Download citation
Download citation
link to html
The title compound, μ-6,9-chloro-8-methoxy-6,9-bis­(η5-penta­methyl­cyclo­penta­dienyl)-6,9-dirhoda-5-thia-arachno-decaborane(7), [Rh2(CH10B7OS)(C10H15)2Cl], has a single Cl atom bridging the two remote rhodium `prow' vertices of an arachno ten-vertex dirhoda­thia­decaborane cluster, with Rh—­Cl distances of 2.3475 (11) and 2.3536 (11) Å, and an Rh—Cl—Rh angle of 106.82 (4)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015432/bj1000sup1.cif
Contains datablocks IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015432/bj1000IVsup2.hkl
Contains datablock IV

CCDC reference: 158245

Comment top

Since the initial structure elucidation of the arachno and nido ten-vertex skeletons in borane cluster chemistry diagrammatically depicted in (I) (Van der Mass Reddy & Lipscomb, 1959; Kasper et al., 1950), there has been a fascination with bridging the 6,9 positions across the open face, either with a single atom as in (II) or a two-atom unit as in (III), but instances of both have been surprisingly rare. Several examples of structurally characterized one-atom bridges of the arachno skeleton have been reported. These include a phosphorus-bridged unit as in the [B10H12-µ-6,9-(PPh2)]- anion (Thornton-Pett et al., 1986), a sulfur-bridged unit as in the [B10H12-µ-6,9-(SMe)]- anion and related species (Binder & Hein, 1997, and references therein). Bridged nido skeletons have been structurally characterized containing an aluminium-bridged unit, [6,9-C2B8H12-µ-6,9-{Al(OEt)Me}] (Schubert et al., 1987), a tin bridge in [6,9-C2B8H12-µ-6,9-SnMe2] and related species (Kennedy et al., 1992; Nestor et al., 1993), as well as a nitrogen-bridged cluster in [5,10-C2B8H12-µ-6,9-(NHterBu)] and related species (Janoušek et al., 1992; Dörfler et al., 2000). In this paper we now report a chlorine bridge for the arachno-6,9,5-dimetallathiadecaborane cluster compound [µ-6,9-Cl-8-(OMe)-6,9-(η5-C5Me5)2-arachno-6,9,5-Rh2SB7H7], (IV) (Figure 1). A chlorine-bridged rhodium pair has been noted previously in the eleven-vertex dimetallathiaborane [2,3-(PPh3)2-3-Cl-µ-2,3-Cl-µ-2P,7C-(Ph2P-2-C6H4) -closo-2,3,1-Rh2SB9H8] (Ferguson et al., 1990), although the bridged rhodium atoms are adjacent in the contiguous {RhS2B9} cluster [Rh—Rh distance 2.6307 (9) Å], rather than apart, as in the present compound [Rh—Rh distance 3.7748 (5) Å]. There is a bromine-bridged metals-apart example reported, in [µ-Br(CO)6(B3H8)Mn2] (Chen et al., 1980). \sch

The asymmetric unit contains approximately 0.1 molecules of disordered CH2Cl2 solvent. The cluster structure is seen to be of the basic ten-vertex nido/arachno boat-shaped geometry, with a rhodium centre at each of the two 6,9 `prow' positions. The two Rh atoms are linked by a bridging Cl atom. An S atom occupies one of the open-face `gunwale' positions, and there is a hydrogen bridge at the opposing interboron `gunwale' position, consistent with the general arachno ten-vertex character that is also apparent from the formal Wadian (Wade, 1976) 16-electron {2n+6} arachno electron count. The compound could also be regarded as of 11-vertex `remote arachno' cluster constitution (Porterfield et al., 1990). Using simple electron counting rules, each of the formal octahedral rhodium(III) centres has two two-electron bonding vectors which are contributed to the cluster (Kennedy, 1998; Bould et al., 1999) and three which are directed towards the {η5-C5Me5} group. The sixth vector constitutes a two-electron bond with the bridging Cl atom, and one such from each rhodium generates the bridge. The two rhodium-chlorine distances of 2.3475 (11) and 2.3536 (11) Å are similar to those in the closo twelve-vertex species mentioned above [2.437 (2) and 2.448 (2) Å], and shorter than those in the doubly bridged rhodium dimer [{RhCl2(η5-C5Me5)}2] from which compound (IV) was prepared [2.401 (4) Å] (Hoard & Sharpe, 1993).

Experimental top

The title compound was isolated, along with its 10-methoxy isomer (V) from the reaction between [(RhCl2{η5-C5Me5})2] (100 mg, 162 µmol) and the [tmndaH]+ salt of the [SB8H11]- anion (Jones et al., 1989) (136 mg; 394 µmol; tmnda = 1,8-bisdimethylaminonaphthalene) in CH2Cl2 / MeOH (1:1, 30 ml) for 30 min. Filtration and repeated TLC (silica gel G) on the filtrate mixture, using CH2Cl2/hexane mixtures, revealed a mixture of several coloured components, from which it was possible to separate dark red (IV) (4 mg, 6 µmol, 4%) and amber (V) (10 mg, 15 µmol, 9%) in pure form (RF 0.28 and 0.35 respectively, liquid phase CH2Cl2/hexane 8:2). Crystals of compound (IV) were obtained from diffusion of hexane into a solution in CH2Cl2. Selected NMR data for CDCl3 solutions at 300 K {cluster resonances ordered as: assignment (11B)/p.p.m. [(1H)/p.p.m. for directly attached exo-hydrogen]}. [µ-6,9-Cl-8-(OMe)-6,9-(η5-C5Me5)2 -arachno-6,9,5-Rh2SB7H7] (IV): BH(1) +8.9 [+3.64], BH(2) -21.3 [+1.34], BH(3) +5.7 [+3.54], BH(4) -26.7 [+1.44], BH(7) +1.5 [+3.19], B(8) +27.4 [OMe substituted] and BH(10) +14.4 [+3.97], with δ(1H)(µ-7,8) -0.19, δ(1H)(C5Me5) at +1.69 and +1.56, δ(1H)(OMe) at +3.61; [µ-6,9-Cl-10-(OMe)-6,9-(η5-C5Me5)2 -arachno-6,9,5-Rh2SB7H7] (V) BH(1) +9.5 [+4.08], BH(2) -23.5 [+1.55], BH(3) +6.7 [+3.63], BH(4) -26.0 [+1.45], BH(7) +3.9 [+3.30], BH(8) +26.0 [+1.45] and B(10) +9.5 [OMe substituted], with δ(1H)(µ-7,8) -1.71, δ(1H)(C5Me5) at +1.71 and +1.62, δ(1H)(OMe) at +3.42; mass spectrometry (70 eV E·I.): each had a weak m/e(max) isotopomer envelope centred at 657 corresponding to the calculated molecular ion, [C21H40B7Cl101S1Rh2]+, with a principal fragmentation involving loss of Cl.

Refinement top

The final difference Fourier map showed two areas of diffuse electron density. Attempts to model these meaningfully as disordered solvent molecules were entirely unsuccessful. The contribution of these solvent `voids' was therefore `subtracted' from the measured data using the SQUEEZE routine of PLATON (van der Sluis & Spek, 1990). This program indicated an approximate total of 23 electrons in the two sites which, assuming both voids contain disordered hexane molecules, corresponds to approximately 0.11C6H14. However, an accurate determination of the stoichiometric quantity of solvent in the crystal is not possible, so no contribution from the solvent has been included in the calculations of molecular formula, F(000) value, and calculated density. Methyl-associated hydrogen atoms were constrained to calculated positions with isotropic displacement parameters equal to 1.5 × Ueq of the parent carbon atom. Cluster-associated hydrogen atoms were either located via Fourier difference syntheses (open face) or positioned in calculated positions (five-connected vertices) and assigned isotropic displacement parameters equal to 1.2 × Ueq of the parent boron atom. Although parameters associated with these atoms were used in structure factor calculations they were not included in refinement.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1996); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: PLATON (Spek, 2000) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: WC (Thornton-Pett, 2000).

Figures top
[Figure 1] Fig. 1. Perspective view of a single molecule of (IV) drawn with 40% probability ellipsoids and with H atoms shown as small circles of artificial radius. Hydrogen atoms on the C5Me5 methyl groups are omitted for clarity.
(IV) top
Crystal data top
[Rh2(B7H7S)(C10H15)2(CH3O)Cl]Dx = 1.563 Mg m3
Mr = 657.53Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4Cell parameters from 37770 reflections
Hall symbol: P -4θ = 1.0–27.5°
a = 18.1926 (2) ŵ = 1.37 mm1
c = 8.4442 (1) ÅT = 150 K
V = 2794.78 (5) Å3Prism, dark red
Z = 40.60 × 0.19 × 0.15 mm
F(000) = 1328
Data collection top
Nonius KappaCCD area detector
diffractometer
5488 independent reflections
Radiation source: fine-focus sealed tube5465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
Standard procedure using manufacturer proprietary software (Nonius, 1999) scansh = 2222
Absorption correction: multi-scan
(Blessing, 1995)
k = 2222
Tmin = 0.495, Tmax = 0.822l = 910
50782 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0358P)2 + 4.4768P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.003
S = 1.14Δρmax = 0.40 e Å3
5488 reflectionsΔρmin = 0.60 e Å3
310 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0086 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (4)
Crystal data top
[Rh2(B7H7S)(C10H15)2(CH3O)Cl]Z = 4
Mr = 657.53Mo Kα radiation
Tetragonal, P4µ = 1.37 mm1
a = 18.1926 (2) ÅT = 150 K
c = 8.4442 (1) Å0.60 × 0.19 × 0.15 mm
V = 2794.78 (5) Å3
Data collection top
Nonius KappaCCD area detector
diffractometer
5488 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5465 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.822Rint = 0.079
50782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.40 e Å3
S = 1.14Δρmin = 0.60 e Å3
5488 reflectionsAbsolute structure: Flack (1983)
310 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Experimental. The crystal was mounted under oil in random orientation. Data were collected using a mixture of area-detector ω and ϕ-exposures with the CCD detector positioned 29 mm from the sample. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 15° ϕ range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh60.988741 (18)0.308783 (19)0.33706 (4)0.02450 (11)
C611.1008 (2)0.3155 (3)0.2876 (6)0.0337 (10)
C621.0809 (2)0.3755 (3)0.3830 (6)0.0328 (10)
C631.0564 (3)0.3474 (3)0.5338 (6)0.0328 (10)
C641.0601 (3)0.2717 (3)0.5297 (6)0.0354 (11)
C651.0879 (3)0.2505 (3)0.3777 (6)0.0349 (11)
C661.1352 (3)0.3185 (4)0.1283 (6)0.0440 (13)
H66A1.11730.36190.07140.066*
H66B1.12230.27410.06880.066*
H66C1.18880.32140.13950.066*
C671.0909 (3)0.4497 (3)0.3438 (8)0.0465 (13)
H67A1.14290.46270.35580.070*
H67B1.06120.48040.41440.070*
H67C1.07570.45790.23390.070*
C681.0333 (3)0.3908 (3)0.6716 (7)0.0454 (13)
H68A0.99540.36380.73030.068*
H68B1.01330.43800.63590.068*
H68C1.07570.39950.74070.068*
C691.0384 (3)0.2214 (3)0.6603 (7)0.0451 (13)
H69A1.08120.21140.72750.068*
H69B1.02010.17520.61570.068*
H69C0.99970.24450.72390.068*
C701.1035 (3)0.1778 (3)0.3257 (8)0.0482 (13)
H70A1.10040.17560.21000.072*
H70B1.06780.14370.37200.072*
H70C1.15320.16390.35950.072*
Rh90.785635 (17)0.344798 (18)0.28884 (4)0.02386 (11)
C910.7176 (3)0.4090 (3)0.4566 (7)0.0363 (11)
C920.6971 (3)0.3361 (3)0.4660 (6)0.0359 (11)
C930.6731 (3)0.3157 (3)0.3151 (7)0.0413 (12)
C940.6806 (3)0.3760 (3)0.2111 (7)0.0427 (12)
C950.7052 (3)0.4348 (3)0.3021 (8)0.0435 (13)
C960.7443 (3)0.4500 (4)0.5952 (10)0.068 (2)
H96A0.70230.46750.65730.101*
H96B0.77360.49210.55980.101*
H96C0.77480.41780.66100.101*
C970.7013 (4)0.2899 (4)0.6122 (8)0.066 (2)
H97A0.69010.23870.58550.099*
H97B0.66550.30790.69000.099*
H97C0.75090.29300.65700.099*
C980.6414 (3)0.2468 (4)0.2653 (11)0.077 (3)
H98A0.65780.20750.33630.115*
H98B0.65710.23580.15690.115*
H98C0.58770.25040.26890.115*
C990.6553 (4)0.3819 (7)0.0430 (8)0.095 (4)
H99A0.69490.40250.02200.143*
H99B0.61220.41410.03760.143*
H99C0.64220.33300.00340.143*
C1000.7135 (4)0.5096 (4)0.2467 (13)0.086 (3)
H10A0.73890.50950.14420.129*
H10B0.74240.53770.32360.129*
H10C0.66500.53220.23460.129*
B10.8735 (4)0.2217 (4)0.0659 (7)0.0405 (14)
H10.86660.17170.01010.049*
B20.9609 (3)0.2638 (4)0.0977 (7)0.0373 (12)
H21.01120.24020.04080.045*
B30.8963 (3)0.3048 (4)0.0186 (6)0.0379 (13)
H30.90420.30890.14980.045*
B40.8104 (3)0.2900 (4)0.0689 (7)0.0359 (13)
H40.76040.28360.00720.043*
S50.91537 (7)0.21050 (6)0.27978 (17)0.0352 (3)
B70.9507 (3)0.3580 (3)0.1056 (6)0.0298 (11)
H70.98390.39730.05880.036*
H780.90770.38720.17940.036*
B80.8529 (3)0.3768 (3)0.0843 (6)0.0279 (10)
B100.8186 (3)0.2385 (3)0.2407 (7)0.0368 (12)
H100.77430.19870.27050.044*
Cl690.88523 (6)0.35823 (6)0.46435 (13)0.0277 (2)
O810.82880 (19)0.4375 (2)0.0078 (4)0.0381 (8)
C810.8741 (3)0.4740 (3)0.0995 (7)0.0412 (12)
H81A0.91160.50180.04150.062*
H81B0.84450.50790.16340.062*
H81C0.89800.43810.16890.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh60.02247 (17)0.02950 (19)0.02152 (16)0.00049 (13)0.00129 (12)0.00361 (13)
C610.025 (2)0.049 (3)0.027 (2)0.0015 (19)0.0004 (19)0.005 (2)
C620.0153 (19)0.046 (3)0.038 (3)0.0017 (18)0.0023 (17)0.005 (2)
C630.024 (2)0.049 (3)0.025 (2)0.002 (2)0.0031 (18)0.007 (2)
C640.025 (2)0.055 (3)0.027 (2)0.007 (2)0.0005 (18)0.002 (2)
C650.027 (2)0.049 (3)0.029 (2)0.011 (2)0.0020 (18)0.005 (2)
C660.028 (2)0.072 (4)0.031 (3)0.004 (2)0.010 (2)0.004 (2)
C670.037 (3)0.042 (3)0.060 (3)0.010 (2)0.002 (3)0.004 (3)
C680.030 (2)0.069 (4)0.037 (3)0.005 (2)0.000 (2)0.024 (3)
C690.037 (3)0.062 (3)0.036 (3)0.010 (2)0.002 (2)0.015 (3)
C700.046 (3)0.045 (3)0.053 (3)0.020 (2)0.005 (3)0.004 (3)
Rh90.02126 (17)0.02690 (18)0.02341 (16)0.00525 (12)0.00095 (12)0.00162 (13)
C910.022 (2)0.038 (3)0.048 (3)0.0045 (19)0.005 (2)0.014 (2)
C920.030 (2)0.042 (3)0.035 (2)0.001 (2)0.011 (2)0.000 (2)
C930.023 (2)0.047 (3)0.054 (3)0.008 (2)0.005 (2)0.016 (3)
C940.020 (2)0.074 (4)0.034 (3)0.001 (2)0.002 (2)0.000 (3)
C950.026 (2)0.042 (3)0.062 (4)0.004 (2)0.010 (2)0.010 (3)
C960.039 (3)0.080 (5)0.084 (5)0.000 (3)0.004 (3)0.053 (4)
C970.066 (4)0.074 (5)0.058 (4)0.014 (4)0.033 (3)0.028 (3)
C980.031 (3)0.075 (5)0.123 (7)0.025 (3)0.024 (4)0.053 (5)
C990.036 (3)0.217 (12)0.033 (3)0.032 (5)0.008 (3)0.007 (5)
C1000.045 (3)0.052 (4)0.160 (9)0.021 (3)0.026 (5)0.050 (5)
B10.040 (3)0.042 (3)0.039 (3)0.001 (3)0.003 (3)0.018 (3)
B20.033 (3)0.054 (4)0.025 (2)0.000 (2)0.002 (2)0.011 (2)
B30.029 (3)0.065 (4)0.020 (2)0.004 (3)0.002 (2)0.011 (2)
B40.030 (3)0.048 (3)0.029 (3)0.005 (2)0.002 (2)0.019 (2)
S50.0370 (6)0.0256 (5)0.0430 (6)0.0017 (4)0.0017 (5)0.0044 (5)
B70.029 (2)0.040 (3)0.021 (2)0.002 (2)0.0028 (19)0.001 (2)
B80.026 (2)0.035 (3)0.023 (2)0.001 (2)0.0005 (19)0.003 (2)
B100.042 (3)0.030 (3)0.039 (3)0.006 (2)0.003 (2)0.008 (2)
Cl690.0216 (5)0.0358 (6)0.0256 (5)0.0003 (4)0.0007 (4)0.0063 (4)
O810.0296 (17)0.048 (2)0.0371 (19)0.0013 (15)0.0040 (14)0.0162 (16)
C810.037 (3)0.053 (3)0.034 (2)0.010 (2)0.001 (2)0.014 (2)
Geometric parameters (Å, º) top
Rh6—C612.085 (4)C93—C941.412 (8)
Rh6—C622.105 (5)C93—C981.441 (8)
Rh6—C652.120 (5)C94—C951.391 (9)
Rh6—C632.184 (5)C94—C991.495 (8)
Rh6—C642.188 (5)C95—C1001.447 (8)
Rh6—B22.238 (5)C96—H96A0.9800
Rh6—B72.259 (5)C96—H96B0.9800
Rh6—S52.2831 (12)C96—H96C0.9800
Rh6—Cl692.3475 (11)C97—H97A0.9800
C61—C621.405 (7)C97—H97B0.9800
C61—C651.425 (8)C97—H97C0.9800
C61—C661.485 (7)C98—H98A0.9800
C62—C671.402 (7)C98—H98B0.9800
C62—C631.443 (7)C98—H98C0.9800
C63—C641.380 (7)C99—H99A0.9800
C63—C681.467 (7)C99—H99B0.9800
C64—C651.433 (7)C99—H99C0.9800
C64—C691.486 (7)C100—H10A0.9800
C65—C701.423 (7)C100—H10B0.9800
C66—H66A0.9800C100—H10C0.9800
C66—H66B0.9800B1—B41.691 (9)
C66—H66C0.9800B1—B31.723 (10)
C67—H67A0.9800B1—B21.786 (9)
C67—H67B0.9800B1—B101.808 (9)
C67—H67C0.9800B1—S51.971 (6)
C68—H68A0.9800B1—H11.12
C68—H68B0.9800B2—B31.702 (8)
C68—H68C0.9800B2—B71.725 (8)
C69—H69A0.9800B2—S51.998 (7)
C69—H69B0.9800B2—H21.12
C69—H69C0.9800B3—B71.736 (8)
C70—H70A0.9800B3—B41.750 (8)
C70—H70B0.9800B3—B81.760 (8)
C70—H70C0.9800B3—H31.12
Rh9—B102.066 (6)B4—B101.733 (9)
Rh9—C942.099 (5)B4—B81.764 (8)
Rh9—C932.126 (5)B4—H41.12
Rh9—B42.156 (5)S5—B101.863 (6)
Rh9—B82.195 (5)B7—B81.820 (7)
Rh9—C952.199 (5)B7—H71.02
Rh9—C922.203 (5)B7—H781.13
Rh9—C912.214 (5)B8—O811.351 (6)
Rh9—Cl692.3536 (11)B8—H781.29
C91—C921.379 (7)B10—H101.11
C91—C951.405 (9)O81—C811.394 (6)
C91—C961.471 (8)C81—H81A0.98
C92—C931.398 (8)C81—H81B0.98
C92—C971.495 (8)C81—H81C0.98
C61—Rh6—C6239.16 (19)C95—C94—Rh975.1 (3)
C61—Rh6—C6539.6 (2)C93—C94—Rh971.5 (3)
C62—Rh6—C6565.2 (2)C99—C94—Rh9126.6 (4)
C61—Rh6—C6365.32 (18)C94—C95—C91108.0 (5)
C62—Rh6—C6339.25 (19)C94—C95—C100125.3 (7)
C65—Rh6—C6363.79 (19)C91—C95—C100126.7 (7)
C61—Rh6—C6465.60 (18)C94—C95—Rh967.3 (3)
C62—Rh6—C6464.4 (2)C91—C95—Rh972.0 (3)
C65—Rh6—C6438.82 (18)C100—C95—Rh9127.8 (4)
C63—Rh6—C6436.8 (2)C91—C96—H96A109.5
C61—Rh6—B293.6 (2)C91—C96—H96B109.5
C62—Rh6—B2123.9 (2)H96A—C96—H96B109.5
C65—Rh6—B299.0 (2)C91—C96—H96C109.5
C63—Rh6—B2158.8 (2)H96A—C96—H96C109.5
C64—Rh6—B2133.9 (2)H96B—C96—H96C109.5
C61—Rh6—B795.93 (19)C92—C97—H97A109.5
C62—Rh6—B7100.1 (2)C92—C97—H97B109.5
C65—Rh6—B7126.82 (19)H97A—C97—H97B109.5
C63—Rh6—B7134.7 (2)C92—C97—H97C109.5
C64—Rh6—B7161.39 (19)H97A—C97—H97C109.5
B2—Rh6—B745.1 (2)H97B—C97—H97C109.5
C61—Rh6—S5125.12 (15)C93—C98—H98A109.5
C62—Rh6—S5162.93 (14)C93—C98—H98B109.5
C65—Rh6—S598.06 (15)H98A—C98—H98B109.5
C63—Rh6—S5137.97 (15)C93—C98—H98C109.5
C64—Rh6—S5105.25 (15)H98A—C98—H98C109.5
B2—Rh6—S552.43 (17)H98B—C98—H98C109.5
B7—Rh6—S587.02 (15)C94—C99—H99A109.5
C61—Rh6—Cl69148.62 (14)C94—C99—H99B109.5
C62—Rh6—Cl69109.46 (14)H99A—C99—H99B109.5
C65—Rh6—Cl69143.13 (13)C94—C99—H99C109.5
C63—Rh6—Cl6988.87 (13)H99A—C99—H99C109.5
C64—Rh6—Cl69104.68 (13)H99B—C99—H99C109.5
B2—Rh6—Cl69111.83 (15)C95—C100—H10A109.5
B7—Rh6—Cl6989.89 (14)C95—C100—H10B109.5
S5—Rh6—Cl6985.88 (4)H10A—C100—H10B109.5
C62—C61—C65107.2 (4)C95—C100—H10C109.5
C62—C61—C66126.9 (5)H10A—C100—H10C109.5
C65—C61—C66125.7 (5)H10B—C100—H10C109.5
C62—C61—Rh671.2 (3)B4—B1—B361.7 (4)
C65—C61—Rh671.5 (3)B4—B1—B2106.6 (4)
C66—C61—Rh6126.6 (3)B3—B1—B258.0 (3)
C67—C62—C61125.4 (5)B4—B1—B1059.3 (3)
C67—C62—C63126.1 (5)B3—B1—B10108.8 (4)
C61—C62—C63108.1 (5)B2—B1—B10107.2 (4)
C67—C62—Rh6128.0 (4)B4—B1—S5108.9 (4)
C61—C62—Rh669.6 (3)B3—B1—S5112.1 (4)
C63—C62—Rh673.3 (3)B2—B1—S564.0 (3)
C64—C63—C62108.4 (4)B10—B1—S558.9 (3)
C64—C63—C68124.8 (5)B4—B1—H1122
C62—C63—C68126.8 (5)B3—B1—H1120
C64—C63—Rh671.7 (3)B2—B1—H1122
C62—C63—Rh667.4 (3)B10—B1—H1123
C68—C63—Rh6127.9 (3)S5—B1—H1119
C63—C64—C65108.0 (5)B3—B2—B760.9 (4)
C63—C64—C69125.7 (5)B3—B2—B159.1 (4)
C65—C64—C69126.4 (5)B7—B2—B1109.7 (4)
C63—C64—Rh671.5 (3)B3—B2—S5111.8 (4)
C65—C64—Rh668.0 (3)B7—B2—S5114.1 (3)
C69—C64—Rh6125.8 (4)B1—B2—S562.5 (3)
C70—C65—C61125.0 (5)B3—B2—Rh6121.1 (4)
C70—C65—C64126.6 (5)B7—B2—Rh668.1 (3)
C61—C65—C64108.3 (5)B1—B2—Rh6119.6 (4)
C70—C65—Rh6125.8 (4)S5—B2—Rh664.94 (17)
C61—C65—Rh668.9 (3)B3—B2—H2119
C64—C65—Rh673.1 (3)B7—B2—H2119
C61—C66—H66A109.5B1—B2—H2120
C61—C66—H66B109.5S5—B2—H2119
H66A—C66—H66B109.5Rh6—B2—H2110
C61—C66—H66C109.5B2—B3—B162.9 (4)
H66A—C66—H66C109.5B2—B3—B760.2 (3)
H66B—C66—H66C109.5B1—B3—B7112.2 (4)
C62—C67—H67A109.5B2—B3—B4107.8 (4)
C62—C67—H67B109.5B1—B3—B458.3 (4)
H67A—C67—H67B109.5B7—B3—B4109.8 (4)
C62—C67—H67C109.5B2—B3—B8110.6 (4)
H67A—C67—H67C109.5B1—B3—B8109.9 (4)
H67B—C67—H67C109.5B7—B3—B862.8 (3)
C63—C68—H68A109.5B4—B3—B860.3 (3)
C63—C68—H68B109.5B2—B3—H3121
H68A—C68—H68B109.5B1—B3—H3120
C63—C68—H68C109.5B7—B3—H3119
H68A—C68—H68C109.5B4—B3—H3123
H68B—C68—H68C109.5B8—B3—H3120
C64—C69—H69A109.5B1—B4—B1063.7 (4)
C64—C69—H69B109.5B1—B4—B360.1 (4)
H69A—C69—H69B109.5B10—B4—B3111.1 (4)
C64—C69—H69C109.5B1—B4—B8111.2 (4)
H69A—C69—H69C109.5B10—B4—B8112.7 (4)
H69B—C69—H69C109.5B3—B4—B860.1 (3)
C65—C70—H70A109.5B1—B4—Rh9119.7 (4)
C65—C70—H70B109.5B10—B4—Rh963.1 (3)
H70A—C70—H70B109.5B3—B4—Rh9118.6 (3)
C65—C70—H70C109.5B8—B4—Rh967.3 (3)
H70A—C70—H70C109.5B1—B4—H4118
H70B—C70—H70C109.5B10—B4—H4120
B10—Rh9—C94117.1 (2)B3—B4—H4120
B10—Rh9—C9393.8 (2)B8—B4—H4119
C94—Rh9—C9339.0 (2)Rh9—B4—H4112
B10—Rh9—B448.4 (2)B10—S5—B156.2 (3)
C94—Rh9—B492.6 (2)B10—S5—B297.1 (3)
C93—Rh9—B4100.1 (2)B1—S5—B253.5 (3)
B10—Rh9—B886.1 (2)B10—S5—Rh6112.12 (18)
C94—Rh9—B8100.9 (2)B1—S5—Rh6109.8 (2)
C93—Rh9—B8133.2 (2)B2—S5—Rh662.63 (17)
B4—Rh9—B847.8 (2)B2—B7—B358.9 (3)
B10—Rh9—C95154.2 (2)B2—B7—B8106.8 (4)
C94—Rh9—C9537.7 (2)B3—B7—B859.3 (3)
C93—Rh9—C9562.6 (2)B2—B7—Rh666.8 (3)
B4—Rh9—C95121.8 (2)B3—B7—Rh6118.4 (4)
B8—Rh9—C95102.3 (2)B8—B7—Rh6117.4 (3)
B10—Rh9—C92106.2 (2)B2—B7—H7128
C94—Rh9—C9264.3 (2)B3—B7—H7120
C93—Rh9—C9237.6 (2)B8—B7—H7114
B4—Rh9—C92134.8 (2)Rh6—B7—H7116
B8—Rh9—C92163.8 (2)B2—B7—H78124
C95—Rh9—C9262.1 (2)B3—B7—H78102
B10—Rh9—C91141.4 (2)B8—B7—H7845
C94—Rh9—C9163.2 (2)Rh6—B7—H7886
C93—Rh9—C9161.75 (19)H7—B7—H78107
B4—Rh9—C91155.8 (2)O81—B8—B3121.2 (4)
B8—Rh9—C91132.5 (2)O81—B8—B4123.6 (4)
C95—Rh9—C9137.1 (2)B3—B8—B459.6 (3)
C92—Rh9—C9136.4 (2)O81—B8—B7121.2 (4)
B10—Rh9—Cl6989.88 (17)B3—B8—B758.0 (3)
C94—Rh9—Cl69150.44 (17)B4—B8—B7105.5 (4)
C93—Rh9—Cl69134.55 (17)O81—B8—Rh9114.3 (3)
B4—Rh9—Cl69115.44 (15)B3—B8—Rh9116.2 (3)
B8—Rh9—Cl6992.22 (14)B4—B8—Rh964.9 (3)
C95—Rh9—Cl69113.78 (17)B7—B8—Rh9114.6 (3)
C92—Rh9—Cl6998.19 (14)O81—B8—H78115
C91—Rh9—Cl6988.43 (14)B3—B8—H7893
C92—C91—C95109.3 (5)B4—B8—H78121
C92—C91—C96122.1 (6)B7—B8—H7838
C95—C91—C96128.5 (6)Rh9—B8—H7889
C92—C91—Rh971.4 (3)B4—B10—B157.0 (3)
C95—C91—Rh970.9 (3)B4—B10—S5112.1 (4)
C96—C91—Rh9126.3 (4)B1—B10—S564.9 (3)
C91—C92—C93106.7 (5)B4—B10—Rh968.5 (3)
C91—C92—C97125.0 (6)B1—B10—Rh9118.6 (4)
C93—C92—C97128.3 (6)S5—B10—Rh9119.7 (3)
C91—C92—Rh972.2 (3)B4—B10—H10119
C93—C92—Rh968.2 (3)B1—B10—H10118
C97—C92—Rh9124.4 (4)S5—B10—H10118
C92—C93—C94109.3 (5)Rh9—B10—H10111
C92—C93—C98128.5 (6)Rh6—Cl69—Rh9106.82 (4)
C94—C93—C98122.2 (6)B8—O81—C81120.6 (4)
C92—C93—Rh974.2 (3)O81—C81—H81A109.5
C94—C93—Rh969.4 (3)O81—C81—H81B109.5
C98—C93—Rh9124.9 (4)H81A—C81—H81B109.5
C95—C94—C93106.5 (5)O81—C81—H81C109.5
C95—C94—C99124.6 (7)H81A—C81—H81C109.5
C93—C94—C99128.0 (7)H81B—C81—H81C109.5

Experimental details

Crystal data
Chemical formula[Rh2(B7H7S)(C10H15)2(CH3O)Cl]
Mr657.53
Crystal system, space groupTetragonal, P4
Temperature (K)150
a, c (Å)18.1926 (2), 8.4442 (1)
V3)2794.78 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.60 × 0.19 × 0.15
Data collection
DiffractometerNonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.495, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
50782, 5488, 5465
Rint0.079
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.14
No. of reflections5488
No. of parameters310
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.60
Absolute structureFlack (1983)
Absolute structure parameter0.02 (4)

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1996), DENZO-SMN, SHELXS97 (Sheldrick, 1990), PLATON (Spek, 2000) and SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), WC (Thornton-Pett, 2000).

Selected geometric parameters (Å, º) top
Rh6—B22.238 (5)B1—S51.971 (6)
Rh6—B72.259 (5)B2—B31.702 (8)
Rh6—S52.2831 (12)B2—B71.725 (8)
Rh6—Cl692.3475 (11)B2—S51.998 (7)
Rh9—B102.066 (6)B3—B71.736 (8)
Rh9—B42.156 (5)B3—B41.750 (8)
Rh9—B82.195 (5)B3—B81.760 (8)
Rh9—Cl692.3536 (11)B4—B101.733 (9)
B1—B41.691 (9)B4—B81.764 (8)
B1—B31.723 (10)S5—B101.863 (6)
B1—B21.786 (9)B7—B81.820 (7)
B1—B101.808 (9)B8—O811.351 (6)
Rh6—Cl69—Rh9106.82 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds