Download citation
Download citation
link to html
The title compound, 1,1,2,2-tetra­carbonyl-1,2-μ-carbonyl-4,11-di­methyl­sulfido-closo-1,2-dicobaltadodecaborane, [Co2(C4H20B10S2)(CO)5], has a closo 12-vertex {1,2-Co2B10H8} structure with SMe2 ligands at the exo-4- and 11-positions. The cluster displays close structural similarities to the SEt2 analogue.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012282/bj1001sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012282/bj1001Isup2.hkl
Contains datablock I

CCDC reference: 156142

Comment top

We have interests in developing the chemistry of bis(ligand) `adducts' of decaborane, [6,9-L2-arachno-B10H12], where L is a two-electron ligand such as a phosphorus, sulfur, or nitrogen base (Crook et al., 1984; Fontaine & Kennedy, 1987; Dörfler et al., 1997, 1998; Londesborough et al., 1999; Plešek et al., 1994). In particular, we have contemporary interest in the incorporation, without the displacement of the two boron-to-ligand bonds, of transition-element centres into the {L2B10} matrix. This, for example, would introduce the possibility of generating boron-only analogues of the interesting {MC2B8} species (Kennedy et al., 1993), and of doping new types of boron-based polymers (Londesborough et al., 1999) with selected metal centres. In this context we note that Hawthorne and colleagues have introduced a bimetallic {Co2(CO)5} unit into the [B10H12(SEt2)2] molecule by treatment with [Co2(CO)8] (Schubert et al., 1988). This reaction gives isomers of [(CO)5Co2B10H8(SEt)2], with a closed 12-vertex constitution. In order to assess this reaction type and to develop our techniques, we have repeated the reaction, but now using the SMe2 complex [B10H12(SMe2)2] as a starting substrate. Under essentially the same reaction and separatory conditions, we have isolated one of the analogous SMe2 complexes, [1,1,2,2-(CO)4-µ-1,2-(CO)-4,11-(SMe2)2-closo-1,2-Co2B10H8], (I), in ca 7% yield, for which we here report the crystal and molecular structure as established by single-crystal X-ray diffraction analysis. \sch

In terms of the common features of molecular structure, the differences between the two are principally those of B(SMe2) versus B(SEt2) rotamer differences. Other dimensions are very comparable, e.g. intercobalt at 2.4913 (4) compared to 2.490 (1) Å in the SEt2 species, although a detailed comparison is inappropriate because of differences in s.u.'s and different temperatures of data collection. Within the cluster, there are minor differential interboron cluster flexings associated with the sulfur-substituted positions, e.g. distances centred on the substituted B11 and B4 sites are up to ca 0.040 (4) Å shorter than otherwise equivalent distances associated with the unsubstituted B5 and B7 sites. The shortening is mimicked by variations in the cobalt-boron distances, e.g. Co1—B4 2.116 (3) Å with Co1—B5 some 0.05 Å longer at 2.169 (3) Å.

There is an interesting aspect of the cluster constitution of [(CO)5Co2B10H8(SMe2)2] that warrants comment. Although it has a closed icosahedral {Co2B10} skeleton that merits the classical closo geometrical descriptor, the cluster is not in complete accord with the useful Williams-Wade closo/nido/arachno paradigm which classifies and relates geometry and cluster electron-count in boron-containing cluster compounds (Williams, 1976; Wade, 1976). Using an isolobal vertex-replacement model in conjunction with the regular icosahedral [closo-B12H12]2− exemplar, two neutral {B(SMe2)} vertices would formally compensate for two anionic {BH} vertices, leaving the {Co2(CO)5} unit to compensate for two neutral {BH} vertices. Since a neutral {BH} unit is a two-electron cluster contributor (Wade, 1976), this would imply that each cobalt vertex also contributes two electrons which would in turn imply two cobalt(II) centres. The compound, however, is not paramagnetic. A direct intercobalt bond must therefore be additionally invoked. This is in accord with the intercobalt distance of 2.49 Å, which is in the range generally taken to be indicative of a direct Co—Co bond, e.g. compare 2.47 Å in [Co2(CO)8] (Sumner et al., 1964) and 2.51 Å in cobalt metal. Since the intercobalt vector is part of the icosahedral cluster, then the two electrons in the intercobalt bond constitute part of the cluster electron-count, which would thereby total 14 electron pairs, corresponding to a formal nido electron-count, rather than the 13 electron pairs that would be classically associated with the twelve-vertex closo structure. The 14 pairs would thereby constitute a count in excess of closo − a 'hyper'-closo count, as it were (Kennedy, 1998). This interesting apparent paradox is closely related to the one encountered with similar intermetallic bonding in the ten-vertex 'isocloso'-structured species [1,6-(η5-C5H5)2-1,6,2,3-Fe2C2B6H8] (Callahan et al., 1975), in which conventional electron-counting would dictate a 10-electron-pair sub-closo count − a 'hypo'-closo count. In the Callahan structure, the electron pair in the additional intracluster Fe—Fe bond (Nishimura, 1978) would engender an 11-electron-pair count, which is classically associated with ten-vertex closo. Most recently in this general area, the relationship between intermetallic bonding and anomalous cluster electron-count has been discussed by Fehlner and co-workers in the context of metallaborane clusters that are rich in metal atoms, as in 'cubane' species such as [(C5Me5)3Ru3B3H3Co(CO)3] (Lei et al., 2000)

Experimental top

The title compound was prepared essentially according to the published method for the SEt2 analogue (Schubert et al., 1988). Single crystals were obtained from hexane diffusion into a methylene chloride solution of the compound.

Refinement top

Cluster hydrogen atoms were located via Fourier difference syntheses and positional and isotropic displacement parameters were freely refined. Methyl hydogen atoms were included in calculated positions with a refined rotational parameter for each methyl group and isotropic displacement parameters of 1.2 × Ueq of the parent carbon atom.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1996); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

Figures top
[Figure 1] Fig. 1. Perspective view of a single molecule of (I) drawn with 40% probability ellipsoids and with H atoms shown as small circles of arbitrary radius for clarity.
(I) top
Crystal data top
[Co2(C4H20B10S2)(CO)5]F(000) = 2000
Mr = 498.33Dx = 1.612 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 52070 reflections
a = 12.2978 (2) Åθ = 2.0–27.5°
b = 10.9183 (2) ŵ = 1.84 mm1
c = 30.5900 (5) ÅT = 150 K
V = 4107.35 (12) Å3Prism, yellow
Z = 80.21 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD area detector
diffractometer
4029 independent reflections
Radiation source: fine-focus sealed tube3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 2.6°
Standard procedure using manufacturer's proprietary software (Nonius, 1999) scansh = 1315
Absorption correction: multi-scan
(Blessing, 1995)
k = 1313
Tmin = 0.699, Tmax = 0.770l = 3734
48902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0223P)2 + 2.5684P]
where P = (Fo2 + 2Fc2)/3
4029 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co2(C4H20B10S2)(CO)5]V = 4107.35 (12) Å3
Mr = 498.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.2978 (2) ŵ = 1.84 mm1
b = 10.9183 (2) ÅT = 150 K
c = 30.5900 (5) Å0.21 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD area detector
diffractometer
4029 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3276 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.770Rint = 0.077
48902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
4029 reflectionsΔρmin = 0.48 e Å3
289 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 15 degree ϕ range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35668 (18)1.0212 (2)0.39580 (8)0.0272 (5)
O10.35485 (15)1.11975 (17)0.40828 (6)0.0402 (5)
C20.22946 (19)0.8491 (2)0.36032 (7)0.0245 (5)
O20.14119 (14)0.83781 (16)0.34948 (6)0.0362 (4)
C30.33605 (19)0.7968 (2)0.43302 (8)0.0257 (5)
O30.27170 (14)0.80175 (16)0.46119 (5)0.0356 (4)
C40.4341 (2)0.5674 (2)0.43773 (8)0.0318 (6)
O40.41512 (18)0.46958 (19)0.44851 (7)0.0551 (6)
C50.51677 (19)0.7693 (2)0.47358 (8)0.0274 (5)
O50.53917 (15)0.80634 (19)0.50700 (6)0.0471 (5)
Co10.36690 (2)0.86771 (3)0.377204 (10)0.02026 (9)
Co20.47197 (2)0.71711 (3)0.421465 (9)0.02124 (9)
B30.4093 (2)0.6857 (2)0.35505 (9)0.0223 (6)
H30.3374 (18)0.622 (2)0.3531 (7)0.021 (6)*
B40.4298 (2)0.8114 (2)0.31605 (8)0.0231 (6)
S40.32917 (5)0.82823 (6)0.268528 (19)0.02540 (14)
C410.2963 (2)0.9889 (2)0.26570 (8)0.0312 (6)
H41A0.36351.03710.26590.047*
H41B0.25151.01150.29090.047*
H41C0.25601.00540.23870.047*
C420.4058 (2)0.8136 (3)0.21878 (8)0.0361 (6)
H42A0.35840.83040.19370.054*
H42B0.43460.73010.21650.054*
H42C0.46620.87220.21900.054*
B50.5043 (2)0.9318 (2)0.33907 (9)0.0224 (6)
H50.5011 (17)1.030 (2)0.3284 (7)0.021 (6)*
B60.5384 (2)0.8852 (2)0.39541 (9)0.0218 (6)
H60.5587 (17)0.957 (2)0.4203 (7)0.022 (6)*
B70.5470 (2)0.6263 (2)0.36645 (9)0.0228 (6)
H70.5599 (17)0.524 (2)0.3698 (7)0.021 (6)*
B80.5092 (2)0.6770 (2)0.31293 (9)0.0241 (6)
H80.4975 (17)0.610 (2)0.2862 (7)0.026 (6)*
B90.5695 (2)0.8243 (3)0.30331 (9)0.0239 (6)
H90.5985 (17)0.853 (2)0.2704 (7)0.025 (6)*
B100.6357 (2)0.8696 (2)0.35209 (8)0.0221 (6)
H100.7092 (17)0.928 (2)0.3530 (7)0.020 (6)*
B110.6221 (2)0.7471 (2)0.38962 (9)0.0222 (6)
S110.74213 (5)0.73040 (5)0.429120 (18)0.02368 (14)
C1110.7359 (2)0.5740 (2)0.44757 (8)0.0299 (6)
H11A0.73130.51920.42230.045*
H11B0.67160.56280.46610.045*
H11C0.80150.55480.46440.045*
C1120.86527 (18)0.7263 (2)0.39742 (8)0.0304 (6)
H11D0.92710.70950.41670.046*
H11E0.87590.80550.38300.046*
H11F0.85990.66160.37530.046*
B120.6401 (2)0.7132 (3)0.33400 (9)0.0243 (6)
H120.7094 (18)0.672 (2)0.3220 (7)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (13)0.0314 (15)0.0282 (13)0.0038 (11)0.0048 (10)0.0015 (11)
O10.0402 (11)0.0297 (11)0.0507 (12)0.0092 (9)0.0122 (9)0.0100 (9)
C20.0253 (14)0.0262 (14)0.0218 (13)0.0000 (11)0.0012 (10)0.0010 (10)
O20.0249 (10)0.0436 (11)0.0401 (11)0.0027 (8)0.0059 (8)0.0024 (8)
C30.0254 (13)0.0272 (14)0.0246 (13)0.0012 (11)0.0030 (10)0.0011 (10)
O30.0304 (10)0.0493 (12)0.0272 (10)0.0069 (9)0.0041 (8)0.0032 (8)
C40.0328 (15)0.0337 (16)0.0289 (14)0.0005 (12)0.0036 (11)0.0028 (11)
O40.0701 (15)0.0358 (13)0.0595 (14)0.0129 (11)0.0090 (11)0.0144 (10)
C50.0256 (13)0.0320 (14)0.0247 (14)0.0035 (11)0.0047 (10)0.0004 (11)
O50.0434 (12)0.0697 (14)0.0283 (11)0.0036 (10)0.0039 (9)0.0075 (10)
Co10.01869 (16)0.02078 (17)0.02129 (17)0.00075 (13)0.00073 (12)0.00126 (13)
Co20.02133 (17)0.02210 (18)0.02029 (17)0.00020 (13)0.00074 (12)0.00140 (13)
B30.0214 (14)0.0220 (14)0.0234 (14)0.0001 (12)0.0000 (10)0.0015 (11)
B40.0201 (14)0.0278 (15)0.0213 (14)0.0011 (12)0.0027 (10)0.0001 (11)
S40.0238 (3)0.0299 (3)0.0225 (3)0.0020 (3)0.0034 (2)0.0007 (2)
C410.0334 (14)0.0279 (14)0.0322 (14)0.0026 (11)0.0031 (11)0.0058 (11)
C420.0350 (15)0.0530 (17)0.0204 (13)0.0021 (13)0.0003 (11)0.0043 (12)
B50.0216 (14)0.0222 (15)0.0235 (15)0.0000 (12)0.0022 (11)0.0004 (11)
B60.0208 (14)0.0206 (14)0.0241 (15)0.0001 (11)0.0013 (11)0.0009 (11)
B70.0216 (14)0.0214 (15)0.0254 (15)0.0014 (11)0.0004 (10)0.0002 (11)
B80.0243 (14)0.0245 (15)0.0235 (15)0.0001 (12)0.0003 (11)0.0042 (11)
B90.0208 (14)0.0309 (16)0.0201 (15)0.0015 (12)0.0009 (11)0.0020 (11)
B100.0217 (14)0.0229 (14)0.0217 (14)0.0017 (12)0.0004 (11)0.0012 (11)
B110.0208 (14)0.0238 (15)0.0219 (14)0.0008 (11)0.0024 (10)0.0012 (11)
S110.0232 (3)0.0251 (3)0.0228 (3)0.0031 (3)0.0014 (2)0.0003 (2)
C1110.0319 (14)0.0278 (14)0.0301 (14)0.0056 (11)0.0003 (11)0.0065 (11)
C1120.0213 (13)0.0363 (15)0.0336 (14)0.0032 (11)0.0002 (11)0.0048 (11)
B120.0214 (14)0.0279 (15)0.0235 (15)0.0007 (12)0.0011 (11)0.0029 (12)
Geometric parameters (Å, º) top
C1—O11.142 (3)B4—B81.766 (4)
C1—Co11.774 (3)B4—B91.768 (4)
C2—O21.142 (3)B4—S41.917 (3)
C2—Co11.779 (2)S4—C421.797 (2)
C3—O31.171 (3)S4—C411.802 (2)
C3—Co11.913 (2)B5—B91.794 (4)
C3—Co21.917 (2)B5—B101.798 (4)
C4—O41.142 (3)B5—B61.845 (4)
C4—Co21.771 (3)B6—B101.794 (4)
C5—O51.133 (3)B6—B111.834 (4)
C5—Co21.780 (3)B7—B111.759 (4)
Co1—B42.116 (3)B7—B121.788 (4)
Co1—B32.163 (3)B7—B81.790 (4)
Co1—B52.169 (3)B8—B121.779 (4)
Co1—B62.189 (3)B8—B91.796 (4)
Co1—Co22.4913 (4)B9—B121.763 (4)
Co2—B112.113 (3)B9—B101.770 (4)
Co2—B72.160 (3)B10—B111.770 (4)
Co2—B62.161 (3)B10—B121.795 (4)
Co2—B32.200 (3)B11—B121.755 (4)
B3—B81.783 (4)B11—S111.916 (3)
B3—B41.836 (4)S11—C1121.799 (2)
B3—B71.847 (4)S11—C1111.800 (2)
B4—B51.751 (4)
O1—C1—Co1177.0 (2)C41—S4—B4105.94 (12)
O2—C2—Co1179.6 (2)B4—B5—B959.82 (15)
O3—C3—Co1140.53 (19)B4—B5—B10106.00 (18)
O3—C3—Co2138.22 (19)B9—B5—B1059.05 (14)
Co1—C3—Co281.16 (9)B4—B5—B6106.68 (18)
O4—C4—Co2176.5 (2)B9—B5—B6106.71 (18)
O5—C5—Co2175.6 (2)B10—B5—B658.99 (14)
C1—Co1—C297.68 (10)B4—B5—Co164.28 (12)
C1—Co1—C394.72 (10)B9—B5—Co1117.71 (16)
C2—Co1—C391.40 (10)B10—B5—Co1117.32 (16)
C1—Co1—B4125.74 (11)B6—B5—Co165.51 (11)
C2—Co1—B493.28 (10)B10—B6—B1158.40 (14)
C3—Co1—B4138.07 (10)B10—B6—B559.18 (14)
C1—Co1—B3170.12 (10)B11—B6—B5105.32 (18)
C2—Co1—B391.89 (10)B10—B6—Co2116.36 (16)
C3—Co1—B387.44 (10)B11—B6—Co263.24 (12)
B4—Co1—B350.79 (10)B5—B6—Co2119.56 (15)
C1—Co1—B585.57 (10)B10—B6—Co1116.53 (15)
C2—Co1—B5128.38 (10)B11—B6—Co1116.40 (15)
C3—Co1—B5139.91 (10)B5—B6—Co164.40 (11)
B4—Co1—B548.23 (10)Co2—B6—Co169.88 (8)
B3—Co1—B586.58 (10)B11—B7—B1259.31 (15)
C1—Co1—B684.52 (10)B11—B7—B8105.87 (19)
C2—Co1—B6177.31 (10)B12—B7—B859.64 (15)
C3—Co1—B689.96 (10)B11—B7—B3107.13 (18)
B4—Co1—B684.17 (10)B12—B7—B3107.24 (18)
B3—Co1—B685.85 (10)B8—B7—B358.71 (14)
B5—Co1—B650.09 (10)B11—B7—Co264.30 (12)
C1—Co1—Co2119.08 (7)B12—B7—Co2117.55 (16)
C2—Co1—Co2125.11 (8)B8—B7—Co2117.40 (16)
C3—Co1—Co249.50 (7)B3—B7—Co266.06 (12)
B4—Co1—Co295.69 (7)B4—B8—B12107.23 (19)
B3—Co1—Co255.87 (7)B4—B8—B362.29 (15)
B5—Co1—Co295.81 (7)B12—B8—B3110.48 (19)
B6—Co1—Co254.53 (7)B4—B8—B7110.55 (18)
C4—Co2—C597.20 (11)B12—B8—B760.14 (15)
C4—Co2—C397.90 (11)B3—B8—B762.25 (15)
C5—Co2—C387.68 (10)B4—B8—B959.53 (15)
C4—Co2—B11120.17 (11)B12—B8—B959.07 (15)
C5—Co2—B1195.32 (10)B3—B8—B9110.79 (19)
C3—Co2—B11140.94 (10)B7—B8—B9108.62 (18)
C4—Co2—B784.71 (11)B12—B9—B4107.84 (19)
C5—Co2—B7135.43 (10)B12—B9—B1061.08 (15)
C3—Co2—B7136.40 (10)B4—B9—B10106.47 (18)
B11—Co2—B748.60 (10)B12—B9—B5110.23 (19)
C4—Co2—B6170.70 (11)B4—B9—B558.90 (15)
C5—Co2—B686.64 (11)B10—B9—B560.58 (14)
C3—Co2—B690.69 (10)B12—B9—B859.98 (15)
B11—Co2—B650.82 (10)B4—B9—B859.38 (15)
B7—Co2—B686.61 (10)B10—B9—B8107.57 (19)
C4—Co2—B391.34 (11)B5—B9—B8107.56 (18)
C5—Co2—B3170.15 (11)B9—B10—B11107.01 (19)
C3—Co2—B386.29 (10)B9—B10—B6110.02 (18)
B11—Co2—B384.53 (10)B11—B10—B661.94 (15)
B7—Co2—B350.11 (9)B9—B10—B1259.26 (15)
B6—Co2—B385.65 (10)B11—B10—B1258.98 (14)
C4—Co2—Co1128.71 (8)B6—B10—B12109.77 (18)
C5—Co2—Co1115.83 (8)B9—B10—B560.37 (15)
C3—Co2—Co149.35 (7)B11—B10—B5110.14 (18)
B11—Co2—Co195.76 (7)B6—B10—B561.83 (15)
B7—Co2—Co195.80 (7)B12—B10—B5108.58 (18)
B6—Co2—Co155.59 (7)B12—B11—B761.18 (15)
B3—Co2—Co154.49 (7)B12—B11—B1061.21 (15)
B8—B3—B458.38 (14)B7—B11—B10110.76 (19)
B8—B3—B759.04 (14)B12—B11—B6109.73 (19)
B4—B3—B7105.02 (17)B7—B11—B6111.11 (18)
B8—B3—Co1116.20 (16)B10—B11—B659.66 (14)
B4—B3—Co163.26 (12)B12—B11—S11119.59 (17)
B7—B3—Co1118.96 (15)B7—B11—S11125.96 (17)
B8—B3—Co2115.73 (16)B10—B11—S11114.08 (16)
B4—B3—Co2115.83 (15)B6—B11—S11116.74 (16)
B7—B3—Co263.82 (11)B12—B11—Co2121.65 (16)
Co1—B3—Co269.63 (8)B7—B11—Co267.10 (12)
B5—B4—B8110.87 (19)B10—B11—Co2119.91 (16)
B5—B4—B961.28 (15)B6—B11—Co265.94 (12)
B8—B4—B961.10 (15)S11—B11—Co2111.57 (13)
B5—B4—B3111.82 (18)C112—S11—C111100.42 (12)
B8—B4—B359.33 (15)C112—S11—B11108.12 (11)
B9—B4—B3109.66 (18)C111—S11—B11104.80 (12)
B5—B4—S4124.78 (17)B11—B12—B9108.01 (19)
B8—B4—S4113.32 (16)B11—B12—B8106.48 (19)
B9—B4—S4116.90 (16)B9—B12—B860.95 (15)
B3—B4—S4118.43 (16)B11—B12—B759.51 (15)
B5—B4—Co167.49 (13)B9—B12—B7110.20 (19)
B8—B4—Co1119.45 (16)B8—B12—B760.22 (15)
B9—B4—Co1121.78 (16)B11—B12—B1059.81 (14)
B3—B4—Co165.95 (12)B9—B12—B1059.66 (15)
S4—B4—Co1114.00 (13)B8—B12—B10107.21 (19)
C42—S4—C4199.42 (12)B7—B12—B10108.30 (18)
C42—S4—B4107.17 (12)

Experimental details

Crystal data
Chemical formula[Co2(C4H20B10S2)(CO)5]
Mr498.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)12.2978 (2), 10.9183 (2), 30.5900 (5)
V3)4107.35 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.21 × 0.18 × 0.15
Data collection
DiffractometerNonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.699, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
48902, 4029, 3276
Rint0.077
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.061, 1.03
No. of reflections4029
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.48

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1996), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.

Selected geometric parameters (Å, º) top
C1—O11.142 (3)Co1—B42.116 (3)
C1—Co11.774 (3)Co1—B32.163 (3)
C2—O21.142 (3)Co1—B52.169 (3)
C2—Co11.779 (2)Co1—B62.189 (3)
C3—O31.171 (3)Co1—Co22.4913 (4)
C3—Co11.913 (2)Co2—B112.113 (3)
C3—Co21.917 (2)Co2—B72.160 (3)
C4—O41.142 (3)Co2—B62.161 (3)
C4—Co21.771 (3)Co2—B32.200 (3)
C5—O51.133 (3)B4—S41.917 (3)
C5—Co21.780 (3)
Co1—C3—Co281.16 (9)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds