Download citation
Download citation
link to html
In both the title structures, O-ethyl N-(2,3,4,6-tetra-O-acetyl-β-D-gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O-methyl N-(2,3,4,6-tetra-O-acetyl-β-D-gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H...O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101000609/bj1013sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000609/bj1013Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000609/bj1013IIsup3.hkl
Contains datablock II

CCDC references: 164646; 164647

Comment top

Many nomadic (define?) sugars have important biological functions (Varki, 1993). They may control various gene expressions to adjust the growth, development, controlled reaction and biochemistry of organs (Garg & Jeanloz, 1985). Query rephrasing. Glycosyl isothiocyanates have been widely used as valuable intermediates in the synthesis of glycosyl thiourea derivatives (Yasuo et al., 1999). Isothiocyanates and glycosyl isothiocyanates have been the focus of synthetic attention in recent years and have potential pharmacological properties (Mukerjee & Ashare, 1991). 1-Deoxynojirimycin, castanospermine and some of their derivatives have also shown anti-HIV activity (Tyms et al., 1990). Many biologically important products have a sugar unit joined through an atom (O, S, N or C) or a group of atoms (Avalos et al., 1990). Here, we report the X-ray structures of O-ethyl N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)carbamothiate, (I), and O-methyl N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)carbamothiate, (II). \sch

The bond lengths and angles in (I) and (II) are normal and agree with those of D-glucopyranose (Ferrier, 1963), N-(β-D-glucopyranosyl)hydroxylamine (Mostad, 1978) and N-(β-D-glucopyranosyl)-S-phenylsulfenamide (Lee et al., 1995). The hexopyranosyl ring in both structures adopts a 4C1 conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.605 (3), q2 = 0.076 (3) and q3 = 0.601 (3) Å, and θ = 7.0 (3) and ϕ2 = 6(2)°, for (I), and Q = 0.590 (5), q2 = 0.054 (4) and q3 = 0.587 (5) Å, and θ = 5.3 (4) and ϕ2 = 2(5)°, for (II). The dihedral angle between the O-acetyl groups and the mean plane through the hexopyranosyl ring is in the range of 74.9 (2) to 89.6 (1)° in (I) and 72.6 (2) to 88.9 (2)° in (II). The anomeric substituent, meanwhile, makes a dihedral angle of 64.7 (1) and 65.2 (2)° in (I) and (II), respectively, with the same ring. All ring substituents are in the equatorial position with respect to the ring in both structures.

In both structures, the acetoxymethyl group is in a gauche-gauche conformation, with O1—C5—C12—O8 and C4—C5—C12—O8 torsion angles of -70.0 (3) and 50.0 (4)°, respectively, for (I), and -71.4 (5) and 49.0 (5)°, respectively, for (II). These values may be compared with those in N-(β-D-glucopyranosyl)-S-phenylsulfenamide (Lee et al., 1995), where the corresponding O5—C5—C6—O6 and C4—C5—C6—O6 torsion angles are 72.4 (3) and -168.2 (3)°, respectively. The S atom is in a syn-periplanar conformation with respect to atom C1, while the C1—N15—C16—O17 linkage is anti-periplanar in both structures.

In the crystals of both (I) and (II), N—H···O intermolecular hydrogen bonds (Table 3) form infinite chains along the a axis. These chains are interconnected by C—H···O interactions (Table 3) to form an elongated spring-like structure along the b axis.

Related literature top

For related literature, see: Avalos et al. (1990); Cremer & Pople (1975); Ferrier (1963); Garg & Jeanloz (1985); Lee et al. (1995); Mostad (1978); Mukerjee & Ashare (1991); Tyms et al. (1990); Varki (1993); Yasuo et al. (1999).

Experimental top

A solution of 2,3,4,6-tetra-O-acetyl-β-D-glycosyl isothiocyanate (0.3 g) in ethanol (20 ml) and methanol (20 ml) for (I) and (II), respectively, was added dropwise to boiling ethanol (20 ml) for (I) and methanol (20 ml) for (II). The boiling solution was stirred for 2 h while refluxing. After filtration, the clear colourless filtrate was left at room temperature until single crystals suitable for X-ray analysis were obtained.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their parent atoms. C—H distances? However, the H atom on N15 in both structures, which is involved in intermolecular hydrogen bonding, was located from a difference Fourier map and refined isotropically. The C7, C11 and C13 methyl groups for (I) were refined using rotating-group refinement. Please check - C13 not a methyl carbon. Should it be C14?

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) O-ethyl N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)carbamothiate top
Crystal data top
C17H25NO10SF(000) = 460
Mr = 435.44Dx = 1.264 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.7492 (2) ÅCell parameters from 4350 reflections
b = 10.4470 (3) Åθ = 1.4–28.5°
c = 14.3852 (3) ŵ = 0.19 mm1
β = 100.810 (1)°T = 293 K
V = 1143.90 (5) Å3Parallelepiped, colourless
Z = 20.44 × 0.34 × 0.30 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5034 independent reflections
Radiation source: fine-focus sealed tube2780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.33 pixels mm-1θmax = 27.9°, θmin = 1.4°
ω scansh = 810
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.921, Tmax = 0.945l = 1818
7784 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.168(Δ/σ)max < 0.001
S = 0.88Δρmax = 0.34 e Å3
5034 reflectionsΔρmin = 0.31 e Å3
267 parametersExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.055 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.10 (13)
Crystal data top
C17H25NO10SV = 1143.90 (5) Å3
Mr = 435.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7492 (2) ŵ = 0.19 mm1
b = 10.4470 (3) ÅT = 293 K
c = 14.3852 (3) Å0.44 × 0.34 × 0.30 mm
β = 100.810 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5034 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2780 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.945Rint = 0.084
7784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168Δρmax = 0.34 e Å3
S = 0.88Δρmin = 0.31 e Å3
5034 reflectionsAbsolute structure: Flack (1983)
267 parametersAbsolute structure parameter: 0.10 (13)
3 restraints
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.54892 (17)0.41399 (11)0.68914 (9)0.0918 (4)
O10.4248 (3)0.7520 (2)0.67308 (15)0.0507 (6)
O20.4085 (4)0.6917 (3)0.92413 (18)0.0676 (7)
O30.5855 (7)0.8385 (5)1.0070 (2)0.148 (2)
O40.1738 (3)0.9040 (3)0.87532 (16)0.0582 (6)
O50.0952 (5)0.8271 (5)0.8781 (3)0.1202 (15)
O60.0114 (3)0.8894 (2)0.67380 (16)0.0533 (6)
O70.0183 (5)1.1020 (3)0.6976 (4)0.1301 (17)
O80.2991 (3)0.9635 (2)0.54130 (18)0.0623 (7)
O90.0417 (4)1.0440 (4)0.4639 (3)0.1103 (13)
C10.4486 (4)0.6790 (3)0.7602 (2)0.0502 (8)
H1A0.37120.60410.75130.060*
C20.3987 (4)0.7655 (3)0.8376 (2)0.0503 (8)
H2A0.47780.83940.84880.060*
C30.2075 (4)0.8103 (3)0.8068 (2)0.0483 (8)
H3A0.12820.73720.80700.058*
C40.1765 (4)0.8705 (3)0.7081 (2)0.0481 (8)
H4A0.23810.95260.71020.058*
C50.2428 (4)0.7787 (3)0.6370 (2)0.0491 (8)
H5A0.17630.69850.63360.059*
C60.5073 (6)0.7404 (5)1.0049 (3)0.0703 (11)
C70.4978 (7)0.6552 (5)1.0893 (3)0.0891 (15)
H7A0.48210.56781.06860.134*
H7B0.40050.68091.11750.134*
H7C0.60480.66281.13490.134*
H7D0.51030.70731.14510.134*0.00
H7E0.59130.59361.09650.134*0.00
H7F0.38700.61141.08000.134*0.00
C80.0176 (5)0.9053 (5)0.9042 (3)0.0702 (11)
C90.0058 (8)1.0167 (7)0.9677 (4)0.113 (2)
H9A0.11401.06390.97700.169*
H9B0.01490.98651.02770.169*
H9C0.08921.07140.93940.169*
C100.0754 (5)1.0119 (4)0.6721 (3)0.0715 (11)
C110.2685 (6)1.0154 (5)0.6351 (4)0.0993 (16)
H11A0.29980.94830.58940.149*
H11B0.29991.09670.60550.149*
H11C0.33021.00350.68640.149*
H11D0.32031.08400.66480.149*0.00
H11E0.31980.93560.64870.149*0.00
H11F0.28981.02880.56790.149*0.00
C120.2244 (5)0.8342 (4)0.5378 (3)0.0611 (10)
H12A0.28460.77940.49980.073*
H12B0.10120.83720.50830.073*
C130.1950 (6)1.0590 (4)0.4987 (3)0.0714 (11)
C140.2937 (6)1.1830 (5)0.5060 (4)0.0982 (17)
H14A0.39591.17690.55520.147*
H14B0.21941.25070.52060.147*
H14C0.32901.20090.44680.147*
H14D0.23361.24220.46000.147*0.00
H14E0.41021.16850.49440.147*0.00
H14F0.30041.21790.56830.147*0.00
N150.6291 (4)0.6375 (3)0.7831 (2)0.0607 (8)
C160.6819 (5)0.5210 (4)0.7519 (2)0.0595 (10)
O170.8546 (4)0.5099 (3)0.7795 (2)0.0864 (9)
C180.9330 (6)0.3859 (6)0.7584 (4)0.1087 (19)
H18A0.89990.36590.69160.130*
H18B0.89250.31740.79440.130*
C191.1273 (7)0.4004 (8)0.7855 (7)0.168 (3)
H19A1.18320.32210.77250.252*
H19B1.15840.41960.85170.252*
H19C1.16550.46870.74960.252*
H15A0.711 (4)0.695 (3)0.807 (3)0.097 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0850 (9)0.0737 (8)0.1087 (9)0.0072 (6)0.0027 (7)0.0385 (7)
O10.0303 (13)0.0560 (13)0.0617 (14)0.0111 (10)0.0016 (9)0.0068 (11)
O20.0764 (19)0.0550 (15)0.0611 (16)0.0001 (13)0.0139 (13)0.0018 (12)
O30.170 (4)0.181 (5)0.071 (2)0.106 (4)0.038 (2)0.018 (2)
O40.0429 (15)0.0624 (14)0.0667 (14)0.0031 (12)0.0036 (10)0.0150 (13)
O50.063 (2)0.177 (4)0.128 (3)0.050 (2)0.037 (2)0.045 (3)
O60.0282 (12)0.0520 (13)0.0735 (14)0.0059 (10)0.0062 (10)0.0030 (11)
O70.060 (2)0.0587 (19)0.254 (5)0.0127 (16)0.016 (3)0.039 (3)
O80.0381 (14)0.0723 (17)0.0712 (15)0.0046 (12)0.0032 (10)0.0120 (13)
O90.051 (2)0.098 (3)0.162 (3)0.0101 (17)0.0326 (19)0.026 (2)
C10.037 (2)0.0466 (18)0.061 (2)0.0003 (15)0.0080 (14)0.0001 (16)
C20.042 (2)0.0503 (18)0.0512 (19)0.0025 (15)0.0088 (13)0.0019 (15)
C30.0349 (19)0.0472 (17)0.059 (2)0.0026 (14)0.0001 (13)0.0060 (15)
C40.0294 (17)0.0507 (18)0.0593 (19)0.0007 (14)0.0041 (13)0.0102 (15)
C50.0303 (18)0.0511 (18)0.060 (2)0.0040 (14)0.0067 (13)0.0078 (16)
C60.057 (3)0.087 (3)0.061 (2)0.011 (2)0.0037 (17)0.006 (2)
C70.107 (4)0.094 (3)0.061 (3)0.005 (3)0.001 (2)0.000 (2)
C80.037 (2)0.100 (3)0.072 (2)0.007 (2)0.0088 (17)0.008 (2)
C90.091 (4)0.153 (5)0.101 (4)0.003 (4)0.036 (3)0.049 (4)
C100.047 (2)0.061 (2)0.102 (3)0.018 (2)0.001 (2)0.005 (2)
C110.045 (3)0.093 (4)0.154 (4)0.025 (3)0.003 (3)0.011 (3)
C120.043 (2)0.072 (2)0.064 (2)0.0073 (18)0.0034 (16)0.0057 (19)
C130.053 (3)0.076 (3)0.078 (3)0.016 (2)0.0061 (19)0.018 (2)
C140.063 (3)0.083 (3)0.141 (5)0.002 (3)0.000 (3)0.040 (3)
N150.0380 (19)0.0536 (17)0.081 (2)0.0081 (14)0.0122 (14)0.0122 (16)
C160.056 (3)0.055 (2)0.062 (2)0.0209 (18)0.0045 (16)0.0016 (17)
O170.0607 (19)0.0795 (19)0.107 (2)0.0341 (16)0.0151 (15)0.0197 (18)
C180.084 (4)0.112 (4)0.119 (4)0.057 (3)0.010 (3)0.028 (3)
C190.088 (5)0.122 (5)0.287 (10)0.020 (5)0.021 (5)0.067 (7)
Geometric parameters (Å, º) top
S1—C161.667 (4)C1—N151.442 (4)
O1—C51.436 (4)C1—C21.538 (5)
O1—C11.449 (4)C2—C31.538 (5)
O2—C61.365 (5)C3—C41.530 (5)
O2—C21.454 (4)C4—C51.558 (4)
O3—C61.188 (6)C5—C121.521 (5)
O4—C81.352 (4)C6—C71.517 (7)
O4—C31.447 (4)C8—C91.493 (7)
O5—C81.204 (6)C10—C111.492 (6)
O6—C101.371 (5)C13—C141.498 (7)
O6—C41.461 (4)N15—C161.385 (5)
O7—C101.204 (5)C16—O171.328 (4)
O8—C131.355 (5)O17—C181.486 (6)
O8—C121.467 (5)C18—C191.490 (8)
O9—C131.209 (5)
C5—O1—C1111.8 (2)O3—C6—O2123.0 (4)
C6—O2—C2117.5 (3)O3—C6—C7126.0 (4)
C8—O4—C3120.1 (3)O2—C6—C7111.0 (4)
C10—O6—C4117.8 (3)O5—C8—O4122.5 (4)
C13—O8—C12117.7 (3)O5—C8—C9126.6 (4)
N15—C1—O1108.4 (3)O4—C8—C9110.9 (4)
N15—C1—C2112.1 (3)O7—C10—O6122.0 (4)
O1—C1—C2108.0 (2)O7—C10—C11126.6 (4)
O2—C2—C1109.2 (3)O6—C10—C11111.4 (4)
O2—C2—C3107.5 (3)O8—C12—C5110.6 (3)
C1—C2—C3109.2 (2)O9—C13—O8123.2 (4)
O4—C3—C4109.7 (3)O9—C13—C14126.1 (4)
O4—C3—C2107.3 (2)O8—C13—C14110.6 (4)
C4—C3—C2111.5 (3)C16—N15—C1121.6 (3)
O6—C4—C3110.0 (3)O17—C16—N15108.8 (3)
O6—C4—C5107.0 (2)O17—C16—S1126.1 (3)
C3—C4—C5110.0 (3)N15—C16—S1125.1 (3)
O1—C5—C12109.0 (3)C16—O17—C18116.3 (4)
O1—C5—C4107.7 (2)O17—C18—C19106.9 (5)
C12—C5—C4113.4 (3)
C5—O1—C1—N15170.3 (3)O6—C4—C5—O1176.1 (3)
C5—O1—C1—C268.1 (3)C3—C4—C5—O156.6 (3)
C6—O2—C2—C1127.3 (3)O6—C4—C5—C1263.2 (3)
C6—O2—C2—C3114.3 (4)C3—C4—C5—C12177.3 (3)
N15—C1—C2—O264.9 (4)C2—O2—C6—O30.8 (7)
O1—C1—C2—O2175.7 (3)C2—O2—C6—C7177.6 (4)
N15—C1—C2—C3177.8 (3)C3—O4—C8—O53.2 (6)
O1—C1—C2—C358.4 (3)C3—O4—C8—C9174.8 (4)
C8—O4—C3—C498.4 (4)C4—O6—C10—O70.1 (6)
C8—O4—C3—C2140.3 (3)C4—O6—C10—C11179.8 (3)
O2—C2—C3—O469.0 (3)C13—O8—C12—C5125.7 (3)
C1—C2—C3—O4172.6 (3)O1—C5—C12—O870.0 (3)
O2—C2—C3—C4170.8 (3)C4—C5—C12—O850.0 (4)
C1—C2—C3—C452.5 (4)C12—O8—C13—O95.0 (6)
C10—O6—C4—C3106.4 (3)C12—O8—C13—C14177.9 (4)
C10—O6—C4—C5134.1 (3)O1—C1—N15—C1691.0 (4)
O4—C3—C4—O672.1 (3)C2—C1—N15—C16149.9 (3)
C2—C3—C4—O6169.2 (2)C1—N15—C16—O17177.2 (3)
O4—C3—C4—C5170.3 (2)C1—N15—C16—S12.2 (5)
C2—C3—C4—C551.6 (3)N15—C16—O17—C18175.6 (4)
C1—O1—C5—C12170.1 (3)S1—C16—O17—C185.0 (6)
C1—O1—C5—C466.5 (3)C16—O17—C18—C19173.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···O5i0.90 (3)2.15 (3)3.046 (5)178 (3)
C5—H5A···O9ii0.982.563.431 (5)149
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1.
(II) O-methyl N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)carbamothiate top
Crystal data top
C16H23NO10SF(000) = 444
Mr = 421.41Dx = 1.347 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.3543 (2) ÅCell parameters from 3438 reflections
b = 10.2555 (1) Åθ = 1.4–28.3°
c = 14.0142 (4) ŵ = 0.21 mm1
β = 100.684 (2)°T = 293 K
V = 1038.66 (4) Å3Needle, colourless
Z = 20.26 × 0.12 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4151 independent reflections
Radiation source: fine-focus sealed tube2094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.5°
ω scansh = 99
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1013
Tmin = 0.953, Tmax = 0.985l = 1318
7436 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.072 w = 1/[σ2(Fo2) + (0.0843P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.184(Δ/σ)max < 0.001
S = 0.86Δρmax = 0.28 e Å3
4151 reflectionsΔρmin = 0.34 e Å3
258 parametersExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.035 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.17 (17)
Crystal data top
C16H23NO10SV = 1038.66 (4) Å3
Mr = 421.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.3543 (2) ŵ = 0.21 mm1
b = 10.2555 (1) ÅT = 293 K
c = 14.0142 (4) Å0.26 × 0.12 × 0.08 mm
β = 100.684 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4151 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2094 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.985Rint = 0.078
7436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184Δρmax = 0.28 e Å3
S = 0.86Δρmin = 0.34 e Å3
4151 reflectionsAbsolute structure: Flack (1983)
258 parametersAbsolute structure parameter: 0.17 (17)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.4058 (2)0.47378 (15)0.30340 (12)0.0675 (5)
O10.5576 (4)0.8095 (3)0.3225 (2)0.0396 (8)
O20.5575 (5)0.7557 (4)0.0647 (2)0.0503 (9)
O30.4038 (6)0.9201 (5)0.0190 (3)0.0806 (14)
O40.8071 (4)0.9680 (4)0.1122 (2)0.0427 (8)
O51.0902 (6)0.8938 (6)0.1109 (4)0.0936 (18)
O61.0039 (4)0.9559 (3)0.3143 (2)0.0434 (8)
O70.9609 (6)1.1694 (4)0.2877 (4)0.0901 (16)
O80.6980 (4)1.0214 (4)0.4549 (3)0.0511 (10)
O90.9684 (5)1.1029 (5)0.5307 (3)0.0795 (14)
O170.0900 (5)0.5878 (4)0.2208 (3)0.0601 (10)
C10.5251 (6)0.7396 (5)0.2322 (3)0.0387 (11)
H1A0.60410.66190.23820.046*
C20.5748 (6)0.8280 (5)0.1541 (3)0.0385 (11)
H2A0.49260.90400.14500.046*
C30.7743 (6)0.8717 (5)0.1825 (3)0.0362 (10)
H3A0.85670.79690.18080.043*
C40.8099 (6)0.9309 (4)0.2829 (3)0.0331 (10)
H4A0.74111.01290.28190.040*
C50.7482 (6)0.8377 (5)0.3552 (3)0.0380 (11)
H5A0.81900.75650.35640.046*
C60.4684 (7)0.8124 (6)0.0183 (4)0.0509 (13)
C70.4799 (10)0.7301 (8)0.1036 (4)0.076 (2)
H7A0.53810.64880.08220.115*
H7B0.55140.77420.14450.115*
H7C0.35760.71400.13940.115*
C80.9686 (7)0.9711 (6)0.0835 (3)0.0517 (13)
C90.9858 (9)1.0827 (8)0.0198 (5)0.086 (2)
H9A1.10471.08040.00080.129*
H9B0.97361.16240.05400.129*
H9C0.89031.07820.03700.129*
C101.0628 (7)1.0796 (6)0.3143 (4)0.0532 (13)
C111.2664 (7)1.0899 (7)0.3510 (5)0.0754 (19)
H11A1.31631.00470.36770.113*
H11B1.28891.14490.40740.113*
H11C1.32481.12680.30140.113*
C120.7739 (7)0.8915 (6)0.4567 (4)0.0504 (13)
H12A0.71230.83550.49660.060*
H12B0.90460.89370.48510.060*
C130.8081 (7)1.1198 (6)0.4972 (4)0.0529 (14)
C140.7078 (9)1.2424 (8)0.4920 (6)0.085 (2)
H14A0.58141.22830.46140.127*
H14B0.76371.30410.45480.127*
H14C0.71201.27570.55640.127*
N150.3383 (6)0.7011 (4)0.2131 (3)0.0436 (10)
C160.2752 (7)0.5893 (5)0.2442 (3)0.0438 (12)
C170.0065 (9)0.4700 (8)0.2397 (5)0.085 (2)
H17A0.13740.48250.21950.127*
H17B0.02090.45070.30780.127*
H17C0.03320.39880.20400.127*
H15A0.266 (7)0.751 (7)0.182 (4)0.054 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0786 (10)0.0332 (8)0.0893 (10)0.0010 (8)0.0122 (8)0.0217 (8)
O10.0426 (17)0.034 (2)0.0411 (18)0.0076 (15)0.0050 (13)0.0013 (14)
O20.069 (2)0.032 (2)0.0442 (19)0.0083 (17)0.0040 (16)0.0023 (15)
O30.099 (3)0.083 (4)0.055 (2)0.034 (3)0.002 (2)0.008 (2)
O40.0471 (18)0.0334 (19)0.0484 (18)0.0001 (15)0.0106 (14)0.0134 (16)
O50.073 (3)0.108 (5)0.112 (4)0.038 (3)0.049 (3)0.058 (3)
O60.0382 (16)0.028 (2)0.0606 (19)0.0044 (14)0.0007 (14)0.0012 (16)
O70.077 (3)0.025 (3)0.156 (5)0.013 (2)0.009 (3)0.018 (3)
O80.0448 (19)0.050 (3)0.055 (2)0.0065 (17)0.0011 (15)0.0137 (17)
O90.059 (3)0.063 (3)0.104 (3)0.010 (2)0.019 (2)0.020 (3)
O170.057 (2)0.036 (2)0.082 (3)0.0200 (18)0.0024 (18)0.011 (2)
C10.043 (2)0.025 (3)0.046 (3)0.005 (2)0.005 (2)0.001 (2)
C20.054 (3)0.024 (3)0.036 (2)0.001 (2)0.004 (2)0.0009 (19)
C30.045 (3)0.025 (3)0.037 (2)0.004 (2)0.0046 (19)0.0097 (19)
C40.032 (2)0.021 (2)0.044 (2)0.0019 (18)0.0028 (18)0.0045 (18)
C50.038 (2)0.026 (3)0.046 (3)0.002 (2)0.002 (2)0.001 (2)
C60.055 (3)0.052 (4)0.043 (3)0.007 (3)0.002 (2)0.004 (3)
C70.113 (5)0.067 (5)0.048 (3)0.027 (4)0.009 (3)0.007 (3)
C80.053 (3)0.056 (4)0.048 (3)0.008 (3)0.014 (2)0.016 (3)
C90.083 (4)0.089 (6)0.095 (5)0.008 (4)0.039 (4)0.053 (5)
C100.057 (3)0.031 (3)0.070 (3)0.013 (3)0.007 (3)0.003 (3)
C110.055 (3)0.057 (5)0.111 (5)0.016 (3)0.007 (3)0.009 (4)
C120.051 (3)0.051 (4)0.045 (3)0.006 (3)0.005 (2)0.003 (2)
C130.046 (3)0.056 (4)0.055 (3)0.011 (3)0.006 (2)0.018 (3)
C140.077 (4)0.066 (5)0.107 (5)0.004 (4)0.008 (4)0.030 (4)
N150.044 (2)0.025 (2)0.055 (3)0.0052 (19)0.0097 (19)0.0059 (19)
C160.052 (3)0.024 (3)0.051 (3)0.004 (2)0.002 (2)0.001 (2)
C170.081 (4)0.063 (5)0.103 (5)0.046 (4)0.001 (4)0.020 (4)
Geometric parameters (Å, º) top
S1—C161.648 (5)O9—C131.198 (6)
O1—C51.422 (5)O17—C161.341 (5)
O1—C11.436 (5)O17—C171.450 (7)
O2—C61.356 (6)C1—N151.407 (6)
O2—C21.440 (6)C1—C21.517 (6)
O3—C61.203 (7)C2—C31.515 (6)
O4—C81.323 (6)C3—C41.510 (6)
O4—C31.447 (5)C4—C51.522 (6)
O5—C81.203 (7)C5—C121.506 (7)
O6—C101.341 (6)C6—C71.477 (9)
O6—C41.436 (5)C8—C91.472 (8)
O7—C101.202 (7)C10—C111.494 (8)
O8—C131.359 (6)C13—C141.453 (10)
O8—C121.443 (7)N15—C161.341 (6)
C5—O1—C1112.2 (3)O1—C5—C4108.1 (3)
C6—O2—C2118.5 (4)C12—C5—C4113.5 (4)
C8—O4—C3119.8 (4)O3—C6—O2121.8 (5)
C10—O6—C4118.1 (4)O3—C6—C7126.9 (5)
C13—O8—C12118.7 (4)O2—C6—C7111.0 (6)
C16—O17—C17118.3 (5)O5—C8—O4122.9 (5)
N15—C1—O1107.7 (4)O5—C8—C9124.3 (5)
N15—C1—C2112.8 (4)O4—C8—C9112.7 (5)
O1—C1—C2108.4 (4)O7—C10—O6122.8 (5)
O2—C2—C3107.8 (3)O7—C10—C11125.5 (6)
O2—C2—C1109.0 (4)O6—C10—C11111.7 (5)
C3—C2—C1109.7 (3)O8—C12—C5110.0 (4)
O4—C3—C4109.7 (4)O9—C13—O8121.8 (6)
O4—C3—C2107.4 (3)O9—C13—C14126.7 (6)
C4—C3—C2110.9 (4)O8—C13—C14111.4 (5)
O6—C4—C3110.4 (3)C16—N15—C1124.2 (4)
O6—C4—C5108.1 (3)N15—C16—O17109.1 (4)
C3—C4—C5110.2 (4)N15—C16—S1125.1 (4)
O1—C5—C12108.8 (3)O17—C16—S1125.8 (4)
C5—O1—C1—N15172.1 (4)O6—C4—C5—O1178.1 (3)
C5—O1—C1—C265.6 (4)C3—C4—C5—O157.5 (5)
C6—O2—C2—C3106.9 (5)O6—C4—C5—C1261.1 (5)
C6—O2—C2—C1134.0 (4)C3—C4—C5—C12178.3 (4)
N15—C1—C2—O265.5 (5)C2—O2—C6—O30.3 (7)
O1—C1—C2—O2175.3 (3)C2—O2—C6—C7174.4 (4)
N15—C1—C2—C3176.6 (4)C3—O4—C8—O52.5 (8)
O1—C1—C2—C357.5 (5)C3—O4—C8—C9174.1 (5)
C8—O4—C3—C496.8 (5)C4—O6—C10—O71.4 (7)
C8—O4—C3—C2142.7 (5)C4—O6—C10—C11178.6 (4)
O2—C2—C3—O468.5 (5)C13—O8—C12—C5125.7 (4)
C1—C2—C3—O4172.9 (4)O1—C5—C12—O871.4 (5)
O2—C2—C3—C4171.6 (4)C4—C5—C12—O849.0 (5)
C1—C2—C3—C453.1 (5)C12—O8—C13—O94.4 (7)
C10—O6—C4—C3105.3 (5)C12—O8—C13—C14177.8 (5)
C10—O6—C4—C5134.2 (4)O1—C1—N15—C1688.5 (6)
O4—C3—C4—O669.3 (4)C2—C1—N15—C16151.9 (5)
C2—C3—C4—O6172.3 (4)C1—N15—C16—O17174.7 (4)
O4—C3—C4—C5171.5 (3)C1—N15—C16—S14.3 (7)
C2—C3—C4—C553.0 (5)C17—O17—C16—N15174.3 (5)
C1—O1—C5—C12171.2 (4)C17—O17—C16—S16.7 (7)
C1—O1—C5—C465.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···O5i0.81 (6)2.08 (6)2.884 (7)175 (6)
C5—H5A···O9ii0.982.553.386 (7)143
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H25NO10SC16H23NO10S
Mr435.44421.41
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)293293
a, b, c (Å)7.7492 (2), 10.4470 (3), 14.3852 (3)7.3543 (2), 10.2555 (1), 14.0142 (4)
α, β, γ (°)90, 100.810 (1), 9090, 100.684 (2), 90
V3)1143.90 (5)1038.66 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.190.21
Crystal size (mm)0.44 × 0.34 × 0.300.26 × 0.12 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.9450.953, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7784, 5034, 2780 7436, 4151, 2094
Rint0.0840.078
(sin θ/λ)max1)0.6590.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.168, 0.88 0.072, 0.184, 0.86
No. of reflections50344151
No. of parameters267258
No. of restraints31
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.310.28, 0.34
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.10 (13)0.17 (17)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997b), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
O1—C51.436 (4)C2—C31.538 (5)
O1—C11.449 (4)C3—C41.530 (5)
C1—C21.538 (5)C4—C51.558 (4)
C6—O2—C2—C1127.3 (3)C10—O6—C4—C5134.1 (3)
C6—O2—C2—C3114.3 (4)O1—C5—C12—O870.0 (3)
C8—O4—C3—C498.4 (4)C4—C5—C12—O850.0 (4)
C8—O4—C3—C2140.3 (3)C1—N15—C16—O17177.2 (3)
C10—O6—C4—C3106.4 (3)C1—N15—C16—S12.2 (5)
Selected geometric parameters (Å, º) for (II) top
O1—C51.422 (5)C2—C31.515 (6)
O1—C11.436 (5)C3—C41.510 (6)
C1—C21.517 (6)C4—C51.522 (6)
C6—O2—C2—C3106.9 (5)C10—O6—C4—C5134.2 (4)
C6—O2—C2—C1134.0 (4)O1—C5—C12—O871.4 (5)
C8—O4—C3—C496.8 (5)C4—C5—C12—O849.0 (5)
C8—O4—C3—C2142.7 (5)C1—N15—C16—O17174.7 (4)
C10—O6—C4—C3105.3 (5)C1—N15—C16—S14.3 (7)
Hydrogen-bonding geometry for (I) and (II) (Å, °) top
D-H···AD-HH···AD···AD-H···A
N15-H15A···O5i(I)0.90 (3)2.15 (3)3.046 (5)178 (3)
N15-H15A···O5ii(II)0.81 (6)2.08 (6)2.884 (7)175 (6)
C5-H5A···O9iii(I)0.982.563.431 (5)149
C5-H5A···O9iv(II)0.982.553.386 (7)143
%T {σymcodesfn (i) $1+x,y,z$; (ii) $x-1,y,z$; (iii) $-x,y-{σcriptscriptstyle{1οver 2}},1-z$; (iv) $2-x,y-{σcriptscriptstyle{1οver 2}},1-z$.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds