13
O40.1159 (2)0.0132 (2)0.0522 (1)0.0321 (5)
O50.0174 (3)0.3510 (2)0.1472 (2)0.0590 (8)
O60.0632 (2)0.2112 (3)0.2444 (2)0.0516 (7)
N20.0061 (2)0.1388 (2)0.1087 (1)0.0248 (5)
N30.0449 (2)0.2563 (2)0.0345 (1)0.0250 (5)
N40.0295 (3)0.4081 (2)0.0967 (2)0.0362 (6)
N50.2372 (2)0.0395 (2)0.1023 (1)0.0260 (5)
N60.3116 (3)0.0751 (3)0.1953 (2)0.0398 (7)
N10.2894 (2)0.2643 (2)0.0466 (1)0.0251 (5)
C10.6039 (4)0.3383 (3)0.0067 (3)0.052 (1)
C20.6902 (4)0.4036 (4)0.0483 (3)0.059 (1)
C30.6646 (4)0.4632 (4)0.1129 (3)0.058 (1)
C40.5505 (4)0.4558 (4)0.1424 (2)0.052 (1)
C50.4650 (2)0.3813 (2)0.1013 (2)0.0315 (7)
C60.4940 (2)0.3289 (2)0.0341 (2)0.0289 (6)
C70.3865 (4)0.2570 (3)0.0018 (3)0.0342 (9)0.870 (3)
C7'0.3352 (7)0.3379 (5)0.1072 (5)0.0285 (3)0.13
C80.3163 (3)0.0542 (3)0.1529 (2)0.0333 (7)
C90.3908 (3)0.1053 (4)0.2046 (2)0.0446 (9)
C100.3546 (3)0.1978 (3)0.2504 (2)0.0446 (9)
C110.2395 (3)0.2446 (3)0.2490 (2)0.0401 (8)
C120.1674 (3)0.1960 (3)0.1969 (2)0.0285 (6)
C130.2029 (2)0.1026 (2)0.1496 (2)0.0233 (6)
C140.1059 (2)0.0675 (2)0.0987 (2)0.0222 (6)
C150.0601 (3)0.3673 (3)0.0477 (2)0.0322 (7)
C160.1069 (3)0.3189 (3)0.1166 (2)0.0386 (8)
C170.0601 (3)0.2259 (3)0.0782 (2)0.0362 (8)
C180.2286 (3)0.0059 (3)0.1748 (2)0.0321 (7)
C190.3775 (3)0.0939 (3)0.1342 (2)0.0380 (8)
C200.3314 (3)0.0218 (3)0.0766 (2)0.0348 (7)
H4N0.03740.47860.11310.043*
H6N0.32140.10960.24000.048*
H10.62030.30120.03940.062*
H20.76760.40730.03200.071*
H30.72380.51020.13850.070*
H40.53250.49740.18640.062*
H80.34170.00930.12210.040*
H90.46780.07510.20780.053*
H100.40770.23010.28330.053*
H110.21280.30580.28170.048*
H150.12470.41140.02570.039*
H160.17770.32210.15010.046*
H170.09350.15180.08080.043*
H180.17280.03440.20720.039*
H190.44140.14570.13210.046*
H200.35940.01500.02730.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0186 (2)0.0212 (2)0.0267 (2)0.0012 (1)0.0030 (1)0.0045 (1)
S10.0192 (4)0.0337 (5)0.0330 (5)0.0023 (3)0.0040 (3)0.0081 (3)
S1'0.037 (1)0.04 (3)0.028 (2)0.018 (1)0.006 (1)0.000 (2)
S20.0263 (4)0.0283 (4)0.0447 (5)0.0099 (3)0.0094 (3)0.0138 (3)
O10.042 (2)0.056 (2)0.044 (2)0.021 (2)0.014 (1)0.026 (2)
O1'0.042 (2)0.056 (2)0.044 (2)0.021 (2)0.014 (1)0.026 (2)
O20.029 (1)0.041 (2)0.077 (2)0.011 (1)0.003 (1)0.018 (2)
O2'0.029 (1)0.041 (2)0.077 (2)0.011 (1)0.003 (1)0.018 (2)
O30.049 (2)0.063 (2)0.028 (2)0.014 (2)0.008 (1)0.001 (1)
O3'0.049 (2)0.063 (2)0.028 (2)0.014 (2)0.008 (1)0.001 (1)
O40.033 (1)0.032 (1)0.031 (1)0.005 (1)0.000 (1)0.013 (1)
O50.064 (2)0.026 (1)0.092 (2)0.020 (1)0.035 (2)0.013 (1)
O60.034 (2)0.069 (2)0.050 (2)0.008 (1)0.006 (1)0.032 (1)
N20.022 (1)0.027 (1)0.026 (1)0.002 (1)0.004 (1)0.004 (1)
N30.021 (1)0.023 (1)0.029 (1)0.001 (1)0.004 (1)0.004 (1)
N40.045 (2)0.024 (1)0.039 (2)0.007 (1)0.006 (1)0.008 (1)
N50.023 (1)0.024 (1)0.030 (1)0.000 (1)0.004 (1)0.001 (1)
N60.040 (2)0.042 (2)0.036 (2)0.010 (1)0.003 (1)0.016 (1)
N10.019 (1)0.028 (1)0.027 (1)0.005 (1)0.002 (1)0.003 (1)
C10.040 (2)0.053 (2)0.067 (3)0.010 (2)0.025 (2)0.007 (2)
C20.032 (2)0.060 (3)0.087 (3)0.018 (2)0.009 (2)0.000 (2)
C30.038 (2)0.059 (3)0.075 (3)0.022 (2)0.015 (2)0.005 (2)
C40.061 (2)0.053 (2)0.039 (2)0.018 (2)0.006 (2)0.013 (2)
C50.027 (2)0.034 (2)0.034 (2)0.004 (1)0.002 (1)0.001 (1)
C60.023 (1)0.031 (2)0.033 (2)0.007 (1)0.001 (1)0.000 (1)
C70.037 (1)0.036 (2)0.028 (2)0.018 (1)0.006 (1)0.000 (2)
C7'0.0192 (4)0.0337 (5)0.0330 (5)0.0023 (3)0.0040 (3)0.0081 (3)
C80.026 (2)0.038 (2)0.036 (2)0.010 (1)0.003 (1)0.001 (1)
C90.025 (2)0.058 (2)0.053 (2)0.009 (2)0.012 (2)0.000 (2)
C100.032 (2)0.053 (2)0.052 (2)0.001 (2)0.022 (2)0.005 (2)
C110.038 (2)0.038 (2)0.046 (2)0.001 (2)0.013 (2)0.013 (2)
C120.025 (1)0.026 (1)0.035 (2)0.002 (1)0.006 (1)0.005 (1)
C130.021 (1)0.024 (1)0.025 (1)0.003 (1)0.000 (1)0.000 (1)
C140.019 (1)0.024 (1)0.023 (1)0.002 (1)0.000 (1)0.002 (1)
C150.034 (2)0.022 (2)0.039 (2)0.004 (1)0.008 (1)0.001 (1)
C160.030 (2)0.040 (2)0.043 (2)0.001 (1)0.012 (1)0.006 (1)
C170.027 (2)0.031 (2)0.048 (2)0.009 (1)0.012 (1)0.004 (1)
C180.031 (2)0.038 (2)0.028 (2)0.008 (1)0.006 (1)0.005 (1)
C190.035 (2)0.037 (2)0.040 (2)0.010 (1)0.006 (2)0.00491)
C200.033 (2)0.042 (2)0.029 (2)0.011 (1)0.000 (1)0.002 (1)
Geometric parameters (Å, º) top
Cu1—N12.065 (2)C1—C21.365 (6)
Cu1—N2i2.111 (2)C2—C31.355 (6)
Cu1—N31.967 (2)C3—C41.410 (6)
Cu1—N51.960 (2)C4—C51.418 (4)
Cu1—O42.275 (2)C5—C61.363 (4)
S1—O21.438 (3)C5—C7'1.540 (7)
S1—O31.432 (3)C6—C71.515 (6)
S1—N11.640 (2)C8—C131.384 (4)
S1—C51.711 (3)C8—C91.397 (5)
S1'—O2'1.433 (6)C9—C101.361 (5)
S1'—O3'1.436 (6)C10—C111.391 (5)
S1'—N11.631 (5)C11—C121.374 (4)
S1'—C61.693 (5)C12—C131.381 (4)
S2—O51.438 (3)C13—C141.503 (4)
S2—O61.440 (3)C16—C171.336 (4)
S2—N21.627 (2)C19—C201.352 (4)
S2—C121.751 (3)N4—H4N0.8600
O1—C71.230 (6)N6—H6N0.8600
O1'—C7'1.237 (7)C1—H10.9300
O4—C141.223 (3)C2—H20.9300
N2—C141.378 (3)C3—H30.9300
N3—C151.312 (4)C4—H40.9300
N3—C171.372 (4)C8—H80.9300
N4—C151.327 (4)C9—H90.9300
N4—C161.362 (4)C10—H100.9300
N5—C181.312 (4)C11—H110.9300
N5—C201.370 (4)C15—H150.9300
N6—C181.336 (4)C16—H160.9300
N6—C191.349 (4)C17—H170.9300
N1—C71.383 (6)C18—H180.9300
N1—C7'1.398 (8)C19—H190.9300
C1—C61.354 (5)C20—H200.9300
N1—Cu1—N2i133.0 (1)C1—C6—S1'118.1 (3)
N1—Cu1—N393.5 (1)C5—C6—S1'118.6 (3)
N1—Cu1—N589.6 (1)O1—C7—N1121.2 (4)
N1—Cu1—O4121.4 (1)O1—C7—C6125.5 (5)
N2—Cu1—N3i90.6 (1)N1—C7—C6113.2 (4)
N2—Cu1—N5i92.7 (1)O1'—C7'—N1115.4 (8)
N2i—Cu1—O4105.6 (1)O1'—C7'—C5125.0 (8)
N3—Cu1—N5172.0 (1)N1—C7'—C5115.3 (5)
N3—Cu1—O487.1 (1)C13—C8—C9116.9 (3)
N5—Cu1—O485.0 (1)C10—C9—C8122.2 (3)
O2—S1—O3114.7 (2)C9—C10—C11121.1 (3)
O2—S1—N1112.1 (2)C12—C11—C10116.5 (3)
O3—S1—N1110.7 (2)C11—C12—C13123.1 (3)
O2—S1—C5112.0 (2)C11—C12—S2129.2 (3)
O3—S1—C5110.2 (2)C13—C12—S2107.7 (2)
N1—S1—C595.6 (1)C12—C13—C8120.0 (3)
O2'—S1'—O3'114 (1)C12—C13—C14111.6 (2)
O2'—S1'—N1118.3 (8)C8—C13—C14128.4 (3)
O3'—S1'—N1112.9 (8)O4—C14—N2123.8 (3)
O2'—S1'—C6112.1 (9)O4—C14—C13123.7 (2)
O3'—S1'—C6103.1 (8)N2—C14—C13112.4 (2)
N1—S1'—C693.4 (3)N3—C15—N4110.7 (3)
O5—S2—O6114.9 (2)C17—C16—N4105.8 (3)
O5—S2—N2111.5 (2)C16—C17—N3109.7 (3)
O6—S2—N2110.4 (1)N5—C18—N6110.1 (3)
O5—S2—C12111.2 (2)N6—C19—C20105.7 (3)
O6—S2—C12110.2 (2)C19—C20—N5109.4 (3)
N2—S2—C1297.3 (1)C15—N4—H4N125.9
C14—O4—Cu1176.2 (2)C16—N4—H4N125.9
C14—N2—S2111.0 (2)C18—N6—H6N125.6
C14—N2—Cu1i130.0 (2)C19—N6—H6N125.6
S2—N2—Cu1i118.3 (1)C6—C1—H1120.8
C15—N3—C17105.7 (3)C2—C1—H1120.8
C15—N3—Cu1128.0 (2)C3—C2—H2119.6
C17—N3—Cu1126.0 (2)C1—C2—H2119.6
C15—N4—C16108.1 (3)C2—C3—H3119.1
C18—N5—C20106.1 (3)C4—C3—H3119.1
C18—N5—Cu1129.1 (2)C3—C4—H4121.9
C20—N5—Cu1124.8 (2)C5—C4—H4121.9
C18—N6—C19108.7 (3)C13—C8—H8121.5
C7—N1—C7'101.5 (5)C9—C8—H8121.5
C7'—N1—S1'110.7 (3)C10—C9—H9118.9
C7—N1—S1110.7 (2)C8—C9—H9118.9
S1'—N1—S1119.9 (3)C9—C10—H10119.4
C7—N1—Cu1126.4 (2)C11—C10—H10119.4
C7'—N1—Cu1129.9 (3)C12—C11—H11121.7
S1'—N1—Cu1117.5 (2)C10—C11—H11121.7
S1—N1—Cu1121.0 (1)N3—C15—H15124.7
C6—C1—C2118.5 (4)N4—C15—H15124.7
C3—C2—C1120.9 (4)C17—C16—H16127.1
C2—C3—C4121.8 (4)N4—C16—H16127.1
C3—C4—C5116.2 (3)C16—C17—H17125.1
C6—C5—C4119.2 (3)N3—C17—H17125.1
C6—C5—C7'102.0 (4)N5—C18—H18124.9
C4—C5—C7'138.8 (4)N6—C18—H18124.9
C6—C5—S1112.5 (2)N6—C19—H19127.2
C4—C5—S1128.3 (3)C20—C19—H19127.2
C1—C6—C5123.2 (3)C19—C20—H20125.3
C1—C6—C7128.7 (4)N5—C20—H20125.3
C5—C6—C7108.0 (3)
O5—S2—N2—C14119.6 (2)S1—C5—C6—C70.2 (2)
O6—S2—N2—C14111.4 (2)C4—C5—C6—S1'178.6 (3)
C12—S2—N2—C143.3 (2)C7'—C5—C6—S1'0.0 (3)
O5—S2—N2—Cu1i51.9 (2)O2'—S1'—C6—C160.0 (9)
O6—S2—N2—Cu1i77.2 (2)O3'—S1'—C6—C163.1 (8)
C12—S2—N2—Cu1i168.1 (2)N1—S1'—C6—C1177.6 (3)
N1—Cu1—N3—C1521.0 (3)O2'—S1'—C6—C5122.7 (8)
N2i—Cu1—N3—C15112.1 (3)O3'—S1'—C6—C5114.2 (8)
O4—Cu1—N3—C15142.3 (3)N1—S1'—C6—C50.2 (3)
N1—Cu1—N3—C17165.7 (3)S1—N1—C7—O1179.6 (3)
N2i—Cu1—N3—C1761.2 (3)Cu1—N1—C7—O116.3 (4)
O4—Cu1—N3—C1744.4 (3)S1—N1—C7—C61.2 (3)
N1—Cu1—N5—C18109.6 (3)Cu1—N1—C7—C6165.3 (2)
N2i—Cu1—N5—C1823.4 (3)C1—C6—C7—O14.2 (5)
O4—Cu1—N5—C18128.8 (3)C5—C6—C7—O1179.2 (3)
N1—Cu1—N5—C2068.9 (2)C1—C6—C7—N1177.5 (3)
N2i—Cu1—N5—C20158.1 (2)C5—C6—C7—N10.9 (3)
O4—Cu1—N5—C2052.7 (2)S1'—N1—C7'—O1'158 (1)
O2'—S1'—N1—C7'118 (1)Cu1—N1—C7'—O1'38 (1)
O3'—S1'—N1—C7'105.3 (9)S1'—N1—C7'—C50.6 (3)
C6—S1'—N1—C7'0.5 (3)Cu1—N1—C7'—C5164.3 (2)
O2'—S1'—N1—Cu176 (1)C6—C5—C7'—O1'156 (2)
O3'—S1'—N1—Cu160.7 (9)C4—C5—C7'—O1'22 (2)
C6—S1'—N1—Cu1166.5 (2)C6—C5—C7'—N10.4 (3)
O3—S1—N1—C7113.2 (2)C4—C5—C7'—N1177.8 (4)
O2—S1—N1—C7117.4 (2)C13—C8—C9—C100.5 (6)
C5—S1—N1—C70.9 (2)C8—C9—C10—C111.3 (6)
O3—S1—N1—Cu151.9 (2)C9—C10—C11—C122.7 (6)
O2—S1—N1—Cu177.5 (2)C10—C11—C12—C132.3 (5)
C5—S1—N1—Cu1166.0 (2)C10—C11—C12—S2178.0 (3)
N5—Cu1—N1—C779.3 (2)O5—S2—C12—C1161.9 (4)
N3—Cu1—N1—C793.3 (2)O6—S2—C12—C1166.8 (4)
N2i—Cu1—N1—C7172.6 (2)N2—S2—C12—C11178.4 (3)
O4—Cu1—N1—C74.6 (2)O5—S2—C12—C13118.4 (2)
N5—Cu1—N1—C7'80.4 (3)O6—S2—C12—C13112.9 (2)
N3—Cu1—N1—C7'107.0 (3)N2—S2—C12—C132.0 (3)
N2i—Cu1—N1—C7'12.9 (3)C11—C12—C13—C80.6 (5)
O4—Cu1—N1—C7'164.3 (3)S2—C12—C13—C8179.7 (2)
N5—Cu1—N1—S1'82.592)C11—C12—C13—C14179.8 (3)
N3—Cu1—N1—S1'90.2 (2)S2—C12—C13—C140.1 (3)
N2i—Cu1—N1—S1'175.7 (2)C9—C8—C13—C120.8 (5)
O4—Cu1—N1—S1'1.5 (2)C9—C8—C13—C14178.6 (3)
N5—Cu1—N1—S183.391)S2—N2—C14—O4178.2 (2)
N3—Cu1—N1—S1104.1 (1)Cu1i—N2—C14—O411.7 (4)
N2i—Cu1—N1—S110.0 (2)S2—N2—C14—C133.7 (3)
O4—Cu1—N1—S1167.2 (1)Cu1i—N2—C14—C13166.5 (2)
C6—C1—C2—C33.8 (7)C12—C13—C14—O4179.6 (3)
C1—C2—C3—C43.3 (7)C8—C13—C14—O40.9 (5)
C2—C3—C4—C50.8 (6)C12—C13—C14—N22.2 (3)
C3—C4—C5—C64.5 (5)C8—C13—C14—N2177.3 (3)
C3—C4—C5—S1177.0 (3)C17—N3—C15—N40.4 (4)
O3—S1—C5—C6114.1 (2)Cu1—N3—C15—N4174.0 (2)
O2—S1—C5—C6116.9 (2)C16—N4—C15—N30.2 (4)
N1—S1—C5—C60.4 (1)C15—N4—C16—C170.1 (4)
O3—S1—C5—C467.4 (3)N4—C16—C17—N30.3 (4)
O2—S1—C5—C461.7 (3)C15—N3—C17—C160.5 (4)
N1—S1—C5—C4178.2 (3)Cu1—N3—C17—C16174.1 (2)
C2—C1—C6—C50.0 (5)C20—N5—C18—N61.1 (4)
C2—C1—C6—C7176.2 (4)Cu1—N5—C18—N6179.8 (2)
C2—C1—C6—S1'177.2 (4)C19—N6—C18—N50.7 (4)
C4—C5—C6—C14.2 (4)C18—N6—C19—C200.0 (4)
C7'—C5—C6—C1177.1 (3)N6—C19—C20—N50.6 (4)
S1—C5—C6—C1177.1 (3)C18—N5—C20—C191.1 (4)
C4—C5—C6—C7178.9 (3)Cu1—N5—C20—C19179.9 (2)
C7'—C5—C6—C70.3 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2ii0.862.452.913 (4)114
N4—H4N···O5iii0.862.152.966 (4)158
N6—H6N···O6iv0.862.432.965 (4)121
N6—H6N···O2v0.862.633.261 (4)131
N6—H6N···O3v0.862.433.036 (4)128
N6—H6N···O1v0.862.272.98 (2)140
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4NO3S)4(C3H4N2)4]
Mr1128.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.1176 (1), 11.5112 (1), 17.1203 (1)
β (°) 95.346 (1)
V3)2181.47 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.44 × 0.36 × 0.24
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.610, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
15502, 5330, 4073
Rint0.068
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 0.98
No. of reflections5330
No. of parameters332
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 1.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N12.065 (2)Cu1—N51.960 (2)
Cu1—N2i2.111 (2)Cu1—O42.275 (2)
Cu1—N31.967 (2)
N1—Cu1—N2i133.0 (1)N2—Cu1—N5i92.7 (1)
N1—Cu1—N393.5 (1)N2i—Cu1—O4105.6 (1)
N1—Cu1—N589.6 (1)N3—Cu1—N5172.0 (1)
N1—Cu1—O4121.4 (1)N3—Cu1—O487.1 (1)
N2—Cu1—N3i90.6 (1)N5—Cu1—O485.0 (1)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2ii0.862.452.913 (4)114
N4—H4N···O5iii0.862.152.966 (4)158
N6—H6N···O6iv0.862.432.965 (4)121
N6—H6N···O2v0.862.633.261 (4)131
N6—H6N···O3v0.862.433.036 (4)128
N6—H6N···O1'v0.862.272.98 (2)140
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.
Equilibrium B3LYP/6-31++G(d,p) geometry for the isolated saccharinate ion (Å, °) top
S1-O21.483
S1-O31.483
S1-N11.357
S1-C51.813
O1-C71.241
N1-C71.642
C6-C11.393
C1-C21.401
C2-C31.403
C3-C41.402
C4-C51.393
C5-C61.388
C6-C71.525
S1-N1-C7111.9
S1-C5-C6106.2
N1-S1-C596.6
N1-C7-C6113.2
C1-C2-C3120.7
C2-C3-C4120.6
C3-C4-C5117.4
C4-C5-C6122.6
C5-C6-C7112.1
C5-C6-C1120.1
C6-C1-C2118.5
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds