Download citation
Download citation
link to html
The two title compounds, [M(C6H14O2PS2)2(C12H8N2)], where M = CdII and FeII, are isomorphous. Each compound has a crystallographic twofold axis of symmetry through the metal atom and the 1,10-phenanthroline mol­ecule. The central metal atom is coordinated to four S atoms from the two dithiophos­phate groups and two N atoms from the 1,10-phenanthroline ligand. The environment of the metal atom is a distorted octahedron.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014256/bj1016sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014256/bj1016Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014256/bj1016IIsup3.hkl
Contains datablock II

CCDC references: 158239; 158240

Comment top

Metal dialkyl dithiophosphates and their derivatives have been widely employed both as antioxidant and antiwear additives in rubber and as lubricating oils (Harrison & Kikabhai, 1987; Kovtun et al., 1992). Adducts and their formation reactions have also been found useful in a wide variety of ways, such as with biological systems (Livingstone & Mihkelson, 1970). Metal complex ions of the type [M(LL)3], where LL is either 1,10-phenanthroline (phen) or a modified phen ligand, are particularly attractive species for developing new diagnostic and therapeutic agents which can recognize and cleave DNA (Barton, 1986; Naing et al., 1995). Furthermore, cadmium is often substituted in the proteins and used to aid in the determination of the coordination environment of the native metal, primarily because of the usefulness of Cd NMR. Also a series of potential models, [M(SR)x(N-donor)(4 - x)] (M = Zn, Co, Cd) have been reported for cysteine containing zinc metalloproteins (Santos et al., 1990). The original CoII(dtp)2 is easily oxidized. However, similar complexes are very stable in air. Fe(II)(dtp)2 and its adducts are also expected to have this property. The title adducts, (I) and (II), were prepared and the structures were determined so that the determination of the equilibrium constants can be done to confirm the property. \sch

In complex (I), the Cd—N bond length is comparable with the complexes of [Cd{(n-BuS2CS)2}(bipy)] [2.368 (3) Å] (Black et al., 1986). It is however shorter than those of [Cd{(Et)2NCS2}(bipy) [2.434 (6) Å] (Glinskaya et al., 1992) but longer than those of [Cd(C24H18O4)(bipy)] [2.342 (5), 2.355 (5) Å; Annan et al., 1990). The Fe—N bond length in complex (II) is comparable to those of the complex [Fe(phen)2PhCOO]2OCl2·7H2O [2.221 (4), 2.168 (3), 2.139 (3) and 2.270 (3) Å] (Li et al., 1995).

The Cd—S distances in (I) are in good agreement with [Cd(II){(Et-dtp)2}(hex)2] [2.682 (1), 2.704 (1) Å] (Shimoi et al., 1982). However, the Cd—S bond lengths are longer than those found in tetrahedral configuration, [Cd(II)(iPr-dtp)2] [2.486 (7), 2.590 (8) Å] (Lawton & Kokotailo, 1969) but shorter than those in [Cd{(iPr-dtp)2}(NMe4)] [2.659 (1), 2.777 (2) Å] (McCleverty et al., 1982). Fe—S bond distances in (II), the FeII—S distances are are longer than FeIII—S reported by Drew et al., 1986 [2.461 (2), 2.492 (2), 2.473 (2) Å].

The P—S distances in the dtp groups in (I) and (II) are nearly identical, and are intermediate between the single bond (2.09 Å) and the double bond (1.87 Å) values.

In (I), the S1—Cd1—S2 bond angle is larger than those found in [Cd{(iPr-dtp)2}(NMe4)] [74.9 (5)°] and [Cd{(Et)2NCS2}(bipy)] [67.3 (1), 68.5 (2)°]. The N1—Cd1—N1A bond angle is in good agreement with those of [Cd(phen)3](ClO4)2 [71.7 (1)°; Xiong et al., 1997]. In (II), the S1—Fe1—S2 bond angle is 79.8 (7)°. The N1—Fe1—N1a bond angle [75.1 (2)°] is similar to that of the six-coordiate compound [Fe(phen)2ph]2OCl·7H2O [75.1 (1)°; Li et al., 1995].

The coordination around Cd1 in (I) and Fe1 in (II) is a distorted octahedron with bond angles ranging from 70.7 (2) to 164.2 (1)° and 75.1 (2) to 168.2 (1)°, respectively. The central metal atom is coordinated to four S atoms from the two dtp groups and two N atoms from the 1,10-phenanthroline ligand. In both complexes, the four-membered ring formed by M1, S1, S2, and P1 atoms is almost planar. This plane and the plane through M1, N1, C7, N1A and C7A atoms make a dihedral angle of 86.5 (1) and 86.9° for (I) and (II), respectively.

Experimental top

Complex (I): This compound was prepared by mixing EtOH solution (50 ml) of cadmium(II) bis(O,O'-diisopropyl dithiophosphate) (0.1 mmol) and phen (0.1 mmol) with heating. After cooling to room temperature and filtration, colorless single crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent. Complex (II): this complex was prepared by using iron(II) bis(O,O'-diisopropyldithiophosphate) and phen in acetone solvent using the method as in complex (I). The dark red single crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent.

Refinement top

After checking their presence in the difference map, all H-atom positions were placed at idealized positions and were allowed to ride on their parent carbon atoms. Due to the large fraction of weak data at higher angles in (II), the 2θ maximum for (II) is limited to 50°.

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The structure of compound (II) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(I) top
Crystal data top
[Cd(C6H14O2PS2)2(C12H8N2)]F(000) = 1472
Mr = 719.13Dx = 1.459 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6966 reflections
a = 11.7493 (1) Åθ = 2.0–28.3°
b = 19.0809 (3) ŵ = 1.05 mm1
c = 14.6006 (2) ÅT = 293 K
V = 3273.27 (7) Å3Block, colourless
Z = 40.46 × 0.42 × 0.36 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
4054 independent reflections
Radiation source: fine-focus sealed tube2965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 2.0°
ω scansh = 1512
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1625
Tmin = 0.644, Tmax = 0.704l = 1918
21589 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0962P)2 + 1.5469P]
where P = (Fo2 + 2Fc2)/3
4054 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Cd(C6H14O2PS2)2(C12H8N2)]V = 3273.27 (7) Å3
Mr = 719.13Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 11.7493 (1) ŵ = 1.05 mm1
b = 19.0809 (3) ÅT = 293 K
c = 14.6006 (2) Å0.46 × 0.42 × 0.36 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
4054 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2965 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.704Rint = 0.078
21589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.07Δρmax = 1.03 e Å3
4054 reflectionsΔρmin = 1.02 e Å3
168 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.190082 (18)0.25000.04888 (17)
P10.21444 (9)0.11766 (6)0.16000 (9)0.0589 (3)
S10.10398 (11)0.17045 (8)0.08559 (8)0.0776 (4)
S20.16992 (10)0.10456 (6)0.28886 (9)0.0665 (3)
O20.2503 (3)0.0454 (2)0.1180 (3)0.0931 (12)
O10.3345 (3)0.15485 (19)0.1671 (3)0.0848 (10)
N10.1055 (3)0.29127 (15)0.2900 (2)0.0477 (7)
C40.1800 (7)0.0036 (3)0.0699 (5)0.109 (2)
H4A0.14710.02130.01750.131*
C60.0854 (8)0.0346 (4)0.1205 (6)0.135 (3)
H6A0.03590.00190.14210.202*
H6B0.04370.06550.08090.202*
H6C0.11440.06060.17170.202*
C50.2648 (7)0.0557 (4)0.0320 (6)0.139 (3)
H5A0.32380.03100.00010.209*
H5B0.29750.08210.08140.209*
H5C0.22680.08700.00940.209*
C10.3908 (5)0.1841 (3)0.0882 (5)0.0900 (17)
H1A0.34140.17720.03480.108*
C20.4007 (11)0.2593 (5)0.1046 (9)0.221 (7)
H2A0.32650.27860.11560.331*
H2B0.44810.26720.15720.331*
H2C0.43400.28140.05200.331*
C30.4998 (6)0.1483 (6)0.0704 (8)0.177 (6)
H3A0.48610.09930.06030.266*
H3B0.53500.16820.01710.266*
H3C0.54920.15400.12220.266*
C70.0552 (3)0.35357 (18)0.2706 (2)0.0448 (8)
C80.2070 (4)0.2914 (2)0.3273 (3)0.0637 (10)
H8A0.24100.24870.34120.076*
C90.2664 (4)0.3533 (3)0.3468 (4)0.0751 (13)
H9A0.33870.35140.37260.090*
C100.2178 (4)0.4154 (2)0.3281 (3)0.0730 (13)
H10A0.25630.45670.34120.088*
C110.1098 (4)0.41773 (19)0.2890 (3)0.0577 (10)
C120.0520 (5)0.4815 (2)0.2681 (4)0.0785 (15)
H12A0.08760.52400.28020.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0405 (2)0.0336 (2)0.0726 (3)0.0000.00371 (16)0.000
P10.0474 (6)0.0508 (6)0.0786 (7)0.0086 (4)0.0097 (5)0.0022 (5)
S10.0656 (8)0.1065 (10)0.0607 (6)0.0285 (7)0.0048 (5)0.0086 (6)
S20.0655 (7)0.0562 (6)0.0778 (7)0.0186 (5)0.0021 (6)0.0104 (5)
O20.085 (3)0.080 (2)0.114 (3)0.0264 (19)0.002 (2)0.023 (2)
O10.059 (2)0.101 (3)0.094 (2)0.0079 (17)0.0029 (17)0.024 (2)
N10.0436 (16)0.0386 (14)0.0610 (18)0.0038 (12)0.0008 (14)0.0027 (14)
C40.119 (6)0.087 (4)0.122 (5)0.011 (4)0.004 (4)0.046 (4)
C60.123 (7)0.101 (5)0.181 (8)0.007 (5)0.020 (6)0.016 (5)
C50.187 (9)0.107 (5)0.125 (6)0.055 (5)0.012 (6)0.043 (4)
C10.064 (3)0.105 (4)0.101 (4)0.000 (3)0.021 (3)0.017 (3)
C20.255 (14)0.119 (7)0.289 (15)0.055 (8)0.163 (12)0.006 (8)
C30.106 (7)0.176 (10)0.249 (13)0.048 (6)0.099 (7)0.074 (9)
C70.047 (2)0.0382 (17)0.0490 (18)0.0078 (14)0.0104 (15)0.0021 (13)
C80.053 (2)0.057 (2)0.081 (3)0.0061 (18)0.008 (2)0.006 (2)
C90.055 (3)0.084 (3)0.086 (3)0.023 (2)0.012 (2)0.008 (3)
C100.076 (3)0.057 (3)0.086 (3)0.025 (2)0.008 (2)0.014 (2)
C110.061 (2)0.0409 (19)0.071 (2)0.0124 (16)0.018 (2)0.0053 (17)
C120.087 (3)0.037 (2)0.112 (4)0.012 (2)0.031 (3)0.007 (2)
Geometric parameters (Å, º) top
Cd1—N12.368 (3)N1—C71.358 (5)
Cd1—N1i2.368 (3)C4—C61.459 (11)
Cd1—S22.6402 (10)C4—C51.512 (8)
Cd1—S2i2.6402 (10)C1—C21.458 (10)
Cd1—S1i2.7194 (12)C1—C31.474 (8)
Cd1—S12.7194 (12)C7—C111.408 (5)
P1—O21.566 (4)C7—C7i1.429 (8)
P1—O11.582 (4)C8—C91.402 (6)
P1—S21.9688 (18)C9—C101.342 (7)
P1—S11.9695 (16)C10—C111.391 (7)
O2—C41.432 (7)C11—C121.427 (6)
O1—C11.442 (6)C12—C12i1.331 (12)
N1—C81.311 (5)
N1—Cd1—N1i70.73 (15)P1—S2—Cd185.24 (5)
N1—Cd1—S293.16 (8)C4—O2—P1127.7 (4)
N1i—Cd1—S2162.35 (8)C1—O1—P1122.0 (4)
N1—Cd1—S2i162.35 (8)C8—N1—C7118.8 (3)
N1i—Cd1—S2i93.16 (8)C8—N1—Cd1125.4 (3)
S2—Cd1—S2i103.65 (6)C7—N1—Cd1115.8 (2)
N1—Cd1—S1i97.44 (8)O2—C4—C6117.2 (6)
N1i—Cd1—S1i95.46 (9)O2—C4—C5103.2 (6)
S2—Cd1—S1i93.72 (4)C6—C4—C5114.9 (6)
S2i—Cd1—S1i76.40 (4)O1—C1—C2106.6 (6)
N1—Cd1—S195.46 (9)O1—C1—C3111.1 (6)
N1i—Cd1—S197.44 (8)C2—C1—C3114.6 (8)
S2—Cd1—S176.40 (4)N1—C7—C11121.5 (4)
S2i—Cd1—S193.72 (4)N1—C7—C7i118.9 (2)
S1i—Cd1—S1164.16 (7)C11—C7—C7i119.6 (3)
O2—P1—O1100.4 (2)N1—C8—C9122.6 (4)
O2—P1—S2109.50 (18)C10—C9—C8119.4 (4)
O1—P1—S2103.35 (15)C9—C10—C11120.0 (4)
O2—P1—S1114.28 (17)C10—C11—C7117.7 (4)
O1—P1—S1113.22 (15)C10—C11—C12123.4 (4)
S2—P1—S1114.65 (7)C7—C11—C12118.9 (4)
P1—S1—Cd183.08 (5)C12i—C12—C11121.5 (3)
O2—P1—S1—Cd1134.76 (19)S1—Cd1—N1—C883.1 (3)
O1—P1—S1—Cd1111.07 (17)N1i—Cd1—N1—C70.23 (17)
S2—P1—S1—Cd17.17 (8)S2—Cd1—N1—C7172.4 (2)
N1—Cd1—S1—P186.94 (9)S2i—Cd1—N1—C725.3 (5)
N1i—Cd1—S1—P1158.17 (9)S1i—Cd1—N1—C793.4 (2)
S2—Cd1—S1—P15.00 (6)S1—Cd1—N1—C795.8 (2)
S2i—Cd1—S1—P1108.15 (6)P1—O2—C4—C662.5 (9)
S1i—Cd1—S1—P157.52 (5)P1—O2—C4—C5170.2 (5)
O2—P1—S2—Cd1137.34 (17)P1—O1—C1—C2117.2 (8)
O1—P1—S2—Cd1116.33 (15)P1—O1—C1—C3117.4 (7)
S1—P1—S2—Cd17.36 (8)C8—N1—C7—C110.3 (5)
N1—Cd1—S2—P189.88 (9)Cd1—N1—C7—C11178.6 (3)
N1i—Cd1—S2—P166.3 (3)C8—N1—C7—C7i179.6 (4)
S2i—Cd1—S2—P195.55 (6)Cd1—N1—C7—C7i0.7 (5)
S1i—Cd1—S2—P1172.44 (6)C7—N1—C8—C90.7 (7)
S1—Cd1—S2—P14.98 (6)Cd1—N1—C8—C9178.1 (4)
O1—P1—O2—C4159.5 (6)N1—C8—C9—C100.8 (8)
S2—P1—O2—C492.1 (6)C8—C9—C10—C110.4 (8)
S1—P1—O2—C438.0 (6)C9—C10—C11—C70.0 (7)
O2—P1—O1—C176.7 (4)C9—C10—C11—C12179.2 (5)
S2—P1—O1—C1170.2 (4)N1—C7—C11—C100.0 (6)
S1—P1—O1—C145.6 (4)C7i—C7—C11—C10179.2 (4)
N1i—Cd1—N1—C8179.0 (4)N1—C7—C11—C12179.2 (4)
S2—Cd1—N1—C86.4 (3)C7i—C7—C11—C121.6 (7)
S2i—Cd1—N1—C8155.9 (3)C10—C11—C12—C12i179.1 (6)
S1i—Cd1—N1—C887.7 (3)C7—C11—C12—C12i0.0 (9)
Symmetry code: (i) x, y, z+1/2.
(II) Bis(O,O'- diisopropyldithiophosphato-S,S')(1,10-phenanthroline)Iron(II) complex: [Fe{(iPr-dtp)2}(phen)] top
Crystal data top
[Fe(C12H8N2)(C6H14O2PS2)2]F(000) = 1384
Mr = 662.58Dx = 1.375 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6556 reflections
a = 11.5761 (2) Åθ = 2.1–28.4°
b = 18.8015 (1) ŵ = 0.86 mm1
c = 14.7098 (2) ÅT = 293 K
V = 3201.56 (7) Å3Block, dark red
Z = 40.32 × 0.28 × 0.20 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
2834 independent reflections
Radiation source: fine-focus sealed tube1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 713
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2213
Tmin = 0.770, Tmax = 0.846l = 1217
8551 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1222P)2]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Fe(C12H8N2)(C6H14O2PS2)2]V = 3201.56 (7) Å3
Mr = 662.58Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 11.5761 (2) ŵ = 0.86 mm1
b = 18.8015 (1) ÅT = 293 K
c = 14.7098 (2) Å0.32 × 0.28 × 0.20 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
2834 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1686 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.846Rint = 0.089
8551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.97Δρmax = 1.02 e Å3
2834 reflectionsΔρmin = 0.61 e Å3
168 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.31194 (5)0.25000.0409 (4)
P10.20786 (13)0.38234 (8)0.33768 (12)0.0525 (5)
S10.09554 (14)0.32606 (10)0.40749 (11)0.0665 (6)
S20.15747 (14)0.39888 (8)0.21160 (11)0.0565 (5)
O10.3302 (4)0.3447 (2)0.3283 (3)0.0734 (13)
O20.2469 (5)0.4532 (3)0.3844 (4)0.0915 (16)
N10.1036 (4)0.2188 (2)0.2085 (3)0.0421 (11)
C10.3890 (6)0.3155 (4)0.4078 (5)0.073 (2)
H1A0.34060.32290.46160.088*
C20.3979 (11)0.2369 (5)0.3890 (9)0.172 (6)
H2A0.32190.21750.38100.258*
H2B0.44240.22940.33480.258*
H2C0.43510.21380.43940.258*
C30.5002 (8)0.3518 (6)0.4210 (9)0.170 (6)
H3A0.48690.40160.43160.254*
H3B0.53930.33160.47250.254*
H3C0.54700.34610.36770.254*
C40.1777 (9)0.5052 (5)0.4270 (7)0.111 (3)
H4A0.14130.48090.47850.133*
C50.2635 (9)0.5568 (5)0.4693 (7)0.133 (4)
H5A0.32330.53050.49970.199*
H5B0.29710.58580.42250.199*
H5C0.22430.58660.51230.199*
C60.0844 (9)0.5382 (5)0.3782 (7)0.122 (3)
H6A0.03460.50220.35380.183*
H6B0.04120.56810.41880.183*
H6C0.11510.56650.32950.183*
C70.0553 (5)0.1550 (3)0.2279 (3)0.0401 (13)
C80.2059 (5)0.2191 (3)0.1679 (4)0.0551 (16)
H8A0.23960.26260.15380.066*
C90.2650 (6)0.1570 (4)0.1455 (5)0.0695 (19)
H9A0.33620.15940.11630.083*
C100.2184 (6)0.0932 (4)0.1662 (5)0.069 (2)
H10A0.25800.05160.15240.083*
C110.1104 (5)0.0901 (3)0.2085 (4)0.0553 (17)
C120.0522 (6)0.0249 (3)0.2310 (6)0.079 (2)
H12A0.08820.01830.21870.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0367 (6)0.0294 (6)0.0565 (8)0.0000.0014 (5)0.000
P10.0440 (9)0.0387 (8)0.0749 (12)0.0048 (7)0.0108 (8)0.0026 (7)
S10.0557 (10)0.0902 (14)0.0537 (10)0.0231 (9)0.0040 (8)0.0049 (9)
S20.0543 (9)0.0430 (9)0.0723 (12)0.0107 (8)0.0042 (8)0.0077 (7)
O10.050 (2)0.078 (3)0.093 (3)0.009 (2)0.003 (3)0.019 (3)
O20.092 (4)0.059 (3)0.124 (4)0.010 (3)0.023 (3)0.019 (3)
N10.038 (2)0.033 (2)0.055 (3)0.001 (2)0.002 (2)0.001 (2)
C10.054 (4)0.085 (5)0.080 (5)0.002 (4)0.012 (4)0.016 (4)
C20.189 (12)0.091 (7)0.236 (14)0.060 (8)0.110 (10)0.003 (8)
C30.109 (8)0.152 (10)0.248 (15)0.051 (8)0.101 (9)0.081 (10)
C40.104 (7)0.089 (6)0.140 (8)0.004 (6)0.005 (7)0.059 (6)
C50.182 (10)0.081 (6)0.135 (8)0.021 (7)0.046 (7)0.046 (6)
C60.108 (8)0.083 (6)0.174 (10)0.007 (6)0.004 (7)0.032 (7)
C70.046 (3)0.029 (3)0.046 (3)0.005 (3)0.011 (3)0.003 (2)
C80.050 (4)0.055 (4)0.061 (4)0.008 (3)0.009 (3)0.000 (3)
C90.049 (4)0.080 (5)0.080 (5)0.021 (4)0.009 (4)0.012 (4)
C100.069 (5)0.052 (4)0.086 (5)0.026 (4)0.007 (4)0.014 (3)
C110.059 (4)0.035 (3)0.072 (4)0.011 (3)0.021 (3)0.009 (3)
C120.090 (5)0.025 (3)0.123 (7)0.009 (3)0.036 (5)0.004 (3)
Geometric parameters (Å, º) top
Fe1—N12.209 (4)N1—C71.354 (6)
Fe1—N1i2.209 (4)C1—C31.470 (10)
Fe1—S22.513 (2)C1—C21.506 (11)
Fe1—S2i2.5127 (16)C4—C61.438 (11)
Fe1—S12.581 (2)C4—C51.520 (11)
Fe1—S1i2.5808 (17)C7—C111.406 (7)
P1—O21.566 (5)C7—C7i1.435 (11)
P1—O11.589 (4)C8—C91.393 (8)
P1—S11.966 (2)C9—C101.349 (9)
P1—S21.969 (2)C10—C111.398 (9)
O1—C11.460 (8)C11—C121.438 (8)
O2—C41.412 (9)C12—C12i1.331 (15)
N1—C81.327 (7)
N1—Fe1—N1i75.1 (2)P1—S2—Fe184.29 (7)
N1—Fe1—S293.44 (11)C1—O1—P1120.9 (4)
N1i—Fe1—S2166.38 (12)C4—O2—P1128.4 (5)
N1—Fe1—S2i166.38 (12)C8—N1—C7117.9 (5)
N1i—Fe1—S2i93.44 (11)C8—N1—Fe1127.2 (4)
S2—Fe1—S2i98.84 (8)C7—N1—Fe1114.8 (3)
N1—Fe1—S195.56 (12)O1—C1—C3109.9 (7)
N1i—Fe1—S193.80 (12)O1—C1—C2104.7 (6)
S2—Fe1—S179.86 (6)C3—C1—C2114.9 (9)
S2i—Fe1—S192.42 (6)O2—C4—C6120.2 (8)
N1—Fe1—S1i93.80 (12)O2—C4—C5104.6 (8)
N1i—Fe1—S1i95.56 (12)C6—C4—C5114.8 (8)
S2—Fe1—S1i92.42 (6)N1—C7—C11122.6 (5)
S2i—Fe1—S1i79.86 (6)N1—C7—C7i117.6 (3)
S1—Fe1—S1i168.19 (10)C11—C7—C7i119.8 (4)
O2—P1—O199.2 (3)N1—C8—C9122.7 (6)
O2—P1—S1114.8 (2)C10—C9—C8119.7 (6)
O1—P1—S1113.27 (19)C9—C10—C11119.7 (6)
O2—P1—S2111.4 (2)C10—C11—C7117.4 (6)
O1—P1—S2104.6 (2)C10—C11—C12123.9 (6)
S1—P1—S2112.40 (10)C7—C11—C12118.7 (6)
P1—S1—Fe182.53 (7)C12i—C12—C11121.5 (4)
O2—P1—S1—Fe1137.2 (2)S1i—Fe1—N1—C885.5 (5)
O1—P1—S1—Fe1109.9 (2)N1i—Fe1—N1—C70.0 (3)
S2—P1—S1—Fe18.47 (10)S2—Fe1—N1—C7172.5 (3)
N1—Fe1—S1—P186.29 (13)S2i—Fe1—N1—C733.1 (8)
N1i—Fe1—S1—P1161.62 (13)S1—Fe1—N1—C792.4 (4)
S2—Fe1—S1—P16.22 (7)S1i—Fe1—N1—C794.8 (4)
S2i—Fe1—S1—P1104.77 (8)P1—O1—C1—C3118.6 (7)
S1i—Fe1—S1—P155.99 (7)P1—O1—C1—C2117.5 (8)
O2—P1—S2—Fe1139.1 (2)P1—O2—C4—C655.7 (12)
O1—P1—S2—Fe1114.64 (19)P1—O2—C4—C5173.4 (6)
S1—P1—S2—Fe18.67 (10)C8—N1—C7—C111.4 (8)
N1—Fe1—S2—P188.85 (13)Fe1—N1—C7—C11178.3 (4)
N1i—Fe1—S2—P157.0 (5)C8—N1—C7—C7i179.9 (6)
S2i—Fe1—S2—P197.08 (7)Fe1—N1—C7—C7i0.1 (7)
S1—Fe1—S2—P16.19 (7)C7—N1—C8—C90.5 (9)
S1i—Fe1—S2—P1177.19 (7)Fe1—N1—C8—C9179.2 (5)
O2—P1—O1—C173.0 (5)N1—C8—C9—C100.8 (10)
S1—P1—O1—C149.2 (5)C8—C9—C10—C111.2 (10)
S2—P1—O1—C1171.9 (4)C9—C10—C11—C70.3 (9)
O1—P1—O2—C4167.0 (7)C9—C10—C11—C12178.2 (7)
S1—P1—O2—C445.9 (8)N1—C7—C11—C101.0 (9)
S2—P1—O2—C483.3 (8)C7i—C7—C11—C10179.5 (6)
N1i—Fe1—N1—C8179.7 (6)N1—C7—C11—C12179.6 (6)
S2—Fe1—N1—C87.1 (5)C7i—C7—C11—C122.0 (10)
S2i—Fe1—N1—C8147.2 (4)C10—C11—C12—C12i178.1 (9)
S1—Fe1—N1—C887.3 (5)C7—C11—C12—C12i0.4 (13)
Symmetry code: (i) x, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd(C6H14O2PS2)2(C12H8N2)][Fe(C12H8N2)(C6H14O2PS2)2]
Mr719.13662.58
Crystal system, space groupOrthorhombic, PbcnOrthorhombic, Pbcn
Temperature (K)293293
a, b, c (Å)11.7493 (1), 19.0809 (3), 14.6006 (2)11.5761 (2), 18.8015 (1), 14.7098 (2)
V3)3273.27 (7)3201.56 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.050.86
Crystal size (mm)0.46 × 0.42 × 0.360.32 × 0.28 × 0.20
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Siemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.644, 0.7040.770, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
21589, 4054, 2965 8551, 2834, 1686
Rint0.0780.089
(sin θ/λ)max1)0.6680.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.168, 1.07 0.074, 0.127, 0.97
No. of reflections40542834
No. of parameters168168
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.021.02, 0.61

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Bond lengths (A°) and angles (°) for I and II top
III
M-N12.368 (3)2.209 (4)
M-S12.719 (1)2.581 (2)
M-S22.640 (1)2.513 (2)
P1-S11.970 (2)1.966 (2)
P1-S21.969 (2)1.969 (2)
N1-M-N1i70.73 (15)75.1 (2)
S2-M-S176.40 (4)79.86 (6)
M = Cd (I), Fe (II); symmetry code i: -x, y, -z+1/2
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds