Download citation
Download citation
link to html
Studies of the K-Ba-Ga-Sn system produced the clathrate com­pounds K0.8(2)Ba15.2(2)Ga31.0(5)Sn105.0(5) [a = 17.0178 (4) Å], K4.3(3)Ba11.7(3)Ga27.4(4)Sn108.6(4) [a = 17.0709 (6) Å] and K12.9(2)Ba3.1(2)Ga19.5(4)Sn116.5(4) [a = 17.1946 (8) Å], with the type-II structure (cubic, space group Fd\overline{3}m), and K7.7(1)Ba0.3(1)Ga8.3(4)Sn37.7(4) [a = 11.9447 (4) Å], with the type-I structure (cubic, space group Pm\overline{3}n). For the type-II structures, only the smaller (Ga,Sn)24 penta­gonal dodeca­hedral cages are filled, while the (Ga,Sn)28 hexa­kai­deca­hedral cages remain empty. The unit-cell volume is directly correlated with the K:Ba ratio, since an increasing amount of monovalent K occupying the cages causes a decreasing substitution of the smaller Ga in the framework. All three formulae have an electron count that is in good agreement with the Zintl-Klemm rules. For the type-I compound, all framework sites are occupied by a mixture of Ga and Sn atoms, with Ga showing a preference for Wyckoff site 6c. The (Ga,Sn)20 penta­gonal dodeca­hedral cages are occupied by statistically disordered K and Ba atoms, while the (Ga,Sn)24 tetra­kaideca­hedral cages encapsulate only K atoms. Large anisotropic displacement parameters for K in the latter cages suggest an off-centering of the guest atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113006203/bi3054sup1.cif
Contains datablocks K1Ba15Ga31Sn105, K4Ba12Ga27Sn109, K13Ba3Ga19Sn117, K7Ba1Ga8Sn38, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113006203/bi3054K1Ba15Ga31Sn105sup2.hkl
Contains datablock K1Ba15Ga31Sn105

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113006203/bi3054K4Ba12Ga27Sn109sup3.hkl
Contains datablock K4Ba12Ga27Sn109

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113006203/bi3054K13Ba3Ga19Sn117sup4.hkl
Contains datablock K13Ba3Ga19Sn117

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113006203/bi3054K7Ba1Ga8Sn38sup5.hkl
Contains datablock K7Ba1Ga8Sn38

Computing details top

For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(K1Ba15Ga31Sn105) Potassium barium gallium tin top
Crystal data top
K0.8Ba15.2Ga31.0Sn105.0Dx = 5.638 Mg m3
Mr = 16732.79Mo Kα radiation, λ = 0.71073 Å
Cubic, Fd3mCell parameters from 4013 reflections
Hall symbol: F 4d 2 3 -1dθ = 3.4–30.8°
a = 17.0178 (4) ŵ = 20.14 mm1
V = 4928.4 (2) Å3T = 200 K
Z = 1Block, silver
F(000) = 70740.10 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
415 independent reflections
Radiation source: fine-focus sealed tube386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 30.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2424
Tmin = 0.145, Tmax = 0.192k = 2423
18133 measured reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.025Secondary atom site location: difference Fourier map
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0394P)2 + 347.9131P]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max < 0.001
415 reflectionsΔρmax = 2.66 e Å3
15 parametersΔρmin = 1.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.00000.00000.00000.0187 (5)0.951 (11)
K0.00000.00000.00000.0187 (5)0.049 (11)
Sn10.06791 (3)0.06791 (3)0.37267 (4)0.0141 (2)0.70
Ga10.06791 (3)0.06791 (3)0.37267 (4)0.0141 (2)0.30
Sn20.21823 (4)0.21823 (4)0.21823 (4)0.0149 (3)
Sn30.12500.12500.12500.0123 (8)0.73 (4)
Ga30.12500.12500.12500.0123 (8)0.27 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.0187 (5)0.0187 (5)0.0187 (5)0.0027 (3)0.0027 (3)0.0027 (3)
K0.0187 (5)0.0187 (5)0.0187 (5)0.0027 (3)0.0027 (3)0.0027 (3)
Sn10.0136 (3)0.0136 (3)0.0151 (4)0.0017 (2)0.00021 (17)0.00021 (17)
Ga10.0136 (3)0.0136 (3)0.0151 (4)0.0017 (2)0.00021 (17)0.00021 (17)
Sn20.0149 (3)0.0149 (3)0.0149 (3)0.0019 (2)0.0019 (2)0.0019 (2)
Sn30.0123 (8)0.0123 (8)0.0123 (8)0.0000.0000.000
Ga30.0123 (8)0.0123 (8)0.0123 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Ba—Sn33.6845 (1)Sn2—Sn32.7481 (12)
Ba—Sn2i3.7917 (5)Sn2—Sn1vi2.7684 (8)
Ba—Sn1ii3.9110 (5)Sn2—Sn1v2.7684 (8)
Sn1—Sn1iii2.7179 (7)Sn2—Sn1vii2.7684 (8)
Sn1—Sn1iv2.7179 (7)Sn3—Sn2viii2.7481 (12)
Sn1—Sn1v2.7480 (15)Sn3—Sn2ix2.7481 (12)
Sn1—Sn2v2.7685 (8)Sn3—Sn2v2.7481 (12)
Sn1iii—Sn1—Sn1iv119.627 (6)Sn3—Sn2—Sn1vi106.95 (3)
Sn1iii—Sn1—Sn1v109.77 (3)Sn1vi—Sn2—Sn1v111.87 (3)
Sn1iii—Sn1—Sn2v104.30 (3)Sn2viii—Sn3—Sn2ix109.471 (1)
Sn1v—Sn1—Sn2v108.31 (3)
Symmetry codes: (i) x, y1/4, z1/4; (ii) y, z+1/4, x+1/4; (iii) z+1/2, x, y+1/2; (iv) y, z+1/2, x+1/2; (v) x+1/4, y+1/4, z; (vi) y+1/4, z, x+1/4; (vii) z, x+1/4, y+1/4; (viii) x, y+1/4, z+1/4; (ix) x+1/4, y, z+1/4.
(K4Ba12Ga27Sn109) Potassium barium gallium tin top
Crystal data top
K4.3Ba11.7Ga27.4Sn108.6Dx = 5.533 Mg m3
Mr = 16575.07Mo Kα radiation, λ = 0.71073 Å
Cubic, Fd3mCell parameters from 973 reflections
Hall symbol: F 4d 2 3 -1dθ = 3.4–28.1°
a = 17.0709 (6) ŵ = 19.33 mm1
V = 4974.7 (3) Å3T = 200 K
Z = 1Block, silver
F(000) = 70160.11 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
335 independent reflections
Radiation source: fine-focus sealed tube316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2222
Tmin = 0.115, Tmax = 0.209k = 2222
16380 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026Secondary atom site location: difference Fourier map
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0475P)2 + 195.9447P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
335 reflectionsΔρmax = 2.28 e Å3
15 parametersΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.00000.00000.00000.0192 (6)0.727 (11)
K0.00000.00000.00000.0192 (6)0.273 (11)
Sn10.06794 (3)0.06794 (3)0.37276 (4)0.0145 (3)0.74
Ga10.06794 (3)0.06794 (3)0.37276 (4)0.0145 (3)0.26
Sn20.21811 (4)0.21811 (4)0.21811 (4)0.0142 (3)
Sn30.12500.12500.12500.0119 (9)0.71 (4)
Ga30.12500.12500.12500.0119 (9)0.29 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.0192 (6)0.0192 (6)0.0192 (6)0.0027 (4)0.0027 (4)0.0027 (4)
K0.0192 (6)0.0192 (6)0.0192 (6)0.0027 (4)0.0027 (4)0.0027 (4)
Sn10.0143 (3)0.0143 (3)0.0150 (4)0.0014 (2)0.00003 (17)0.00003 (17)
Ga10.0143 (3)0.0143 (3)0.0150 (4)0.0014 (2)0.00003 (17)0.00003 (17)
Sn20.0142 (3)0.0142 (3)0.0142 (3)0.0017 (2)0.0017 (2)0.0017 (2)
Sn30.0119 (9)0.0119 (9)0.0119 (9)0.0000.0000.000
Ga30.0119 (9)0.0119 (9)0.0119 (9)0.0000.0000.000
Geometric parameters (Å, º) top
Ba—Sn33.6960 (1)Sn2—Sn32.7532 (11)
Ba—Sn2i3.8022 (5)Sn2—Sn1vi2.7798 (7)
Ba—Sn1ii3.9239 (5)Sn2—Sn1vii2.7798 (8)
Sn1—Sn1iii2.7257 (7)Sn2—Sn1v2.7798 (7)
Sn1—Sn1iv2.7257 (7)Sn3—Sn2ii2.7532 (11)
Sn1—Sn1v2.7554 (15)Sn3—Sn2viii2.7532 (11)
Sn1—Sn2v2.7797 (7)Sn3—Sn2v2.7532 (11)
Sn1iii—Sn1—Sn1iv119.611 (7)Sn3—Sn2—Sn1vi107.02 (3)
Sn1iii—Sn1—Sn1v109.82 (3)Sn1vi—Sn2—Sn1vii111.81 (2)
Sn1iii—Sn1—Sn2v104.27 (3)Sn2—Sn3—Sn2ii109.471 (1)
Sn1v—Sn1—Sn2v108.25 (3)
Symmetry codes: (i) x, y1/4, z1/4; (ii) x, y+1/4, z+1/4; (iii) z+1/2, x, y+1/2; (iv) y, z+1/2, x+1/2; (v) x+1/4, y+1/4, z; (vi) y+1/4, z, x+1/4; (vii) z, x+1/4, y+1/4; (viii) x+1/4, y, z+1/4.
(K13Ba3Ga19Sn117) Potassium barium gallum tin top
Crystal data top
K12.9Ba3.1Ga19.5Sn116.5Dx = 5.265 Mg m3
Mr = 16117.07Mo Kα radiation, λ = 0.71073 Å
Cubic, Fd3mCell parameters from 2939 reflections
Hall symbol: F 4d 2 3 -1dθ = 3.4–27.9°
a = 17.1946 (8) ŵ = 17.39 mm1
V = 5083.7 (4) Å3T = 200 K
Z = 1Block, silver
F(000) = 68480.09 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
335 independent reflections
Radiation source: fine-focus sealed tube310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2222
Tmin = 0.195, Tmax = 0.272k = 2222
16727 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.029Secondary atom site location: difference Fourier map
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0478P)2 + 291.2296P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
335 reflectionsΔρmax = 3.71 e Å3
15 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.00000.00000.00000.0229 (14)0.196 (12)
K0.00000.00000.00000.0229 (14)0.804 (12)
Sn10.06793 (3)0.06793 (3)0.37173 (4)0.0184 (3)0.81
Ga10.06793 (3)0.06793 (3)0.37173 (4)0.0184 (3)0.19
Sn20.21795 (4)0.21795 (4)0.21795 (4)0.0185 (4)
Sn30.12500.12500.12500.0152 (10)0.84 (4)
Ga30.12500.12500.12500.0152 (10)0.16 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.0229 (14)0.0229 (14)0.0229 (14)0.0029 (8)0.0029 (8)0.0029 (8)
K0.0229 (14)0.0229 (14)0.0229 (14)0.0029 (8)0.0029 (8)0.0029 (8)
Sn10.0182 (4)0.0182 (4)0.0188 (4)0.0032 (3)0.0006 (2)0.0006 (2)
Ga10.0182 (4)0.0182 (4)0.0188 (4)0.0032 (3)0.0006 (2)0.0006 (2)
Sn20.0185 (4)0.0185 (4)0.0185 (4)0.0021 (3)0.0021 (3)0.0021 (3)
Sn30.0152 (10)0.0152 (10)0.0152 (10)0.0000.0000.000
Ga30.0152 (10)0.0152 (10)0.0152 (10)0.0000.0000.000
Geometric parameters (Å, º) top
Ba—Sn33.7227 (2)Sn2—Sn32.7683 (13)
Ba—Sn2i3.8277 (5)Sn2—Sn1vi2.7843 (9)
Ba—Sn1ii3.9429 (5)Sn2—Sn1vii2.7843 (9)
Sn1—Sn1iii2.7586 (8)Sn2—Sn1v2.7843 (8)
Sn1—Sn1iv2.7586 (8)Sn3—Sn2viii2.7682 (13)
Sn1—Sn1v2.7758 (17)Sn3—Sn2ix2.7682 (13)
Sn1—Sn2v2.7844 (8)Sn3—Sn2v2.7682 (13)
Sn1iii—Sn1—Sn1iv119.706 (6)Sn3—Sn2—Sn1vi107.00 (3)
Sn1iii—Sn1—Sn1v109.44 (3)Sn1vi—Sn2—Sn1vii111.82 (3)
Sn1iii—Sn1—Sn2v104.65 (4)Sn2viii—Sn3—Sn2109.471 (1)
Sn1v—Sn1—Sn2v108.26 (3)
Symmetry codes: (i) x, y1/4, z1/4; (ii) z+1/4, x+1/4, y; (iii) y, z+1/2, x+1/2; (iv) z+1/2, x, y+1/2; (v) x+1/4, y+1/4, z; (vi) z, x+1/4, y+1/4; (vii) y+1/4, z, x+1/4; (viii) x, y+1/4, z+1/4; (ix) x+1/4, y, z+1/4.
(K7Ba1Ga8Sn38) Potassium barium gallium tin top
Crystal data top
K7.7Ba0.3Ga8.3Sn37.7Dx = 5.248 Mg m3
Mr = 5385.77Mo Kα radiation, λ = 0.71073 Å
Cubic, Pm3nCell parameters from 2232 reflections
Hall symbol: -P 4n 2 3θ = 3.4–28.4°
a = 11.9447 (4) ŵ = 17.38 mm1
V = 1704.22 (10) Å3T = 200 K
Z = 1Block, silver
F(000) = 23020.06 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
412 independent reflections
Radiation source: fine-focus sealed tube358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1616
Tmin = 0.329, Tmax = 0.554k = 1516
21728 measured reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.019Secondary atom site location: difference Fourier map
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0183P)2 + 5.4215P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
412 reflectionsΔρmax = 0.71 e Å3
20 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.38232 (4)0.50000.18776 (4)0.01392 (15)0.84
Ga10.38232 (4)0.50000.18776 (4)0.01392 (15)0.16
Sn20.18322 (2)0.18322 (2)0.18322 (2)0.01306 (18)0.896 (8)
Ga20.18322 (2)0.18322 (2)0.18322 (2)0.01306 (18)0.104 (8)
Sn30.25000.50000.00000.0148 (2)0.54
Ga30.25000.50000.00000.0148 (2)0.46
K10.50000.254 (3)0.0235 (19)0.038 (5)0.25
K20.00000.00000.00000.0255 (8)0.86
Ba20.00000.00000.00000.0255 (8)0.14
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0138 (2)0.0135 (2)0.0144 (2)0.0000.00024 (17)0.000
Ga10.0138 (2)0.0135 (2)0.0144 (2)0.0000.00024 (17)0.000
Sn20.01306 (18)0.01306 (18)0.01306 (18)0.00054 (11)0.00054 (11)0.00054 (11)
Ga20.01306 (18)0.01306 (18)0.01306 (18)0.00054 (11)0.00054 (11)0.00054 (11)
Sn30.0140 (5)0.0153 (3)0.0153 (3)0.0000.0000.000
Ga30.0140 (5)0.0153 (3)0.0153 (3)0.0000.0000.000
K10.035 (8)0.027 (6)0.051 (11)0.0000.0000.015 (8)
K20.0255 (8)0.0255 (8)0.0255 (8)0.0000.0000.000
Ba20.0255 (8)0.0255 (8)0.0255 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Sn1—Sn32.7436 (4)K1—Sn1vii4.12 (3)
Sn1—Sn2i2.7888 (3)K1—Sn1ix4.14 (2)
Sn1—Sn2ii2.7888 (3)K1—Sn3x4.20 (3)
Sn1—Sn1iii2.8114 (9)K1—Sn2ii4.197 (17)
Sn2—Sn2ii2.7631 (10)K1—Sn2xi4.322 (15)
Sn2—Sn1ii2.7888 (3)K1—Sn1viii4.36 (3)
Sn2—Sn1iv2.7888 (3)K1—Sn3xii4.46 (2)
Sn2—Sn1v2.7888 (3)K1—Sn2vii4.598 (11)
Sn3—Sn1iv2.7437 (4)K1—Sn1xiii4.627 (6)
Sn3—Sn1vi2.7437 (4)K1—Sn2xiv4.68 (2)
Sn3—Sn1vii2.7437 (4)K1—Sn1xv4.91 (2)
K1—Sn1iii3.80 (3)K2—Sn2xvi3.7906 (5)
K1—Sn1v3.94 (3)K2—Sn1ii3.9857 (4)
K1—Sn3viii4.07 (4)
Sn3—Sn1—Sn2ii106.859 (14)Sn2ii—Sn2—Sn1ii107.224 (13)
Sn2i—Sn1—Sn2ii103.394 (18)Sn1ii—Sn2—Sn1iv111.622 (12)
Sn3—Sn1—Sn1iii125.174 (9)Sn1—Sn3—Sn1iv109.380 (9)
Sn2i—Sn1—Sn1iii106.302 (10)Sn1iv—Sn3—Sn1vi109.655 (18)
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) y+1/2, x+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, z+1/2, y1/2; (v) z+1/2, y1/2, x+1/2; (vi) x+1/2, z+1/2, y1/2; (vii) x, y, z; (viii) y, z, x; (ix) z+1/2, y+1/2, x1/2; (x) x+1, y+1, z; (xi) x+1, y, z; (xii) y+1, z, x; (xiii) x+1/2, z+1/2, y+1/2; (xiv) y+1/2, x+1/2, z1/2; (xv) y+1, z, x; (xvi) x, y, z.
Distribution of the two framework-building elements (Sn,Ga), interatomic distance range (Å) and unit-cell volume (Å3) in the three refined type-II compounds top
FormulaSn:Ga (site 96g)Sn:Ga (site 8a)Sn:Ga (site 32e)Sn/Ga—Sn/(Ga)K/Ba—Sn/GaUnit-cell volume
K0.8 (2)Ba15.2 (2)Ga31.0 (5)Sn105.0 (5)70:3073:27100:02.7179 (7)–2.7685 (8)3.6845 (5)–3.9110 (1)4928.4 (2)
K4.3 (3)Ba11.7 (3)Ga27.4 (4)Sn108.6 (4)74:2671:29100:02.7257 (7)–2.7797 (7)3.6960 (1)–3.9239 (5)4974.7 (3)
K12.9 (2)Ba3.1 (2)Ga19.5 (4)Sn116.5 (4)80:2084:16100:02.7586 (8)–2.7844 (8)3.7227 (2)–3.9429 (5)5083.7 (4)
Bond distance ranges (Å) in selected type-I and type-VIII clathrate compounds top
FormulaSn/Ga—Sn/GaK—Sn/GaReference
K7.7 (1)Ba0.3 (1)Ga8.3 (4)Sn37.7 (4)2.7436 (4)–2.8114 (9)3.7906 (5)–3.9857 (4) [(Ga,Sn)20 cages] 3.80 (3)–4.91 (2) [(Ga,Sn)24 cages]
K8.0Ga7.9 (2)Sn37.9 (2)2.738–2.8403.796–4.002 [(Ga,Sn)20 cages] 3.999–4.625 [(Ga,Sn)24 cages]Tanaka et al. (2010)
K8Ba8.1(1.8)Sn38.0(1.8)2.733–2.8133.785–3.992 [(Ga,Sn)20 cages] 3.983–4.623 [(Ga,Sn)24 cages]Kröner et al. (1998b)
Ba8Ga16.8Sn29.22.660–2.7303.678–4.491von Schnering et al. (1998)
Ba8Ga14.5Sn31.52.660–2.7303.710–4.129Schäfer et al. (2011)
Ba8Ga17.4Sn28.62.642–2.7643.635–3.845Eisenmann et al. (1986)
Ba8Ga17.2Sn28.82.649–2.7663.632–3.852Carrillo-Cabrera et al. (2002)
Ba8Ga13.2Sn23.82.645–2.7623.626–3.848Schäfer et al. (2011)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds