Download citation
Download citation
link to html
The 17-crown-5 unit, C26H26Br2O5, consisting of a 1,2-bis­(bromo­methyl) group, three benzo groups and diethyl­ene glycol, was prepared from the reaction of 1,2,4,5-tetrakis(bromo­methyl)­benzene and bis-phenol in the presence of sodium hydride as a base. This mol­ecule seems to offer an internal cavity for the formation of a host-guest complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100018473/bj1007sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100018473/bj1007Isup2.hkl
Contains datablock I

CCDC reference: 162570

Comment top

Since the first report on the synthesis and properties of crown ether (Pedersen, 1967), there has been tremendous interest in the synthesis and inclusion behavior of crown ethers (Pedersen, 1988; Cram, 1986; Lehn, 1988; Lnoue 1990; Weber et al., 1989). In spite of extensive studies on crown ethers, only a few common-nuclear biscrown compounds which contain a single benzene ring serving as a common aromatic unit have been explored (Loeb & Shimizu, 1992; Lee et al., 1992). In our previous papers, we have reported the synthesis and complexation behaviors of common-nuclear biscrown ethers (Lee et al., 1992; Lee et al., 1997). In this regard, we now report the preparation of new crown ether, (I), and its solid state structure, which could be a precursor of the common-nuclear biscrown ether bearing a benzene ring. \sch

The title compound with labelling scheme is shown in Fig. 1. The C—Br bond lengths are not significantly different and average to 1.937 (9) Å. Similarly, the Br—C—C angles do not differ significantly and average to a value of 111.7 (6)°. In the chain bridging benzo groups B and C, the average C—O—C angle is slightly larger than tetrahedral, while the O—C—C angle is very close to tetrahedral. In the A to B ring and A to C ring connectivities, the torsions C7—C9—O1—C10 and C6—C26—O5—C25 are 170.8 (11)° and 168.5 (12)° respectively, indicating the A ring is situated trans to both the B and C rings. The two O—C—C—O and four C—O—C—C torsion angles in the diethylene glycol group are gauche and trans, respectively, because there is one extra atom in the diethylene glycol back bond. Atom positions C12 and C13 in ring B and atom positions C21, C22, C23 and C24 atoms in ring C are disordered. Consequently, some of their bond lengths and angles differ considerably from the normal values. The interatomic distances O1···O3 = 4.96 (1) Å and O3···O5 = 4.92 (1) Å are too short to introduce guest atom inside the molecule.

Related literature top

For related literature, see: Cram (1986); Lee et al. (1992, 1997); Lehn (1988); Lnoue & Gokel (1990); Loeb & Shimizu (1992); Pedersen (1967, 1988); Weber et al. (1989).

Experimental top

To a refluxing suspension of 95% sodium hydride (0.132 g, 5.50 mmol) in tetrahydrofuran (THF; 50 ml) was added dropwise a solution of 1,2,4,5-tetrakis(bromomethyl)benzene (1.00 g, 2.20 mmol) and 1,5-bis(2-hydroxyphenoxy)-3-oxapentane (0.580 g, 2.00 mmol) in THF (50 ml) for 3 h under N2 atmosphere. The reaction mixture was refluxed for an additional 24 h. After cooling to room temperature, 10% aqueous hydrochloric acid was added. The solvent (THF) was removed under reduced pressure, and the aqueous layer was extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The crude product was chromatographed on a silica gel using a mixed solvent of ethyl acetate and n-hexane (1:1) as an eluent, and recrystallized from dichloromethane/n-hexane (1:20, V/V). Crystalline (I) was obtained in 30% yield (0.35 g), m.p. 455–456 K. Found: C 54.67, H 4.65%. C26H26Br2O5 requires C 54.00, H 4.53%); IR (KBr pellet) 2929, 1599, 1506, 1452, 1260, 1212, 1128, 749 and 610 cm-1; 1H NMR (CDCl3): δ 7.65 (s, 2 H, arom.), 7.06–6.85 (m, 8 H, arom.), 5.20 (s, 4 H, OCH2Ar), 4.71 (s, 4H, ArCH2Br), 4.15(t, 4 H, ArOCH2CH2O) and 3.85) t.4 H, ArOCH2CH2O); 13C NMR (CDCl3) δ 150.562, 147.841, 137.211, 135.607, 130.644, 123.331, 120.957, 119.278 and 112.842 (Ar), 70.399, 69.514 and 67.818 (CH2O) and 30.032 (CH2Br). MS(m/z) 578(M+), 307, 182, 154, 136, 107.

Refinement top

Atoms C12, and C13 in benzene ring B and C21, C22, C23, C24 in benzene ring C were disordered into two positions, respectively, and refined isotropically with the occupancy 0.49 (6) for the unprimed atoms and 0.51 (6) for the primed atoms using both the TWIN and BASF instructions. All H atoms were fixed geometrically and allowed to ride on their attached atoms and their isotropic displacement parameters were fixed at 1.2 times the equivalent isotropic displacement parameters of their parent atoms. The largest peak in the final electron-density map is 0.58 e Å3 at (0.0979, 0.3736, 0.0350), 1.24 Å from the Br2 atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Some carbon atoms in the phenyl rings B and C are disordered.
(I) top
Crystal data top
C26H26Br2O5Dx = 1.565 Mg m3
Mr = 578.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 8.141 (2) Åθ = 11.4–13.8°
b = 13.7976 (16) ŵ = 3.34 mm1
c = 21.852 (2) ÅT = 293 K
V = 2454.6 (7) Å3Plate, colorless
Z = 40.53 × 0.36 × 0.13 mm
F(000) = 1168
Data collection top
Enraf Nonius CAD4
diffractometer
1137 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
non–profiled ω/2θ scansh = 29
Absorption correction: ψ scan
(North et al., 1968)
k = 416
Tmin = 0.247, Tmax = 0.644l = 625
2564 measured reflections3 standard reflections every 300 min
2516 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0403P)2 + 1.4141P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2516 reflectionsΔρmax = 0.58 e Å3
294 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.33 (3)
Crystal data top
C26H26Br2O5V = 2454.6 (7) Å3
Mr = 578.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.141 (2) ŵ = 3.34 mm1
b = 13.7976 (16) ÅT = 293 K
c = 21.852 (2) Å0.53 × 0.36 × 0.13 mm
Data collection top
Enraf Nonius CAD4
diffractometer
2516 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1137 reflections with I > 2σ(I)
Tmin = 0.247, Tmax = 0.644Rint = 0.013
2564 measured reflections3 standard reflections every 300 min
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.58 e Å3
S = 1.01Δρmin = 0.42 e Å3
2516 reflectionsAbsolute structure: Flack (1983)
294 parametersAbsolute structure parameter: 0.33 (3)
0 restraints
Special details top

Experimental. H atoms treated by constrained refinement

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.35852 (19)0.12183 (11)0.11245 (7)0.0895 (6)
Br20.3442 (2)0.13257 (11)0.08749 (8)0.0979 (6)
O10.2557 (11)0.0494 (6)0.1410 (5)0.066 (3)
O20.3377 (12)0.2384 (6)0.1168 (4)0.066 (3)
O30.3539 (11)0.3224 (5)0.0018 (5)0.072 (3)
O40.3295 (12)0.2149 (7)0.1140 (4)0.075 (3)
O50.2500 (12)0.0241 (7)0.1188 (5)0.070 (3)
C10.1668 (17)0.1962 (8)0.0906 (6)0.073 (4)
H1A0.20070.25430.06910.088*
H1B0.10990.21590.12760.088*
C20.0508 (16)0.1389 (10)0.0506 (7)0.054 (4)
C30.0540 (14)0.1448 (8)0.0136 (8)0.051 (3)
C40.1722 (18)0.2084 (8)0.0484 (6)0.077 (4)
H4A0.11250.24450.07930.092*
H4B0.22160.25460.02050.092*
C50.0575 (16)0.0911 (8)0.0458 (6)0.051 (4)
H50.05770.09710.08820.061*
C60.1691 (15)0.0288 (7)0.0199 (7)0.041 (3)
C70.1692 (16)0.0212 (8)0.0434 (7)0.046 (3)
C80.0636 (17)0.0769 (9)0.0758 (7)0.055 (4)
H80.06850.07300.11830.066*
C90.2874 (15)0.0452 (8)0.0760 (6)0.058 (4)
H9A0.27850.10990.05890.070*
H9B0.39870.02260.06930.070*
C100.372 (2)0.0963 (10)0.1754 (6)0.053 (4)
C110.4361 (19)0.0456 (11)0.2251 (7)0.075 (5)
H110.41710.01940.23390.090*
C120.536 (5)0.110 (4)0.2605 (19)0.068 (13)*0.49 (6)
H120.58580.08350.29500.081*0.49 (6)
C12'0.552 (5)0.070 (4)0.2686 (19)0.076 (16)*0.51 (6)
H12'0.59490.02860.29830.091*0.51 (6)
C130.567 (4)0.206 (3)0.2497 (18)0.049 (11)*0.49 (6)
H130.62630.24380.27690.058*0.49 (6)
C13'0.590 (5)0.164 (4)0.2601 (17)0.070 (14)*0.51 (6)
H13'0.66570.19080.28710.084*0.51 (6)
C140.515 (2)0.2365 (12)0.2057 (8)0.088 (6)
H140.55140.29820.19520.105*
C150.4061 (19)0.1944 (12)0.1658 (8)0.066 (5)
C160.373 (2)0.3376 (9)0.1056 (7)0.082 (5)
H16A0.33990.37680.14020.098*
H16B0.49010.34650.09910.098*
C170.2796 (16)0.3666 (9)0.0497 (8)0.082 (5)
H17A0.28140.43660.04520.098*
H17B0.16620.34590.05320.098*
C180.278 (2)0.3570 (10)0.0545 (8)0.096 (6)
H18A0.16370.33670.05500.115*
H18B0.28070.42720.05480.115*
C190.364 (2)0.3183 (10)0.1102 (7)0.087 (5)
H19A0.48170.32900.10670.104*
H19B0.32510.35110.14660.104*
C200.4062 (16)0.1618 (13)0.1570 (7)0.062 (5)
C210.508 (5)0.218 (3)0.1979 (16)0.060 (12)*0.49 (6)
H210.51750.28520.19540.072*0.49 (6)
C21'0.525 (5)0.178 (4)0.200 (2)0.068 (12)*0.51 (6)
H21'0.56510.24080.20220.082*0.51 (6)
C220.589 (5)0.165 (4)0.2403 (17)0.060 (13)*0.49 (6)
H220.66220.19410.26710.072*0.49 (6)
C22'0.594 (5)0.112 (4)0.2404 (17)0.067 (15)*0.51 (6)
H22'0.67770.13150.26700.080*0.51 (6)
C230.563 (6)0.067 (4)0.2436 (18)0.065 (15)*0.49 (6)
H230.62090.02880.27110.077*0.49 (6)
C23'0.537 (4)0.019 (3)0.2405 (15)0.057 (12)*0.51 (6)
H23'0.57190.02220.27170.069*0.51 (6)
C240.440 (5)0.024 (4)0.2027 (17)0.058 (12)*0.49 (6)
H240.41480.04070.21060.070*0.49 (6)
C24'0.429 (4)0.020 (3)0.1966 (15)0.056 (11)*0.51 (6)
H24'0.40240.08490.19210.067*0.51 (6)
C250.362 (2)0.0620 (11)0.1578 (7)0.059 (4)
C260.2845 (16)0.0322 (8)0.0559 (6)0.058 (4)
H26A0.39650.01170.04810.070*
H26B0.27410.09940.04330.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0573 (9)0.0883 (11)0.1229 (14)0.0099 (11)0.0183 (11)0.0094 (11)
Br20.0803 (11)0.0716 (10)0.1416 (15)0.0107 (12)0.0439 (12)0.0041 (11)
O10.082 (7)0.064 (6)0.052 (7)0.025 (6)0.007 (6)0.009 (5)
O20.075 (7)0.055 (6)0.070 (7)0.006 (6)0.005 (7)0.009 (6)
O30.069 (6)0.055 (5)0.092 (8)0.012 (5)0.003 (8)0.009 (6)
O40.066 (7)0.081 (7)0.078 (7)0.001 (6)0.012 (7)0.012 (6)
O50.062 (6)0.093 (7)0.056 (7)0.014 (6)0.003 (6)0.000 (7)
C10.060 (10)0.053 (7)0.106 (12)0.003 (8)0.028 (11)0.009 (9)
C20.056 (9)0.051 (9)0.054 (11)0.009 (9)0.012 (9)0.024 (10)
C30.035 (7)0.025 (7)0.093 (12)0.003 (6)0.007 (9)0.014 (9)
C40.074 (11)0.054 (8)0.102 (12)0.001 (9)0.013 (11)0.004 (8)
C50.055 (9)0.033 (7)0.064 (10)0.005 (7)0.002 (9)0.018 (7)
C60.046 (8)0.031 (7)0.046 (10)0.003 (7)0.002 (9)0.018 (7)
C70.038 (9)0.049 (8)0.052 (10)0.017 (8)0.002 (9)0.008 (8)
C80.052 (9)0.035 (8)0.077 (12)0.009 (7)0.009 (10)0.007 (8)
C90.043 (9)0.063 (9)0.068 (12)0.020 (8)0.016 (9)0.009 (8)
C100.064 (10)0.052 (9)0.043 (10)0.002 (9)0.003 (9)0.017 (8)
C110.071 (12)0.091 (12)0.063 (12)0.016 (11)0.004 (9)0.018 (11)
C140.095 (14)0.118 (15)0.051 (12)0.025 (12)0.024 (11)0.013 (12)
C150.062 (12)0.077 (13)0.058 (12)0.005 (9)0.007 (10)0.021 (11)
C160.098 (12)0.046 (10)0.102 (14)0.032 (9)0.020 (13)0.020 (9)
C170.070 (10)0.038 (8)0.137 (14)0.006 (9)0.014 (12)0.017 (11)
C180.119 (15)0.047 (10)0.122 (15)0.000 (11)0.008 (14)0.029 (11)
C190.069 (11)0.057 (10)0.135 (16)0.021 (10)0.039 (13)0.044 (11)
C200.027 (9)0.117 (16)0.042 (10)0.005 (9)0.006 (8)0.014 (10)
C250.048 (10)0.081 (12)0.048 (11)0.001 (10)0.006 (10)0.008 (9)
C260.055 (10)0.055 (9)0.065 (11)0.002 (8)0.004 (9)0.004 (8)
Geometric parameters (Å, º) top
Br1—C11.928 (12)C10—C111.393 (16)
Br2—C41.945 (13)C10—C151.399 (16)
O1—C101.372 (14)C11—C12'1.38 (4)
O1—C91.444 (13)C11—C121.43 (5)
O2—C151.351 (15)C12—C131.37 (5)
O2—C161.420 (13)C12'—C13'1.35 (5)
O3—C181.391 (14)C13—C141.13 (4)
O3—C171.416 (14)C13'—C141.67 (5)
O4—C201.344 (15)C14—C151.373 (19)
O4—C191.457 (14)C16—C171.494 (15)
O5—C251.354 (16)C18—C191.504 (17)
O5—C261.409 (13)C20—C21'1.37 (4)
C1—C21.510 (15)C20—C251.424 (18)
C2—C81.380 (15)C20—C211.45 (4)
C2—C31.406 (15)C21—C221.36 (6)
C3—C51.367 (14)C21'—C22'1.38 (5)
C3—C41.508 (15)C22—C231.36 (5)
C5—C61.373 (13)C22'—C23'1.38 (5)
C6—C71.386 (13)C23—C241.47 (5)
C6—C261.487 (15)C23'—C24'1.41 (5)
C7—C81.354 (15)C24—C251.28 (4)
C7—C91.508 (15)C24'—C251.51 (4)
C10—O1—C9115.7 (10)C13—C14—C15129 (3)
C15—O2—C16119.0 (12)C13—C14—C13'15 (3)
C18—O3—C17108.6 (12)C15—C14—C13'116 (2)
C20—O4—C19119.0 (13)O2—C15—C14125.5 (16)
C25—O5—C26116.7 (11)O2—C15—C10118.2 (16)
C2—C1—Br1111.8 (8)C14—C15—C10116.1 (17)
C8—C2—C3116.5 (13)O2—C16—C17107.2 (11)
C8—C2—C1121.1 (14)O3—C17—C16108.4 (11)
C3—C2—C1122.4 (15)O3—C18—C19109.8 (14)
C5—C3—C2118.1 (13)O4—C19—C18107.7 (12)
C5—C3—C4118.6 (15)O4—C20—C21'136 (3)
C2—C3—C4123.3 (14)O4—C20—C25114.8 (14)
C3—C4—Br2111.6 (8)C21'—C20—C25109 (3)
C3—C5—C6124.4 (13)O4—C20—C21114 (2)
C5—C6—C7117.4 (13)C21'—C20—C2123 (2)
C5—C6—C26123.6 (13)C25—C20—C21131 (3)
C7—C6—C26118.9 (14)C22—C21—C20114 (3)
C8—C7—C6118.6 (14)C20—C21'—C22'129 (4)
C8—C7—C9120.1 (14)C21—C22—C23120 (4)
C6—C7—C9121.3 (14)C23'—C22'—C21'118 (4)
C7—C8—C2124.9 (14)C22—C23—C24118 (4)
O1—C9—C7112.1 (11)C22'—C23'—C24'125 (3)
O1—C10—C11116.7 (14)C25—C24—C23130 (4)
O1—C10—C15120.7 (15)C23'—C24'—C25109 (2)
C11—C10—C15122.0 (15)C24—C25—O5131 (3)
C12'—C11—C10132 (3)C24—C25—C20106 (3)
C12'—C11—C1224 (2)O5—C25—C20122.4 (14)
C10—C11—C12109 (2)C24—C25—C24'24 (2)
C13—C12—C11128 (4)O5—C25—C24'108 (2)
C13'—C12'—C11107 (3)C20—C25—C24'130 (2)
C14—C13—C12116 (4)O5—C26—C6110.2 (11)
C12'—C13'—C14126 (3)
Br1—C1—C2—C884.7 (13)C11—C10—C15—O2179.3 (12)
Br1—C1—C2—C394.6 (13)O1—C10—C15—C14175.0 (12)
C8—C2—C3—C51.5 (17)C11—C10—C15—C144 (2)
C1—C2—C3—C5179.1 (9)C15—O2—C16—C17179.1 (11)
C8—C2—C3—C4179.5 (10)C18—O3—C17—C16174.1 (11)
C1—C2—C3—C40.2 (19)O2—C16—C17—O371.7 (13)
C5—C3—C4—Br274.7 (12)C17—O3—C18—C19174.8 (11)
C2—C3—C4—Br2106.4 (12)C20—O4—C19—C18173.8 (12)
C2—C3—C5—C62.5 (17)O3—C18—C19—O470.2 (15)
C4—C3—C5—C6178.5 (10)C19—O4—C20—C21'5 (3)
C3—C5—C6—C70.8 (17)C19—O4—C20—C25179.0 (12)
C3—C5—C6—C26177.2 (10)C19—O4—C20—C214 (2)
C5—C6—C7—C81.8 (17)O4—C20—C21—C22178 (2)
C26—C6—C7—C8179.9 (9)C21'—C20—C21—C2215 (5)
C5—C6—C7—C9180.0 (9)C25—C20—C21—C228 (4)
C26—C6—C7—C92.0 (17)O4—C20—C21'—C22'178 (3)
C6—C7—C8—C22.8 (18)C25—C20—C21'—C22'2 (4)
C9—C7—C8—C2179.1 (11)C21—C20—C21'—C22'160 (9)
C3—C2—C8—C71.0 (18)C20—C21—C22—C234 (4)
C1—C2—C8—C7178.3 (11)C20—C21'—C22'—C23'2 (5)
C10—O1—C9—C7170.5 (10)C21—C22—C23—C243 (5)
C8—C7—C9—O17.6 (16)C21'—C22'—C23'—C24'9 (4)
C6—C7—C9—O1174.2 (10)C22—C23—C24—C259 (6)
C9—O1—C10—C11127.0 (13)C22'—C23'—C24'—C2511 (4)
C9—O1—C10—C1561.7 (16)C23—C24—C25—O5179 (3)
O1—C10—C11—C12'180 (2)C23—C24—C25—C205 (4)
C15—C10—C11—C12'9 (3)C23—C24—C25—C24'162 (8)
O1—C10—C11—C12171.5 (19)C26—O5—C25—C24125 (3)
C15—C10—C11—C120 (3)C26—O5—C25—C2059.8 (18)
C12'—C11—C12—C13165 (9)C26—O5—C25—C24'117.9 (16)
C10—C11—C12—C130 (4)O4—C20—C25—C24177.1 (18)
C10—C11—C12'—C13'6 (4)C21'—C20—C25—C246 (3)
C12—C11—C12'—C13'13 (5)C21—C20—C25—C243 (3)
C11—C12—C13—C145 (5)O4—C20—C25—O51 (2)
C11—C12'—C13'—C141 (4)C21'—C20—C25—O5178 (2)
C12—C13—C14—C1510 (5)C21—C20—C25—O5173 (2)
C12—C13—C14—C13'26 (8)O4—C20—C25—C24'176.2 (19)
C12'—C13'—C14—C13148 (12)C21'—C20—C25—C24'1 (3)
C12'—C13'—C14—C151 (4)C21—C20—C25—C24'10 (3)
C16—O2—C15—C143 (2)C23'—C24'—C25—C249 (5)
C16—O2—C15—C10178.9 (13)C23'—C24'—C25—O5175.8 (19)
C13—C14—C15—O2174 (3)C23'—C24'—C25—C207 (3)
C13'—C14—C15—O2176.4 (17)C25—O5—C26—C6168.8 (11)
C13—C14—C15—C1010 (3)C5—C6—C26—O56.2 (15)
C13'—C14—C15—C100 (2)C7—C6—C26—O5171.8 (10)
O1—C10—C15—O29 (2)

Experimental details

Crystal data
Chemical formulaC26H26Br2O5
Mr578.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.141 (2), 13.7976 (16), 21.852 (2)
V3)2454.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.34
Crystal size (mm)0.53 × 0.36 × 0.13
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.247, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
2564, 2516, 1137
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.123, 1.01
No. of reflections2516
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.42
Absolute structureFlack (1983)
Absolute structure parameter0.33 (3)

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds