Download citation
Download citation
link to html
The title compound, 2,2′-(2,4,8,10-tetra­thia­spiro­[5.5]­undec­ane-3,9-diyl­idene)­bis­(propane­di­nitrile), C13H8N4S4, has been designed and synthesized for use as a potential new organic molecular electronic material. The spiro-annulated structure has twofold symmetry and is formed by two equal push–pull ethyl­ene units, with the cyclo­alkyl­thio groups as electron donors and the cyano groups as electron acceptors. The intermolecular S...N non-bonded separation within a layer in the lattice is 3.296 (6) Å, indicating a strong intermolecular interaction between the cyano groups and the S atoms, while the S atoms in two neighbouring mol­ecules have a shortest S...S contact of 3.449 (3) Å. In addition, attractive C—H...N and C—H...S interactions bridge adjacent mol­ecules either within a layer or between layers. In short, these four types of intermolecular interactions combine to form an extended three-dimensional network in the lattice, resulting in a highly ordered array of molecular packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101000543/bj1015sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000543/bj1015Isup2.hkl
Contains datablock I

CCDC reference: 163936

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN ((Molecular Structure Corporation, 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

2,2'-(2,4,8,10-tetrathiaspiro[5.5]undecane-3,9-diylidene)bis(propanedinitrile) top
Crystal data top
C13H8N4S4F(000) = 712
Mr = 348.47Dx = 1.564 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.596 (8) ÅCell parameters from 20 reflections
b = 7.157 (2) Åθ = 6.9–12.3°
c = 16.498 (3) ŵ = 0.64 mm1
β = 95.53 (3)°T = 293 K
V = 1480.4 (11) Å3Prism, yellow
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Rigaku AFC-7R
diffractometer
872 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 014
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 08
Tmin = 0.832, Tmax = 0.883l = 1919
1370 measured reflections3 standard reflections every 200 reflections
1307 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0659P)2 + 6.8039P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.177(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.67 e Å3
1307 reflectionsΔρmin = 0.35 e Å3
96 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77888 (11)0.0962 (2)0.70949 (8)0.0531 (5)
S20.93102 (13)0.0539 (3)0.58230 (10)0.0673 (6)
N10.5300 (5)0.0508 (9)0.5951 (3)0.0743 (16)
N20.7516 (5)0.0650 (8)0.4057 (3)0.0799 (17)
C10.9029 (4)0.2102 (8)0.7465 (4)0.0536 (14)
C21.00000.0837 (11)0.75000.0514 (19)
C30.9953 (5)0.0451 (8)0.6751 (4)0.0632 (17)
C40.8015 (5)0.0586 (7)0.6087 (3)0.0504 (14)
C50.7178 (5)0.0312 (7)0.5510 (3)0.0512 (13)
C60.6118 (5)0.0449 (9)0.5729 (3)0.0560 (15)
C70.7357 (5)0.0215 (8)0.4689 (4)0.0574 (15)
H1A0.91430.31560.71150.080*
H1B0.89610.25860.80070.080*
H3A0.95780.15850.68730.095*
H3B1.06750.07990.66580.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0508 (8)0.0691 (10)0.0409 (7)0.0038 (7)0.0118 (6)0.0072 (7)
S20.0681 (10)0.0816 (12)0.0565 (10)0.0064 (9)0.0279 (8)0.0128 (8)
N10.069 (4)0.090 (4)0.063 (3)0.001 (3)0.002 (3)0.018 (3)
N20.106 (5)0.084 (4)0.052 (3)0.001 (3)0.021 (3)0.005 (3)
C10.056 (3)0.052 (3)0.053 (3)0.002 (3)0.006 (3)0.005 (3)
C20.050 (4)0.049 (5)0.056 (5)0.0000.014 (4)0.000
C30.064 (4)0.052 (4)0.075 (4)0.003 (3)0.018 (3)0.019 (3)
C40.063 (3)0.046 (3)0.044 (3)0.002 (3)0.019 (3)0.002 (2)
C50.067 (4)0.045 (3)0.042 (3)0.001 (3)0.006 (3)0.003 (3)
C60.068 (4)0.060 (4)0.038 (3)0.004 (3)0.005 (3)0.008 (3)
C70.080 (4)0.051 (3)0.042 (3)0.004 (3)0.011 (3)0.001 (3)
Geometric parameters (Å, º) top
S1—C41.734 (5)C2—C1i1.518 (7)
S1—C11.815 (6)C2—C31.538 (7)
S2—C41.729 (6)C2—C3i1.538 (7)
S2—C31.807 (7)C3—H3A0.9700
N1—C61.127 (7)C3—H3B0.9700
N2—C71.124 (7)C4—C51.365 (8)
C1—C21.518 (7)C5—C61.419 (8)
C1—H1A0.9700C5—C71.445 (8)
C1—H1B0.9700
C4—S1—C1100.2 (3)C2—C3—S2115.2 (4)
C4—S2—C398.6 (3)C2—C3—H3A108.5
C2—C1—S1114.1 (4)S2—C3—H3A108.5
C2—C1—H1A108.7C2—C3—H3B108.5
S1—C1—H1A108.7S2—C3—H3B108.5
C2—C1—H1B108.7H3A—C3—H3B107.5
S1—C1—H1B108.7C5—C4—S2120.4 (4)
H1A—C1—H1B107.6C5—C4—S1120.2 (4)
C1i—C2—C1106.8 (7)S2—C4—S1119.4 (3)
C1i—C2—C3110.9 (3)C4—C5—C6119.7 (5)
C1—C2—C3111.0 (3)C4—C5—C7120.7 (5)
C1i—C2—C3i111.0 (3)C6—C5—C7119.5 (5)
C1—C2—C3i110.9 (3)N1—C6—C5175.4 (6)
C3—C2—C3i106.3 (7)N2—C7—C5178.4 (7)
C4—S1—C1—C268.1 (4)C1—S1—C4—C5158.7 (5)
S1—C1—C2—C1i161.1 (5)C1—S1—C4—S221.9 (4)
S1—C1—C2—C340.1 (6)S2—C4—C5—C6176.8 (4)
S1—C1—C2—C3i77.9 (5)S1—C4—C5—C63.8 (7)
C1i—C2—C3—S285.9 (5)S2—C4—C5—C76.6 (8)
C1—C2—C3—S232.6 (6)S1—C4—C5—C7172.8 (4)
C3i—C2—C3—S2153.3 (5)C4—C5—C6—N135 (9)
C4—S2—C3—C269.5 (4)C7—C5—C6—N1141 (8)
C3—S2—C4—C5146.6 (5)C4—C5—C7—N238 (25)
C3—S2—C4—S132.8 (4)C6—C5—C7—N2139 (25)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N2ii0.972.863.659 (9)140
C1—H1B···N2iii0.972.973.546 (8)119
C1—H1B···N1iv0.972.813.613 (8)141
C3—H3A···N1v0.972.783.227 (8)109
C3—H3B···N1v0.972.913.227 (8)100
C1—H1B···S1iv0.973.263.704 (6)110
C1—H1A···S1iv0.973.503.704 (6)94
Symmetry codes: (ii) x+2, y, z+1; (iii) x, y, z+1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds