Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Four new variants of the 1,4-benzenedicarboxylate MIL-53 structure have been prepared for CoII under solvothermal conditions and their structures solved and refined from single-crystal X-ray data. All materials contain pendant pyridine-N-oxide ligands that bridge pairs of CoII atoms in the inorganic backbone of the structure via O. By the use of the ligands 3-bromopyridine-N-oxide, 4-methoxypyridine-N-oxide, isoquinoline-N-oxide and 4-phenylpyridine-N-oxide, materials are prepared with the same topology but distinct structures. These illustrate how the MIL-53 structure is able to distort to accommodate the bulk of the various substituents on the pyridine ring. The bulkiest pendant ligand, 4-phenylpyridine-N-oxide, results in a distortion of the diamond-shaped channels in an opposite sense to that seen previously in expanded forms of the parent MIL-53 structure. By comparison with published crystal structures for MIL-53 with various occluded guests, the structural distortions that take place to accommodate the pendant ligands are quantified and it is shown how a twisting of the 1,4-benzenedicarboxylate ligand, instead of a hinging about the μ2-carboxylate-metal connection, allows the new structures that are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520613027224/bi5024sup1.cif
Contains datablocks Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-isoquiniline, Co-BDC-4-phenyl-PNO, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027224/bi5024Co-BDC-3-Br-PNOsup2.hkl
Contains datablock Co-BDC-3-Br-PNO

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027224/bi5024Co-BDC-4-methyoxy-PNOsup3.hkl
Contains datablock Co-BDC-4-methyoxy-PNO

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027224/bi5024Co-BDC-isoquinilinesup4.hkl
Contains datablock Co-BDC-isoquiniline

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027224/bi5024Co-BDC-4-phenyl-PNOsup5.hkl
Contains datablock Co-BDC-4-phenyl-PNO

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520613027224/bi5024sup6.pdf
Details of compound preparation and characterisation

CCDC references: 964547; 964548; 964549; 964550

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006) for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; CrystalClear-SM (Rigaku, 2011) for Co-BDC-isoquiniline. Cell refinement: CrysAlis RED, (Oxford Diffraction, 2006) for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; CrystalClear-SM for Co-BDC-isoquiniline. Data reduction: CrysAlis RED for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; CrystalClear-SM for Co-BDC-isoquiniline. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; SHELXL2013 for Co-BDC-isoquiniline. Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; SHELXL2013 (Sheldrick, 2008) for Co-BDC-isoquiniline. Molecular graphics: SHELXTL (Sheldrick, 2008) for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; OLEX2 (Dolomanov et al., 2009) for Co-BDC-isoquiniline. Software used to prepare material for publication: SHELXTL for Co-BDC-3-Br-PNO, Co-BDC-4-methyoxy-PNO, Co-BDC-4-phenyl-PNO; OLEX2 for Co-BDC-isoquiniline.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
(Co-BDC-3-Br-PNO) top
Crystal data top
C13H8BrCoNO5F(000) = 780
Mr = 397.04Dx = 1.944 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1138 reflections
a = 7.1962 (8) Åθ = 3.3–30.8°
b = 10.0563 (13) ŵ = 4.23 mm1
c = 18.748 (3) ÅT = 296 K
β = 91.548 (12)°Block, pink
V = 1356.3 (3) Å30.20 × 0.04 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
3637 independent reflections
Radiation source: Enhance (Mo) X-ray Source1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
Detector resolution: 10.2833 pixels mm-1θmax = 30.9°, θmin = 3.5°
φ & ω scansh = 99
Absorption correction: multi-scan
ABSPACK (Oxford Diffraction, 2006)
k = 1410
Tmin = 0.62, Tmax = 1.00l = 2617
6996 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.104Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.289H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1268P)2]
where P = (Fo2 + 2Fc2)/3
3637 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.79 e Å3
54 restraintsΔρmin = 1.46 e Å3
Crystal data top
C13H8BrCoNO5V = 1356.3 (3) Å3
Mr = 397.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1962 (8) ŵ = 4.23 mm1
b = 10.0563 (13) ÅT = 296 K
c = 18.748 (3) Å0.20 × 0.04 × 0.03 mm
β = 91.548 (12)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
3637 independent reflections
Absorption correction: multi-scan
ABSPACK (Oxford Diffraction, 2006)
1444 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 1.00Rint = 0.138
6996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.10454 restraints
wR(F2) = 0.289H-atom parameters constrained
S = 0.96Δρmax = 0.79 e Å3
3637 reflectionsΔρmin = 1.46 e Å3
193 parameters
Special details top

Experimental. A small crystal was mounted on the glass fibre with silicon grease and the data recorded at room temperature. The data collection nominally covered over a hemisphere of Reciprocal space, by a combination of four sets of exposures with different φ angles for the crystal; each 100 s exposure covered 1.0° in ω. The crystal-to-detector distance was 5.5 cm. Crystal decay was found to be negligible by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H-atoms were given isotropic displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which they are attached. The bromopyridine ring had large cigar shaped elipsoids. Attempts at refining a disordered model with two bromopyridine ring positions did not give a satisfactory refinement so SIMU restraints were used to give the atoms of this ring more reasonable thermal parameters.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.0208 (5)
Co20.00000.50000.50000.0216 (5)
O10.1070 (8)0.6558 (7)0.4394 (3)0.0277 (15)
O20.4131 (8)0.6340 (7)0.4249 (3)0.0346 (16)
C20.2582 (12)0.6674 (9)0.4034 (5)0.0250 (17)
C30.2520 (11)0.7294 (10)0.3305 (5)0.026 (2)
C40.4137 (12)0.7512 (14)0.2914 (5)0.045 (3)
H40.52740.72930.31070.054*
C50.4093 (13)0.8053 (13)0.2236 (5)0.049 (3)
H50.52000.81780.19780.058*
C60.2433 (12)0.8410 (10)0.1937 (5)0.027 (2)
C70.0830 (13)0.8267 (13)0.2352 (5)0.052 (4)
H70.03010.85580.21800.062*
C80.0903 (12)0.7691 (12)0.3023 (5)0.038 (3)
H80.01970.75730.32870.046*
O90.3917 (8)0.8924 (8)0.0838 (3)0.0375 (18)
C90.2393 (12)0.8894 (10)0.1175 (5)0.026 (2)
O100.0837 (8)0.9204 (7)0.0949 (3)0.0334 (17)
O110.2488 (7)0.3928 (6)0.4868 (3)0.0234 (15)
N120.2450 (11)0.2659 (11)0.4844 (6)0.050 (2)
C130.2658 (14)0.1949 (12)0.5441 (8)0.055 (3)
H130.28710.23940.58660.067*
Br140.2821 (3)0.0329 (2)0.62917 (14)0.1247 (10)
C140.2569 (16)0.0591 (14)0.5446 (8)0.063 (3)
C150.2397 (17)0.0041 (16)0.4840 (9)0.076 (3)
H150.23920.09650.48330.091*
C160.2217 (18)0.0680 (16)0.4191 (9)0.077 (3)
H160.20890.02330.37610.093*
C170.2236 (16)0.2019 (14)0.4209 (8)0.067 (3)
H170.21050.25040.37910.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0186 (8)0.0256 (10)0.0182 (9)0.0005 (8)0.0029 (6)0.0001 (8)
Co20.0218 (9)0.0267 (11)0.0165 (9)0.0024 (8)0.0028 (6)0.0008 (9)
O10.028 (3)0.028 (3)0.027 (3)0.002 (3)0.008 (2)0.005 (3)
O20.028 (3)0.041 (4)0.035 (4)0.000 (3)0.004 (3)0.009 (3)
C20.031 (4)0.017 (4)0.027 (4)0.002 (3)0.003 (3)0.004 (3)
C30.024 (4)0.025 (5)0.029 (5)0.001 (4)0.000 (3)0.001 (4)
C40.015 (5)0.094 (10)0.027 (6)0.006 (5)0.003 (4)0.020 (6)
C50.018 (5)0.097 (11)0.031 (6)0.000 (6)0.003 (4)0.021 (7)
C60.033 (5)0.031 (6)0.017 (5)0.004 (4)0.002 (4)0.012 (4)
C70.026 (5)0.102 (11)0.027 (6)0.019 (6)0.003 (4)0.019 (7)
C80.022 (5)0.064 (8)0.028 (6)0.002 (5)0.004 (4)0.010 (5)
O90.028 (3)0.058 (5)0.027 (4)0.000 (3)0.001 (3)0.016 (4)
C90.020 (5)0.025 (5)0.034 (6)0.007 (4)0.000 (4)0.004 (5)
O100.023 (3)0.053 (5)0.024 (4)0.004 (3)0.008 (3)0.013 (3)
O110.018 (3)0.014 (3)0.038 (4)0.003 (3)0.006 (3)0.000 (3)
N120.032 (4)0.043 (5)0.076 (6)0.003 (4)0.009 (4)0.008 (4)
C130.034 (4)0.044 (5)0.088 (6)0.002 (4)0.006 (5)0.008 (5)
Br140.1058 (14)0.0737 (13)0.194 (3)0.0049 (10)0.0060 (14)0.0708 (15)
C140.041 (5)0.049 (6)0.099 (7)0.008 (5)0.009 (5)0.009 (5)
C150.060 (5)0.057 (6)0.110 (8)0.005 (5)0.010 (6)0.008 (6)
C160.066 (5)0.065 (6)0.100 (7)0.003 (5)0.009 (5)0.021 (6)
C170.052 (5)0.060 (6)0.088 (7)0.010 (5)0.006 (5)0.019 (5)
Geometric parameters (Å, º) top
Co1—O9i2.044 (6)C6—C71.381 (12)
Co1—O9ii2.044 (6)C6—C91.510 (12)
Co1—O2iii2.059 (6)C7—C81.389 (13)
Co1—O22.059 (6)C7—H70.9300
Co1—O11iii2.125 (5)C8—H80.9300
Co1—O112.125 (5)O9—C91.252 (9)
Co2—O10i2.057 (6)O9—Co1vi2.044 (6)
Co2—O10iv2.057 (6)C9—O101.247 (10)
Co2—O1v2.072 (6)O10—Co2vii2.057 (6)
Co2—O12.072 (6)O11—N121.277 (12)
Co2—O112.099 (5)N12—C131.340 (16)
Co2—O11v2.099 (5)N12—C171.366 (15)
O1—C21.270 (10)C13—C141.367 (17)
O2—C21.241 (10)C13—H130.9300
C2—C31.504 (13)Br14—C141.848 (15)
C3—C81.351 (12)C14—C151.31 (2)
C3—C41.377 (12)C15—C161.42 (2)
C4—C51.382 (13)C15—H150.9300
C4—H40.9300C16—C171.35 (2)
C5—C61.381 (13)C16—H160.9300
C5—H50.9300C17—H170.9300
O9i—Co1—O9ii180.0000 (10)C5—C4—H4119.6
O9i—Co1—O2iii86.4 (3)C6—C5—C4121.2 (8)
O9ii—Co1—O2iii93.6 (3)C6—C5—H5119.4
O9i—Co1—O293.6 (3)C4—C5—H5119.4
O9ii—Co1—O286.4 (3)C7—C6—C5117.6 (9)
O2iii—Co1—O2180.0000 (10)C7—C6—C9122.0 (8)
O9i—Co1—O11iii87.1 (2)C5—C6—C9120.5 (8)
O9ii—Co1—O11iii92.9 (2)C6—C7—C8120.2 (9)
O2iii—Co1—O11iii88.7 (2)C6—C7—H7119.9
O2—Co1—O11iii91.3 (2)C8—C7—H7119.9
O9i—Co1—O1192.9 (2)C3—C8—C7122.2 (9)
O9ii—Co1—O1187.1 (2)C3—C8—H8118.9
O2iii—Co1—O1191.3 (2)C7—C8—H8118.9
O2—Co1—O1188.7 (2)C9—O9—Co1vi135.4 (6)
O11iii—Co1—O11180.0 (3)O10—C9—O9127.2 (9)
O10i—Co2—O10iv180.00 (16)O10—C9—C6116.2 (8)
O10i—Co2—O1v86.2 (3)O9—C9—C6116.6 (8)
O10iv—Co2—O1v93.8 (3)C9—O10—Co2vii132.6 (6)
O10i—Co2—O193.8 (3)N12—O11—Co2119.9 (5)
O10iv—Co2—O186.2 (3)N12—O11—Co1122.0 (5)
O1v—Co2—O1180.0 (3)Co2—O11—Co1116.8 (3)
O10i—Co2—O1191.9 (2)O11—N12—C13120.1 (11)
O10iv—Co2—O1188.1 (2)O11—N12—C17120.3 (11)
O1v—Co2—O1188.8 (2)C13—N12—C17119.6 (12)
O1—Co2—O1191.2 (2)N12—C13—C14122.2 (14)
O10i—Co2—O11v88.1 (2)N12—C13—H13118.9
O10iv—Co2—O11v91.9 (2)C14—C13—H13118.9
O1v—Co2—O11v91.2 (2)C15—C14—C13118.9 (16)
O1—Co2—O11v88.8 (2)C15—C14—Br14121.0 (12)
O11—Co2—O11v180.00 (14)C13—C14—Br14120.0 (13)
C2—O1—Co2131.4 (6)C14—C15—C16120.4 (16)
C2—O2—Co1133.7 (6)C14—C15—H15119.8
O2—C2—O1124.6 (9)C16—C15—H15119.8
O2—C2—C3117.1 (8)C17—C16—C15119.1 (16)
O1—C2—C3118.3 (8)C17—C16—H16120.4
C8—C3—C4117.9 (9)C15—C16—H16120.4
C8—C3—C2121.7 (8)C16—C17—N12119.6 (16)
C4—C3—C2120.3 (8)C16—C17—H17120.2
C3—C4—C5120.8 (8)N12—C17—H17120.2
C3—C4—H4119.6
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y1/2, z+1/2; (iii) x1, y+1, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1, z+1; (vi) x1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2.
(Co-BDC-4-methyoxy-PNO) top
Crystal data top
C14H11CoNO6F(000) = 708
Mr = 348.17Dx = 1.531 Mg m3
Orthorhombic, PnmaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -p 2ac 2nCell parameters from 2929 reflections
a = 7.1507 (2) Åθ = 3.8–70.6°
b = 18.1353 (4) ŵ = 9.18 mm1
c = 11.6447 (3) ÅT = 100 K
V = 1510.09 (7) Å3Block, pink
Z = 40.36 × 0.06 × 0.06 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
1496 independent reflections
Radiation source: Enhance (Cu) X-ray Source1426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.2833 pixels mm-1θmax = 70.7°, θmin = 4.5°
φ & ω scansh = 58
Absorption correction: multi-scan
ABSPACK (Oxford Diffraction, 2006)
k = 2220
Tmin = 0.44, Tmax = 1.00l = 1413
7235 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0698P)2 + 3.5094P]
where P = (Fo2 + 2Fc2)/3
1496 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.95 e Å3
25 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H11CoNO6V = 1510.09 (7) Å3
Mr = 348.17Z = 4
Orthorhombic, PnmaCu Kα radiation
a = 7.1507 (2) ŵ = 9.18 mm1
b = 18.1353 (4) ÅT = 100 K
c = 11.6447 (3) Å0.36 × 0.06 × 0.06 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
1496 independent reflections
Absorption correction: multi-scan
ABSPACK (Oxford Diffraction, 2006)
1426 reflections with I > 2σ(I)
Tmin = 0.44, Tmax = 1.00Rint = 0.051
7235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05325 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.95 e Å3
1496 reflectionsΔρmin = 0.39 e Å3
128 parameters
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cobra. The data collection nominally covered over a hemisphere of Reciprocal space, by a combination of 17 sets of exposures with different φ angles for the crystal; each 10 s low angle and 40 s high angle exposure covered 1.0° in ω. The crystal-to-detector distance was 5.5 cm. Crystal decay was found to be negligible by by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H-atoms were given isotropic displacement parameter equal to 1.2 (or 1.5 for methyl H-atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The 4-methoxypyridine N-oxide was disordered about the mirror plane. It was constrained to be a hexagon using AFIX 66 and refined at half occupancy under a PART -1 instruction (two components refined at 50:50 occupancy about the mirror plane). The thermal parameters of some of the terephthalate ligands were rather elongated and subjected to a SIMU restraint. Co1 and O6 lie on the mirror plane and the terephthalate lies on an inversion centre.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.22106 (9)0.75000.24179 (5)0.0103 (2)
O10.1264 (4)0.66666 (16)0.3479 (3)0.0389 (7)
O20.1838 (4)0.66827 (15)0.3686 (3)0.0342 (6)
C20.0250 (5)0.6408 (2)0.3801 (4)0.0342 (7)
C30.0135 (5)0.5673 (2)0.4425 (4)0.0353 (8)
C40.1395 (7)0.5221 (3)0.4274 (6)0.0661 (19)
H40.23660.53670.37650.079*
C50.1530 (7)0.5442 (3)0.5145 (6)0.0666 (19)
H50.26070.57420.52470.080*
O60.0343 (4)0.75000.1599 (3)0.0193 (7)
N70.0485 (5)0.7414 (2)0.0481 (3)0.0255 (14)0.50
C80.0432 (9)0.8029 (2)0.0233 (3)0.033 (3)0.50
H80.02970.85070.00880.039*0.50
C90.0578 (9)0.7942 (2)0.1415 (3)0.029 (2)0.50
H90.05420.83620.19030.035*0.50
C100.0776 (7)0.7242 (3)0.1885 (3)0.029 (2)0.50
C110.0828 (10)0.6628 (2)0.1172 (3)0.0309 (18)0.50
H110.09630.61490.14930.037*0.50
C120.0683 (9)0.6714 (2)0.0011 (3)0.029 (2)0.50
H120.07190.62940.04980.035*0.50
O130.0922 (9)0.7116 (4)0.3012 (5)0.0444 (15)0.50
C140.0802 (12)0.7739 (5)0.3774 (7)0.046 (3)0.50
H14A0.09960.75750.45670.069*0.50
H14B0.04360.79660.37050.069*0.50
H14C0.17650.81000.35690.069*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0100 (4)0.0071 (4)0.0139 (4)0.0000.0005 (2)0.000
O10.0186 (11)0.0382 (13)0.0600 (16)0.0035 (10)0.0008 (11)0.0364 (12)
O20.0191 (11)0.0322 (13)0.0514 (15)0.0060 (10)0.0042 (11)0.0295 (11)
C20.0169 (11)0.0338 (13)0.0519 (14)0.0013 (10)0.0013 (11)0.0292 (12)
C30.0171 (14)0.0349 (16)0.0539 (18)0.0019 (13)0.0014 (14)0.0284 (15)
C40.031 (2)0.064 (3)0.103 (5)0.012 (2)0.026 (3)0.059 (3)
C50.032 (2)0.059 (3)0.109 (5)0.021 (2)0.025 (3)0.060 (3)
O60.0123 (16)0.0335 (19)0.0122 (15)0.0000.0002 (12)0.000
N70.012 (2)0.049 (4)0.015 (2)0.002 (4)0.0005 (17)0.016 (4)
C80.019 (4)0.052 (7)0.028 (5)0.003 (4)0.002 (3)0.009 (5)
C90.028 (4)0.035 (6)0.024 (5)0.006 (4)0.005 (4)0.009 (4)
C100.019 (4)0.048 (6)0.020 (4)0.004 (3)0.004 (3)0.000 (3)
C110.034 (4)0.031 (5)0.028 (4)0.004 (4)0.003 (3)0.010 (4)
C120.027 (5)0.042 (6)0.018 (4)0.006 (4)0.007 (3)0.010 (4)
O130.040 (3)0.077 (4)0.016 (3)0.005 (3)0.001 (3)0.006 (3)
C140.033 (4)0.086 (9)0.020 (4)0.005 (4)0.002 (3)0.004 (4)
Geometric parameters (Å, º) top
Co1—O62.060 (3)O6—N71.315 (4)
Co1—O1i2.066 (2)O6—Co1iv2.091 (3)
Co1—O12.066 (2)N7—C81.3900
Co1—O2ii2.077 (2)N7—C121.3900
Co1—O2iii2.077 (2)C8—C91.3900
Co1—O6iii2.091 (3)C8—H80.9500
O1—C21.239 (5)C9—C101.3900
O2—C21.247 (5)C9—H90.9500
O2—Co1iv2.077 (2)C10—O131.337 (7)
C2—C31.519 (5)C10—C111.3900
C3—C51.369 (6)C11—C121.3900
C3—C41.379 (7)C11—H110.9500
C4—C5v1.384 (6)C12—H120.9500
C4—H40.9500O13—C141.439 (10)
C5—C4v1.384 (6)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
O6—N7i1.315 (4)C14—H14C0.9800
O6—Co1—O1i89.23 (10)C3—C5—H5119.5
O6—Co1—O189.23 (10)C4v—C5—H5119.5
O1i—Co1—O194.0 (2)N7i—O6—Co1121.8 (3)
O6—Co1—O2ii90.22 (10)N7—O6—Co1121.8 (3)
O1i—Co1—O2ii87.44 (13)N7i—O6—Co1iv118.5 (3)
O1—Co1—O2ii178.43 (14)N7—O6—Co1iv118.5 (3)
O6—Co1—O2iii90.22 (10)Co1—O6—Co1iv119.22 (15)
O1i—Co1—O2iii178.43 (14)O6—N7—C8119.7 (2)
O1—Co1—O2iii87.44 (13)O6—N7—C12120.4 (2)
O2ii—Co1—O2iii91.09 (19)C8—N7—C12120.0
O6—Co1—O6iii174.38 (9)N7—C8—C9120.0
O1i—Co1—O6iii86.93 (10)N7—C8—H8120.0
O1—Co1—O6iii86.93 (10)C9—C8—H8120.0
O2ii—Co1—O6iii93.71 (10)C8—C9—C10120.0
O2iii—Co1—O6iii93.71 (10)C8—C9—H9120.0
C2—O1—Co1138.1 (2)C10—C9—H9120.0
C2—O2—Co1iv130.6 (2)O13—C10—C11116.6 (4)
O1—C2—O2127.7 (3)O13—C10—C9123.4 (4)
O1—C2—C3115.5 (3)C11—C10—C9120.0
O2—C2—C3116.8 (3)C10—C11—C12120.0
C5—C3—C4118.3 (4)C10—C11—H11120.0
C5—C3—C2121.5 (4)C12—C11—H11120.0
C4—C3—C2120.2 (4)C11—C12—N7120.0
C3—C4—C5v120.6 (4)C11—C12—H12120.0
C3—C4—H4119.7N7—C12—H12120.0
C5v—C4—H4119.7C10—O13—C14117.8 (6)
C3—C5—C4v121.0 (4)
Symmetry codes: (i) x, y+3/2, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x, y+1, z+1.
(Co-BDC-isoquiniline) top
Crystal data top
C17H11CoNO5·0.25(O)F(000) = 758
Mr = 372.70Dx = 1.606 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
a = 18.025 (16) Åθ = 2.0–27.5°
b = 7.184 (6) ŵ = 1.14 mm1
c = 11.906 (11) ÅT = 100 K
V = 1542 (2) Å3Needle, orange
Z = 40.25 × 0.02 × 0.01 mm
Data collection top
Rigaku AFC12 Saturn CCD
diffractometer
1671 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.057
profile data from ω–scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
CrystalClear-SM (Rigaku, 2011)
h = 2319
Tmin = 0.566, Tmax = 1.000k = 97
7338 measured reflectionsl = 1515
1867 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + 15.6918P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1867 reflectionsΔρmax = 0.53 e Å3
154 parametersΔρmin = 0.75 e Å3
0 restraints
Crystal data top
C17H11CoNO5·0.25(O)V = 1542 (2) Å3
Mr = 372.70Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 18.025 (16) ŵ = 1.14 mm1
b = 7.184 (6) ÅT = 100 K
c = 11.906 (11) Å0.25 × 0.02 × 0.01 mm
Data collection top
Rigaku AFC12 Saturn CCD
diffractometer
1867 independent reflections
Absorption correction: multi-scan
CrystalClear-SM (Rigaku, 2011)
1671 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 1.000Rint = 0.057
7338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0900 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + 15.6918P]
where P = (Fo2 + 2Fc2)/3
1867 reflectionsΔρmax = 0.53 e Å3
154 parametersΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.50000.50000.0141 (2)
O10.4077 (2)0.5945 (6)0.5862 (4)0.0436 (12)
C20.3795 (4)0.75000.6053 (6)0.0209 (15)
C30.3051 (4)0.75000.6632 (6)0.0209 (15)
C40.2796 (11)0.908 (3)0.7179 (14)0.036 (4)0.5
H40.30941.01720.71300.043*0.5
C50.2133 (12)0.921 (4)0.7802 (16)0.039 (5)0.5
H50.19771.03280.81590.047*0.5
C4A0.2614 (9)0.912 (3)0.6722 (15)0.034 (4)0.5
H4A0.27651.02450.63650.040*0.5
C5A0.1965 (12)0.906 (3)0.7333 (16)0.037 (4)0.5
H5A0.16811.01690.73960.045*0.5
C60.1711 (4)0.75000.7850 (6)0.0216 (15)
C70.0986 (4)0.75000.8528 (7)0.0245 (16)
O80.0727 (2)0.9057 (6)0.8770 (4)0.0396 (11)
O90.4900 (3)0.25000.5878 (4)0.0174 (10)
N100.4861 (4)0.25000.7019 (5)0.0229 (13)
C110.5475 (5)0.25000.7614 (7)0.0319 (19)
H110.59450.25000.72540.038*
C120.5424 (6)0.25000.8814 (7)0.041 (2)
C130.6072 (8)0.25000.9466 (10)0.082 (5)
H130.65410.25000.91030.098*
C140.6043 (11)0.25001.0599 (10)0.095 (6)
H140.64880.25001.10270.114*
C150.5350 (9)0.25001.1138 (9)0.070 (4)
H150.53250.25001.19360.084*
C160.4711 (8)0.25001.0520 (8)0.063 (4)
H160.42440.25001.08890.076*
C170.4744 (7)0.25000.9339 (8)0.044 (2)
C180.4112 (7)0.25000.8651 (9)0.063 (3)
H180.36320.25000.89810.076*
C190.4183 (6)0.25000.7511 (9)0.057 (3)
H190.37510.25000.70540.068*
O100.694 (3)0.75000.461 (4)0.106 (15)*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0137 (4)0.0129 (4)0.0156 (4)0.0001 (4)0.0001 (3)0.0006 (4)
O10.041 (2)0.025 (2)0.065 (3)0.011 (2)0.034 (2)0.012 (2)
C20.020 (3)0.027 (4)0.017 (3)0.0000.010 (3)0.000
C30.022 (3)0.023 (4)0.018 (3)0.0000.008 (3)0.000
C40.039 (10)0.025 (7)0.044 (11)0.003 (7)0.006 (7)0.014 (9)
C50.039 (10)0.029 (9)0.049 (12)0.003 (7)0.018 (8)0.008 (10)
C4A0.030 (9)0.023 (7)0.047 (11)0.003 (7)0.017 (7)0.014 (9)
C5A0.040 (10)0.011 (6)0.061 (13)0.001 (7)0.029 (9)0.005 (10)
C60.029 (4)0.012 (3)0.023 (4)0.0000.007 (3)0.000
C70.028 (4)0.023 (4)0.022 (4)0.0000.006 (3)0.000
O80.049 (2)0.023 (2)0.046 (3)0.0134 (19)0.038 (2)0.007 (2)
O90.029 (3)0.012 (2)0.011 (2)0.0000.0025 (19)0.000
N100.036 (4)0.015 (3)0.018 (3)0.0000.001 (3)0.000
C110.039 (5)0.034 (5)0.023 (4)0.0000.006 (3)0.000
C120.074 (7)0.024 (4)0.026 (4)0.0000.019 (5)0.000
C130.075 (9)0.131 (14)0.040 (6)0.0000.021 (6)0.000
C140.143 (15)0.116 (14)0.026 (6)0.0000.018 (8)0.000
C150.149 (14)0.038 (6)0.022 (5)0.0000.020 (7)0.000
C160.120 (11)0.047 (6)0.022 (5)0.0000.015 (6)0.000
C170.079 (7)0.028 (5)0.025 (5)0.0000.005 (5)0.000
C180.067 (7)0.091 (10)0.031 (5)0.0000.018 (5)0.000
C190.032 (5)0.101 (10)0.037 (5)0.0000.013 (4)0.000
Geometric parameters (Å, º) top
Co1—O12.070 (4)C7—O8iv1.246 (5)
Co1—O1i2.070 (4)C7—O81.246 (5)
Co1—O8ii2.079 (4)O8—Co1v2.079 (4)
Co1—O8iii2.079 (4)O9—Co1vi2.086 (3)
Co1—O92.086 (3)O9—N101.361 (7)
Co1—O9i2.086 (3)N10—C111.314 (10)
O1—C21.248 (5)N10—C191.355 (11)
C2—O1iv1.248 (5)C11—H110.9500
C2—C31.508 (9)C11—C121.432 (12)
C3—C4iv1.39 (2)C12—C131.403 (15)
C3—C41.39 (2)C12—C171.376 (15)
C3—C4Aiv1.41 (2)C13—H130.9500
C3—C4A1.41 (2)C13—C141.349 (16)
C4—H40.9500C14—H140.9500
C4—C51.41 (3)C14—C151.41 (2)
C5—H50.9500C15—H150.9500
C5—C61.45 (2)C15—C161.367 (19)
C4A—H4A0.9500C16—H160.9500
C4A—C5A1.38 (3)C16—C171.407 (13)
C5A—H5A0.9500C17—C181.403 (16)
C5A—C61.36 (2)C18—H180.9500
C6—C5iv1.45 (2)C18—C191.364 (14)
C6—C5Aiv1.36 (2)C19—H190.9500
C6—C71.536 (10)
O1—Co1—O1i180.0 (2)C5A—C6—C5Aiv111.2 (17)
O1—Co1—O8ii87.1 (2)C5Aiv—C6—C7121.7 (9)
O1i—Co1—O8ii92.9 (2)C5A—C6—C7121.7 (9)
O1—Co1—O8iii92.9 (2)O8iv—C7—C6116.1 (4)
O1i—Co1—O8iii87.1 (2)O8—C7—C6116.1 (4)
O1i—Co1—O992.01 (17)O8iv—C7—O8127.7 (7)
O1—Co1—O987.99 (17)C7—O8—Co1v133.8 (4)
O1i—Co1—O9i87.99 (17)Co1vi—O9—Co1118.9 (2)
O1—Co1—O9i92.01 (17)N10—O9—Co1vi120.32 (11)
O8ii—Co1—O8iii180.0N10—O9—Co1120.32 (11)
O8ii—Co1—O991.02 (18)C11—N10—O9119.6 (7)
O8iii—Co1—O988.98 (18)C11—N10—C19121.8 (8)
O8ii—Co1—O9i88.98 (18)C19—N10—O9118.5 (7)
O8iii—Co1—O9i91.02 (18)N10—C11—H11120.5
O9—Co1—O9i180.0N10—C11—C12118.9 (9)
C2—O1—Co1135.3 (4)C12—C11—H11120.5
O1iv—C2—O1127.1 (7)C13—C12—C11119.9 (11)
O1iv—C2—C3116.4 (3)C17—C12—C11120.7 (9)
O1—C2—C3116.4 (3)C17—C12—C13119.3 (10)
C4—C3—C2120.5 (9)C12—C13—H13119.3
C4iv—C3—C2120.5 (9)C14—C13—C12121.4 (15)
C4iv—C3—C4110.0 (17)C14—C13—H13119.3
C4A—C3—C2122.1 (8)C13—C14—H14120.3
C4Aiv—C3—C2122.1 (8)C13—C14—C15119.4 (15)
C4Aiv—C3—C4A111.5 (16)C15—C14—H14120.3
C3—C4—H4117.3C14—C15—H15119.9
C3—C4—C5125 (2)C16—C15—C14120.2 (11)
C5—C4—H4117.3C16—C15—H15119.9
C4—C5—H5122.9C15—C16—H16119.9
C4—C5—C6114.2 (19)C15—C16—C17120.2 (13)
C6—C5—H5122.9C17—C16—H16119.9
C3—C4A—H4A120.4C12—C17—C16119.4 (12)
C5A—C4A—C3119.1 (18)C12—C17—C18117.2 (8)
C5A—C4A—H4A120.4C18—C17—C16123.3 (12)
C4A—C5A—H5A118.2C17—C18—H18119.8
C6—C5A—C4A123.6 (18)C19—C18—C17120.4 (11)
C6—C5A—H5A118.2C19—C18—H18119.8
C5iv—C6—C5116.4 (19)N10—C19—C18120.9 (11)
C5iv—C6—C7117.9 (10)N10—C19—H19119.5
C5—C6—C7117.9 (10)C18—C19—H19119.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z1/2; (iii) x+1/2, y+3/2, z+3/2; (iv) x, y+3/2, z; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y1/2, z+1.
(Co-BDC-4-phenyl-PNO) top
Crystal data top
C19H13CoNO5F(000) = 804
Mr = 394.23Dx = 1.749 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 1307 reflections
a = 12.9936 (8) Åθ = 4.5–70.3°
b = 17.9026 (8) ŵ = 9.30 mm1
c = 7.1797 (4) ÅT = 100 K
β = 116.294 (8)°Needle, yellow
V = 1497.32 (16) Å30.12 × 0.02 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
1404 independent reflections
Radiation source: Enhance (Cu) X-ray Source1264 reflections with I > 2˘I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.2833 pixels mm-1θmax = 70.5°, θmin = 4.5°
φ & ω scansh = 1514
Absorption correction: multi-scan
ABSPACK(Oxford Diffraction, 2006)
k = 2119
Tmin = 0.43, Tmax = 1.00l = 87
3151 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
1404 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H13CoNO5V = 1497.32 (16) Å3
Mr = 394.23Z = 4
Monoclinic, C2/cCu Kα radiation
a = 12.9936 (8) ŵ = 9.30 mm1
b = 17.9026 (8) ÅT = 100 K
c = 7.1797 (4) Å0.12 × 0.02 × 0.02 mm
β = 116.294 (8)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
1404 independent reflections
Absorption correction: multi-scan
ABSPACK(Oxford Diffraction, 2006)
1264 reflections with I > 2˘I)
Tmin = 0.43, Tmax = 1.00Rint = 0.040
3151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
1404 reflectionsΔρmin = 0.41 e Å3
122 parameters
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cobra. The data collection nominally covered over a hemisphere of Reciprocal space, by a combination of fifteen sets of exposures with different φ angles for the crystal; each 12 s low angle exposure and 48 s high angle exposure covered 1.0 ° in ω. The crystal-to-detector distance was 5.5 cm. Crystal decay was found to be negligible by by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H-atoms were given isotropic displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which they are attached.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.00000.01012 (19)
O10.60170 (14)0.08775 (10)0.1862 (2)0.0153 (4)
C20.64355 (18)0.10289 (14)0.3759 (4)0.0139 (5)
C30.7008 (2)0.17830 (15)0.4404 (4)0.0183 (5)
O40.64022 (13)0.06302 (9)0.5180 (3)0.0151 (4)
C40.6533 (2)0.24064 (15)0.3120 (4)0.0184 (5)
H40.58670.23460.18370.022*
C50.7979 (2)0.18898 (15)0.6300 (4)0.0191 (5)
H50.83060.14770.72000.023*
O60.50000.05720 (13)0.25000.0147 (5)
N70.50000.13221 (16)0.25000.0140 (6)
C80.4023 (2)0.16891 (15)0.2079 (4)0.0173 (5)
H80.33380.14180.17650.021*
C90.4009 (2)0.24579 (15)0.2099 (4)0.0191 (5)
H90.33160.27120.18360.023*
C100.50000.2872 (2)0.25000.0149 (7)
C110.50000.3696 (2)0.25000.0164 (7)
C120.4016 (2)0.41010 (15)0.2196 (4)0.0199 (6)
H120.33370.38400.19920.024*
C130.4013 (2)0.48719 (16)0.2186 (5)0.0229 (6)
H130.33350.51370.19650.028*
C140.50000.5260 (2)0.25000.0254 (8)
H140.50000.57900.25000.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0100 (3)0.0078 (3)0.0130 (3)0.00014 (18)0.0056 (2)0.00011 (19)
O10.0171 (8)0.0141 (9)0.0143 (8)0.0047 (6)0.0067 (7)0.0023 (7)
C20.0105 (10)0.0126 (12)0.0195 (12)0.0030 (8)0.0075 (9)0.0003 (9)
C30.0167 (11)0.0208 (13)0.0215 (13)0.0039 (9)0.0122 (10)0.0035 (10)
O40.0125 (7)0.0156 (9)0.0166 (8)0.0031 (6)0.0060 (7)0.0000 (7)
C40.0169 (11)0.0190 (13)0.0188 (12)0.0017 (10)0.0075 (10)0.0019 (10)
C50.0190 (12)0.0168 (12)0.0224 (13)0.0004 (10)0.0100 (10)0.0007 (10)
O60.0207 (11)0.0070 (11)0.0174 (11)0.0000.0094 (10)0.000
N70.0182 (13)0.0088 (14)0.0140 (13)0.0000.0062 (11)0.000
C80.0149 (12)0.0151 (13)0.0216 (12)0.0004 (9)0.0077 (10)0.0015 (9)
C90.0156 (12)0.0157 (13)0.0256 (13)0.0020 (9)0.0088 (10)0.0012 (10)
C100.0155 (15)0.0136 (17)0.0146 (16)0.0000.0057 (13)0.000
C110.0164 (15)0.0150 (18)0.0160 (16)0.0000.0057 (13)0.000
C120.0149 (12)0.0154 (13)0.0270 (13)0.0002 (9)0.0071 (10)0.0012 (10)
C130.0171 (13)0.0177 (13)0.0327 (15)0.0048 (10)0.0098 (12)0.0024 (11)
C140.0239 (18)0.0107 (18)0.038 (2)0.0000.0102 (17)0.000
Geometric parameters (Å, º) top
Co1—O6i2.0665 (12)O6—Co1ii2.0665 (12)
Co1—O62.0665 (12)N7—C81.339 (3)
Co1—O4ii2.0977 (16)N7—C8ii1.339 (3)
Co1—O4iii2.0977 (16)C8—C91.377 (4)
Co1—O12.1062 (16)C8—H80.9500
Co1—O1i2.1062 (16)C9—C101.401 (3)
O1—C21.253 (3)C9—H90.9500
C2—O41.261 (3)C10—C9ii1.401 (3)
C2—C31.512 (3)C10—C111.476 (5)
C3—C51.399 (4)C11—C121.400 (3)
C3—C41.405 (4)C11—C12ii1.400 (3)
O4—Co1ii2.0977 (16)C12—C131.380 (4)
C4—C5iv1.389 (4)C12—H120.9500
C4—H40.9500C13—C141.386 (3)
C5—C4iv1.389 (4)C13—H130.9500
C5—H50.9500C14—C13ii1.386 (3)
O6—N71.343 (4)C14—H140.9500
O6i—Co1—O6180.00 (11)C3—C5—H5119.6
O6i—Co1—O4ii90.81 (6)N7—O6—Co1ii119.70 (6)
O6—Co1—O4ii89.19 (6)N7—O6—Co1119.70 (6)
O6i—Co1—O4iii89.19 (6)Co1ii—O6—Co1120.59 (11)
O6—Co1—O4iii90.81 (6)C8—N7—C8ii121.2 (3)
O4ii—Co1—O4iii180.00 (11)C8—N7—O6119.38 (15)
O6i—Co1—O186.57 (6)C8ii—N7—O6119.38 (15)
O6—Co1—O193.43 (6)N7—C8—C9120.3 (2)
O4ii—Co1—O185.50 (6)N7—C8—H8119.9
O4iii—Co1—O194.50 (6)C9—C8—H8119.9
O6i—Co1—O1i93.43 (6)C8—C9—C10121.0 (2)
O6—Co1—O1i86.57 (6)C8—C9—H9119.5
O4ii—Co1—O1i94.50 (6)C10—C9—H9119.5
O4iii—Co1—O1i85.50 (6)C9ii—C10—C9116.1 (3)
O1—Co1—O1i180.00 (6)C9ii—C10—C11121.93 (16)
C2—O1—Co1134.40 (15)C9—C10—C11121.93 (16)
O1—C2—O4127.1 (2)C12—C11—C12ii117.7 (3)
O1—C2—C3116.3 (2)C12—C11—C10121.14 (17)
O4—C2—C3116.5 (2)C12ii—C11—C10121.14 (17)
C5—C3—C4118.3 (2)C13—C12—C11121.2 (2)
C5—C3—C2121.9 (2)C13—C12—H12119.4
C4—C3—C2119.7 (2)C11—C12—H12119.4
C2—O4—Co1ii126.47 (15)C12—C13—C14120.0 (3)
C5iv—C4—C3120.9 (2)C12—C13—H13120.0
C5iv—C4—H4119.5C14—C13—H13120.0
C3—C4—H4119.5C13ii—C14—C13119.9 (4)
C4iv—C5—C3120.7 (3)C13ii—C14—H14120.1
C4iv—C5—H5119.6C13—C14—H14120.1
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x, y, z1/2; (iv) x+3/2, y+1/2, z+1.

Experimental details

(Co-BDC-3-Br-PNO)(Co-BDC-4-methyoxy-PNO)(Co-BDC-isoquiniline)(Co-BDC-4-phenyl-PNO)
Crystal data
Chemical formulaC13H8BrCoNO5C14H11CoNO6C17H11CoNO5·0.25(O)C19H13CoNO5
Mr397.04348.17372.70394.23
Crystal system, space groupMonoclinic, P21/cOrthorhombic, PnmaOrthorhombic, PnmaMonoclinic, C2/c
Temperature (K)296100100100
a, b, c (Å)7.1962 (8), 10.0563 (13), 18.748 (3)7.1507 (2), 18.1353 (4), 11.6447 (3)18.025 (16), 7.184 (6), 11.906 (11)12.9936 (8), 17.9026 (8), 7.1797 (4)
α, β, γ (°)90, 91.548 (12), 9090, 90, 9090, 90, 9090, 116.294 (8), 90
V3)1356.3 (3)1510.09 (7)1542 (2)1497.32 (16)
Z4444
Radiation typeMo KαCu KαMo KαCu Kα
µ (mm1)4.239.181.149.30
Crystal size (mm)0.20 × 0.04 × 0.030.36 × 0.06 × 0.060.25 × 0.02 × 0.010.12 × 0.02 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Oxford Diffraction Gemini R
diffractometer
Rigaku AFC12 Saturn CCD
diffractometer
Oxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
ABSPACK (Oxford Diffraction, 2006)
Multi-scan
ABSPACK (Oxford Diffraction, 2006)
Multi-scan
CrystalClear-SM (Rigaku, 2011)
Multi-scan
ABSPACK(Oxford Diffraction, 2006)
Tmin, Tmax0.62, 1.000.44, 1.000.566, 1.0000.43, 1.00
No. of measured, independent and
observed reflections
6996, 3637, 1444 [I > 2σ(I)]7235, 1496, 1426 [I > 2σ(I)]7338, 1867, 1671 [I > 2σ(I)]3151, 1404, 1264 [I > 2˘I)]
Rint0.1380.0510.0570.040
(sin θ/λ)max1)0.7230.6120.6490.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.104, 0.289, 0.96 0.053, 0.136, 1.08 0.090, 0.159, 1.11 0.039, 0.100, 1.04
No. of reflections3637149618671404
No. of parameters193128154122
No. of restraints542500
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1268P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0698P)2 + 3.5094P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + 15.6918P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.79, 1.460.95, 0.390.53, 0.750.48, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrystalClear-SM (Rigaku, 2011), CrysAlis RED, (Oxford Diffraction, 2006), CrystalClear-SM, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL, OLEX2.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds