Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of three sulfonate pseudo­halide derivatives of boron sub­phthalo­cyanine (BsubPc) are described and compared with four structures of three published sulfonate derivatives. Benzene­sulfonate boron sub­phthalo­cyanine [(benzene­sulfonato)­(sub­phthalo­cyaninato)­boron, C30H17BN6O3S, (I)] crystallizes in the space group P\overline{1} with Z = 2. The structure contains two centrosymmetric π-stacking inter­actions between the concave faces of the isoindoline units in the BsubPc ligands. 3-Nitro­benzene­sul­fonate boron sub­phthalo­cyanine [(3-nitro­benzene­sulfonato)­(sub­phthalo­cyaninato)­boron, C30H16BN7O5S, (II)] crystallizes in the space group P21/c with Z = 4. The structure contains an inter­molecular S—O...π inter­action from the sulfonate group to a five-membered N-containing ring of an isoindoline unit on the concave side of a neighbouring BsubPc ligand, at a distance of 3.151 (3) Å. The crystal of methane­sulfonate boron sub­phthalo­cyanine [(methane­sulfonato)­(sub­phthalo­cyaninato)­boron, C25H15BN6O3S, (III)] was produced via sublimation and it is not a solvate, in contrast with two previously published structures of the same compound. Compound (III) crystallizes in the space group P21/n with Z = 2, and its structure is similar to that of the more common compound Cl-BsubPc.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112040425/bi3045sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040425/bi3045Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040425/bi3045IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040425/bi3045IIIsup4.hkl
Contains datablock III

CCDC references: 914656; 914657; 914658

Comment top

Boron subphthalocyanine (Bsubpc) is magenta coloured and the only ring-reduced member of the phthalocyanine family of dyes and pigments. The three isoindoline units in the ring system are coordinated to a central B atom, which creates a bowl-shaped yet aromatic ligand. The most common and currently most efficient synthetic route to the formation of BsubPcs is the reaction of phthalonitrile with either BCl3 or BBr3 (which is also the boron source). In each of these cases, the central B atom forms two covalent bonds and one dative bond with N atoms in the phthalonitriles during cyclization, leaving one position open on the trivalent B atom. This open position is typically occupied by the halide of the boron source, which protrudes in what is referred to as the axial position, i.e. perpendicular to the molecular plane of the subPc ligand. The chemistry to replace the axial Cl or Br atom with other nucleophiles is well known (Zyskowski & Kennedy, 2000; Claessens et al., 2002, 2003; Gommans et al., 2009). However, these two starting materials have their drawbacks, viz. Br-BsubPc is susceptible to hydrolysis and Cl-BsubPc has a low reactivity to substitution.

Recently, our group reported the synthesis of sulfonic acid-based pseudohalides of BsubPc, which are a new family of BsubPc derivatives (Paton et al., 2012). These compounds were synthesized to act as alternative reagents for axial substitution. We have shown that the pseudohalides have similar reactivity and electrochemical properties to the halide-BsubPcs. However, due to the size and polarity difference of the sulfonate group over Cl- or Br-, it would be expected that the solid-state arrangement would be dramatically different. In this paper, we report the crystal structures of three sulfonate pseudohalide-BsubPcs and compare them with four structures we have published previously (Paton et al., 2012). We also compare the solid-state arrangements of the pseudohalides with the published crystal structures of Cl-BsubPcs and other halo-BsubPcs.

The three sulfonate–BsubPc derivatives, benzenesulfonate boron subphthalocyanine, (I), 3-nitrobenzenesulfonate boron subphthalocyanine, (II), and methanesulfonate boron subphthalocyanine, (III), were synthesized according to a previously published method (Paton et al., 2012). Previously, crystals of chlosylate-BsubPc (ClsO-BsubPc) and tosylate-BsubPc (TsO-BsubPc) were grown via vapour diffusion of heptane into a solution of the compound in benzene, and two different solvates of mesylate-BsubPc (MsO-BsubPc) were grown in one container by diffusing pentane into a solution of the compound in dichloromethane (DCM). The latter system of pentane/DCM was used in that case because crystals of MsO-BsubPc could not be grown using the benzene/heptane system. However, neither of these solvent systems was successful in producing crystals of (I) or (II) of suitable quality for diffraction, nor could a nonsolvated crystal of (III) be obtained. Many crystallization attempts were made, including multiple attempts at vapour diffusion in the two solvent systems described above, liquid layering using the same two solvent systems, evaporation from a variety of solvents, such as DCM, toluene, chlorobenzene, benzene and chloroform, and finally sublimation. Evaporation from chloroform produced crystals of (I) and evaporation from benzene produced crystals of (II). Sublimation of (III) produced a diffraction-quality nonsolvated crystal. It is also noted that sublimation of TsO-BsubPc produced crystals of the same structure as described previously for that compound (Paton et al., 2012).

The previously reported crystal structures can be grouped into two categories: ClsO-BsubPc and TsO-BsubPc, which contain a benzenesulfonate group, and the two solvates of MsO-BsubPc, which have a methanesulfonate group. The structures of these compounds are shown in Fig. 1, redrawn from the original crystallographic data (Paton et al., 2012). ClsO-BsubPc and TsO-BsubPc are isostructural, having P1 symmetry. Their structures are characterized by a centrosymmetric π-stacking interaction between the concave faces of the subPc ligand at centroid-to-centroid (CgCg) distances of 3.5229 (12) and 3.521 (2) Å for ClsO-BsubPc and TsO-BsubPc, respectively. This interaction creates a pairing of molecules that is typically seen in phenoxy-BsubPc derivatives (Paton et al., 2011). In these derivatives, however, the polarity of the benzenesulfonate group produces an additional centrosymmetric π-stacking interaction between the benzenesulfonate groups at CgCg distances of 3.6813 (13) and 3.701 (2) Å for ClsO-BsubPc and TsO-BsubPc, respectively. In contrast, the MsO-BsubPc crystal structures are both solvates. One structure, which crystallized into a rhombus of the space group Pna21, possesses two BsubPc molecules and one molecule of DCM in the asymmetric unit, stabilized by a weak C—H···Cl interaction at a Cl···H distance of 2.960 (2) Å between atoms H20B and Cl1, and a C—Cl···O interaction at 2.884 (4) Å between atoms Cl1 and O2A of the sulfonate. Instead of the typical concave–concave centrosymmetric π-stacking that creates pairs of molecules, this crystal has a concave–concave head-to-tail (Morse, Helander et al., 2010) π-stacking interaction, creating a ribbon of BsubPc ligands in the structure. The other, which crystallized into a needle shape of the space group C2/c, has disordered solvent of unknown identity incorporated into solvent-accessible voids. The structure is stabilized by three sets of π-stacking interactions: the typical concave–concave centrosymmetric stacking at a CgCg distance of 3.7169 (19) Å, a convex–convex interaction at a CgCg distance of 3.6405 (19) Å and an unusual convex–convex head-to-tail interaction, creating rows of BsubPc ligands. Furthermore, the sulfonate group in this structure is involved in several interactions, which include three C—H···O interactions and, more interestingly, an S—O···π interaction at an O···π distance of 3.630 (3) Å.

Compound (I) crystallizes in the space group P1 with Z = 2, and possesses 30.0 Å3 of solvent-accessible void space. The molecular structure is shown in Fig. 2(a) and the crystal structure in Fig. 2(b). The structure is stabilized by two pairs of π-stacking interactions. The closer of the two pairs is between isoindoline units through their convex faces. The pair of π-stacking interactions are centrosymmetric, and have a CgCg distance of 3.5170 (10) Å. The other pair is between isoindoline units through their concave faces and is also centrosymmetric, with a CgCg distance of 3.7528 (11) Å. The structure also contains three C—H···O hydrogen bonds, viz. C12—H12A···O2, C13—H13A···O2 and C26—H26A···O3, with H···O distances of 2.52, 2.57 and 2.43 Å, respectively. The last C—H···O hydrogen bond makes a pair of centrosymmetric interactions between sulfonate atom O3 and a C atom in the ring of the benzenesulfonate group.

Compound (II) crystallizes in the space group P21/c with Z = 4. The molecular structure is shown in Fig. 3(a) and the crystal structure in Fig. 3(b). Examination of the structure shows that the subPc ligands overlap one of their isoindole units with a π-stacking interaction through their convex faces. The isoindole units overlap with a slight angle between them, with the closest π-stacking interaction between the N3/C9/C10/C15/C16 and C2–C7 rings at a CgCg distance of 3.537 (2) Å. The structure is also stabilized by two C—H···O hydrogen bonds (C5—H5A···O3 and C28—H28A···O3), with H···O distances of 2.56 and 2.32 Å, respectively. The structure also contains an intermolecular S—O···π interaction from the sulfonate group to a five-membered ring (N1/C1/C2/C7/C8) on the concave side of a neighbouring BsubPc ligand at an O···π distance of 3.151 (3) Å. This S—O···π contact stabilizes the sulfonate group positioned within the bowl of the adjacent subPc ligand, and defines a column of molecules approximately perpendicular to the plane of the subPc ligand.

Compound (III) upon sublimation crystallizes in the space group P21/n. The molecular structure is shown in Fig. 4(a) and the crystal structure in Fig. 4(b). This structure is stabilized by a concave–concave interaction between the centroid of the six-membered ring C10–C15 and atom N6, at a distance of 3.793 (7) Å. Interestingly, there are no π-stacking interactions shorter than 4.0 Å in the structure. There are two C—H···π interactions, with H···π distances of 2.91 and 2.90 Å, between C19—H19A and the C2–C7 ring, and between C22—H22A and the C10–C15 ring, respectively. There are also one C—H···N and two C—H···O hydrogen bonds in the structure, with H···A distances of 2.49 and 2.56/2.56 Å, respectively, with the C—H···O interactions being between the O atoms of the sulfonate and the BsubPc ligand, and the C—H···N interaction being between the mesylate methyl group and an imine N atom.

In terms of chemical and physical properties, the halo-BsubPc derivatives are the closest analogues of the sulfonate pseudohalides of BsubPc (Paton et al., 2012). Halo-BsubPcs form two crystal-structure motifs, which depend on whether their peripheral substituents are H (H12) or F (F12). The halo-H12BsubPc motif displays two interactions that seem to stabilize the structure (Kietaibl, 1974; Fulford et al., 2012). The packing structure of Br-BsubPc (Fulford et al., 2012) is shown in Fig. 5(a) as an example. The first interaction is a concave–concave head-to-tail π-stacking interaction which forms ribbons in one dimension. The second interaction is a centrosymmetric pair of convex–convex π-stacked isoindoline units which links the ribbons of BsubPc molecules together. In contrast, the halo-F12BubPc motif is characterized by columns of BsubPc molecules oriented approximately perpendicular to the BsubPc molecular plane (Rodríguez-Morgade et al., 2008; Fukuda et al., 2002; Morse, Maka et al., 2010). An example of this motif is shown by the crystal structure of Br-F12BsubPc (Morse, Maka et al., 2010) in Fig. 5(b). These columns are associated through the halogen atom on B, which sits directly under the next BsubPc and consistently displays an intermolecular B to halogen distance that is shorter than the sum of the van der Waals radii. These motifs are also consistent with peripherally fused or hybrid BsubPcs. For example, fluorinated BsubPc dimers joined peripherally through one isoindole unit in both the cis and trans forms crystallize according to the F12BsubPc motif (Fukuda et al., 2002). The crystal structure of the cis form shows columns of BsubPcs as the F12BsubPc motif would predict, with the other BsubPc of the dimer protruding from the stack and alternating in opposite directions with neighbouring molecules. These half-molecules that are not within the columns are π-stacked with other half-molecules not in their own columns through their concave faces, thereby linking the columns together. The trans form follows the F12BsubPc motif more closely, with both BsubPc parts of the dimer in neighbouring columns facing opposite directions. An example of a hybrid halo-BsubPc is an asymmetric BsubPc with two fluorinated isoindoles and one peripherally hydrogenated π-extended isoindole (Stork et al., 1999). This structure shows examples of both motifs: the fluorinated sides stack into columns with the halogen in the bowl of the next BsubPc unit, while the naphthalene side of the molecule forms a convex–convex π-stacking interaction with its closest neighbours.

Since the size and polarity of the sulfonate unit are different from the halogens in the same position on the halo-BsubPcs, we would expect to see differences in the solid-state arrangements. However, we can note important similarities. The structures of TsO-BsubPc, ClsO-BsubPc and (I) demonstrate convex–convex π-stacking as in the halo-H12BsubPc motif. In contrast, the solid-state arrangement of (II) shows the most similarity to that of halo-F12BsubPc. It contains oriented stacks linked together by S—O···π interactions, whereas the halo-F12BsubPcs have oriented stacks connected by halogen···π interactions. A difference between them is that the nitrobenzene group is present between two neighbouring BsubPc ligands in the column, although the angle at which it is oriented to the BsubPc units, as well as its distance, precludes it from being involved in stabilizing π-stacking interactions. This additional molecular fragment in the column causes the increase in the B···B distance to 7.197 (7) Å for (II), compared, for example, with 5.471 (5) Å for Br-F12BsubPc (Morse, Maka et al., 2010). The similarity between these structures is likely to result from the electron-withdrawing nature of the nitro group on the benzenesulfonate, which, coupled with the electron-deficient BsubPc ligand, prevents strong π-stacking interactions within the crystal that could outcompete even the weak S—O···π interactions that are present. The dichloromethane solvate of (III) shows concave-concave head-to-tail overlap as found in the halo-H12BsubPc crystal structures. The new non-solvated structure of (III) shows even more similarity to that of the halo-BsubPcs. The concave–concave head-to-tail overlap that exists in the MsO-BsubPc structure at 3.793 (7) Å is the same Cg···N interaction that is seen in the crystal structures of Cl-BsubPc (Kietaibl, 1974) and Br-BsubPc (Fulford et al., 2012), at 3.701 (1) and 3.689 (7) Å, respectively.

As a final comment, one might expect that (I) and (II) would crystallize in a similar motif to ClsO-BsubPc and TsO-BsubPc, since those two compounds are also benzenesulfonate derivatives. However, there are more differences than similarities. Compound (I) does possess similar concave–concave π-stacking of the BsubPc ligands (see Fig. 2b), but the centrosymmetric interaction between the benzenesulfonate groups is based on C—H···O hydrogen bonds, and not on π-stacking as it is for ClsO-BsubPc and TsO-BsubPc (Fig. 1a). We propose that this is likely to be due to the dipole produced in the para-derivatives of benzenesulfonate, which does not occur in the nonsubstituted benzenesulfonate itself. The centrosymmetric C—H···O interactions in (I) are evidently weaker than the π-stacking produced by the substituted benzenesulfonates. The structure of (II) (Fig. 3b) is even more different, with no concave–concave π-stacking and no interactions between benzenesulfonate units. What is present, however, is an S—O···π interaction from the sulfonate group to the neighbouring BsubPc unit. Both of these observations are likely to result from the strongly electron-withdrawing nature of the nitro group on the benzenesulfonate, which would make π-stacking less favourable (Paton et al., 2011) and cause the sulfonate to be electron-deficient and therefore a better group to accept electrons in a weak hydrogen bond. The new unsolvated structure of (III) (Fig. 4b) does not correspond to any of the previously published sulfonate structures. The fact that it displays a head-to-tail concave–concave interaction between the π-system of one BsubPc and the imine N of another, which is similar to that of Cl-BsubPc and Br-BsubPc, is of special note since it has been shown that the electrochemical and optical properties of (III) and Cl-BsubPc are also quite similar (Paton et al., 2012). In solid-state applications where Cl-BsubPc is currently used, we therefore suggest that (III) would be an alternative to consider.

Related literature top

For related literature, see: Claessens et al. (2002, 2003); Fukuda et al. (2002); Fulford et al. (2012); Gommans et al. (2009); Kietaibl (1974); Morse, Helander, Maka, Lu & Bender (2010); Morse, Maka, Lough & Bender (2010); Paton et al. (2011, 2012); Rodríguez-Morgade, Claessens, Medina, González-Rodríguez, Gutiérrez-Puebla, Monge, Alkorta, Elguero & Torres (2008); Stork et al. (1999); Zyskowski & Kennedy (2000).

Experimental top

The synthesis and characterization of the title compounds are described in detail in a previous publication (Paton et al., 2012). The crystallization conditions are as follows. Evaporation of the solvent from a solution in chloroform produced crystals of (I) overnight. For (II), evaporation of the solvent from a solution in benzene produced crystals suitable for diffraction over a period of a few days. The sublimation of (III) was performed in a custom-built trained sublimation apparatus, at a temperature of 558 K and 80 mTorr of pressure (1 Torr = 133.322 Pa).

Refinement top

All H atoms were included in calculated positions and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl group in (III).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structures of (a) ClsO-BsubPc (TsO-BsubPc is isostructural), (b) MsO-BsubPc (needle; disordered solvent not included), and (c) MsO-BsubPc.CH2Cl2 (rhomboid). All structures redrawn from Paton et al. (2012). The ring centroids and main interactions are displayed. H atoms have been omitted.
[Figure 2] Fig. 2. (a) The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (b) The packing structure of (I), with the ring centroids indicated by large circles and the main interactions displayed as dashed lines. H atoms have been omitted.
[Figure 3] Fig. 3. (a) The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (b) The packing structure of (II), with the ring centroids indicated by large circles and the main interactions displayed as dashed lines. H atoms have been omitted.
[Figure 4] Fig. 4. (a) The molecular structure of (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (b) The packing structure of (III), with the ring centroids indicated by large circles and the main interactions displayed as dashed lines. H atoms have been omitted.
[Figure 5] Fig. 5. The crystal structures of (a) Br-BsubPc (redrawn from Fulford et al., 2012) and (b) Br-F12BsubPc (redrawn from Morse, Maka et al., 2010). The main interactions are indicated as dashed lines. In (a), the ring centroids are shown as large circles and H atoms have been omitted.
(I) (benzenesulfonato)(subphthalocyaninato)boron top
Crystal data top
C30H17BN6O3SZ = 2
Mr = 552.37F(000) = 568
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5118 (9) ÅCell parameters from 8754 reflections
b = 11.0929 (10) Åθ = 2.5–27.5°
c = 11.2047 (10) ŵ = 0.18 mm1
α = 72.749 (2)°T = 150 K
β = 75.862 (2)°Needle, purple
γ = 81.398 (2)°0.20 × 0.10 × 0.08 mm
V = 1205.77 (18) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5579 independent reflections
Radiation source: fine-focus sealed tube4211 reflections with I > 2σ(I)
Bruker Triumph monochromatorRint = 0.035
ϕ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.715, Tmax = 0.946k = 148
20057 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.3932P]
where P = (Fo2 + 2Fc2)/3
5579 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C30H17BN6O3Sγ = 81.398 (2)°
Mr = 552.37V = 1205.77 (18) Å3
Triclinic, P1Z = 2
a = 10.5118 (9) ÅMo Kα radiation
b = 11.0929 (10) ŵ = 0.18 mm1
c = 11.2047 (10) ÅT = 150 K
α = 72.749 (2)°0.20 × 0.10 × 0.08 mm
β = 75.862 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5579 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4211 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.946Rint = 0.035
20057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
5579 reflectionsΔρmin = 0.52 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04716 (4)0.67755 (4)0.75006 (4)0.01701 (10)
O10.16416 (11)0.75883 (10)0.72392 (10)0.0173 (2)
O20.03168 (12)0.74448 (11)0.65995 (12)0.0252 (3)
O30.01156 (12)0.64718 (11)0.88320 (11)0.0235 (3)
N10.36300 (13)0.82684 (12)0.74420 (12)0.0163 (3)
N20.27949 (13)0.99241 (12)0.84392 (13)0.0176 (3)
N30.19354 (13)0.79054 (12)0.92946 (13)0.0156 (3)
N40.19052 (13)0.58294 (12)1.07274 (13)0.0171 (3)
N50.31533 (13)0.61910 (12)0.86048 (13)0.0158 (3)
N60.51408 (14)0.65361 (13)0.70417 (13)0.0186 (3)
C10.48178 (16)0.77845 (15)0.68720 (15)0.0172 (3)
C20.56333 (17)0.88431 (15)0.63535 (15)0.0183 (3)
C30.69352 (17)0.89383 (16)0.56736 (16)0.0219 (4)
H3A0.74450.82320.54330.026*
C40.74579 (18)1.00829 (17)0.53622 (17)0.0252 (4)
H4A0.83281.01770.48650.030*
C50.67378 (18)1.11135 (17)0.57617 (17)0.0253 (4)
H5A0.71281.18920.55280.030*
C60.54749 (17)1.10223 (15)0.64866 (16)0.0211 (4)
H6A0.50061.17130.67860.025*
C70.49056 (16)0.98882 (15)0.67674 (15)0.0178 (3)
C80.36527 (16)0.94607 (14)0.75451 (15)0.0166 (3)
C90.20031 (16)0.91166 (14)0.93494 (16)0.0169 (3)
C100.13896 (16)0.91349 (15)1.06516 (16)0.0170 (3)
C110.11463 (17)1.00941 (16)1.12693 (16)0.0209 (4)
H11A0.13211.09421.08080.025*
C120.06438 (18)0.97740 (16)1.25712 (17)0.0241 (4)
H12A0.04591.04171.30060.029*
C130.04003 (17)0.85256 (17)1.32667 (17)0.0234 (4)
H13A0.00500.83401.41610.028*
C140.06597 (16)0.75560 (16)1.26765 (16)0.0197 (3)
H14A0.05120.67061.31530.024*
C150.11458 (16)0.78681 (15)1.13586 (16)0.0173 (3)
C160.15877 (15)0.70832 (15)1.04828 (15)0.0161 (3)
C170.27304 (16)0.54069 (15)0.97941 (15)0.0169 (3)
C180.35451 (16)0.42199 (15)0.98084 (16)0.0178 (3)
C190.34643 (17)0.30302 (16)1.06801 (17)0.0221 (4)
H19A0.28200.28871.14560.026*
C200.43599 (18)0.20613 (16)1.03727 (17)0.0241 (4)
H20A0.43010.12301.09320.029*
C210.53475 (18)0.22747 (16)0.92608 (18)0.0253 (4)
H21A0.59510.15890.90860.030*
C220.54616 (17)0.34632 (16)0.84116 (17)0.0223 (4)
H22A0.61530.36110.76720.027*
C230.45361 (16)0.44387 (15)0.86690 (16)0.0183 (3)
C240.43261 (16)0.57594 (15)0.79563 (16)0.0176 (3)
C250.12334 (16)0.53933 (15)0.70805 (16)0.0182 (3)
C260.14201 (17)0.42956 (16)0.80298 (17)0.0217 (4)
H26A0.10940.42650.89060.026*
C270.20939 (19)0.32401 (17)0.7672 (2)0.0308 (4)
H27A0.22380.24780.83080.037*
C280.2556 (2)0.32921 (19)0.6397 (2)0.0351 (5)
H28A0.30280.25680.61620.042*
C290.2341 (2)0.43833 (19)0.5457 (2)0.0343 (5)
H29A0.26470.44030.45810.041*
C300.16772 (19)0.54509 (17)0.57946 (17)0.0269 (4)
H30A0.15290.62090.51560.032*
B10.25285 (18)0.74749 (17)0.81371 (18)0.0161 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0168 (2)0.01689 (19)0.0187 (2)0.00052 (15)0.00433 (16)0.00670 (15)
O10.0185 (6)0.0161 (5)0.0174 (6)0.0033 (5)0.0043 (5)0.0035 (4)
O20.0258 (7)0.0233 (6)0.0314 (7)0.0040 (5)0.0157 (6)0.0098 (5)
O30.0224 (6)0.0289 (6)0.0195 (6)0.0056 (5)0.0017 (5)0.0106 (5)
N10.0171 (7)0.0160 (6)0.0152 (7)0.0008 (5)0.0026 (6)0.0045 (5)
N20.0184 (7)0.0160 (6)0.0176 (7)0.0003 (5)0.0045 (6)0.0038 (5)
N30.0158 (7)0.0142 (6)0.0169 (7)0.0010 (5)0.0038 (6)0.0043 (5)
N40.0175 (7)0.0171 (6)0.0180 (7)0.0021 (5)0.0035 (6)0.0064 (5)
N50.0161 (7)0.0165 (6)0.0154 (7)0.0011 (5)0.0025 (6)0.0059 (5)
N60.0194 (7)0.0194 (7)0.0179 (7)0.0010 (6)0.0031 (6)0.0078 (5)
C10.0172 (8)0.0216 (8)0.0133 (8)0.0016 (7)0.0027 (7)0.0058 (6)
C20.0208 (9)0.0205 (8)0.0138 (8)0.0033 (7)0.0055 (7)0.0026 (6)
C30.0208 (9)0.0271 (9)0.0170 (9)0.0030 (7)0.0022 (7)0.0055 (7)
C40.0202 (9)0.0317 (9)0.0223 (10)0.0077 (8)0.0021 (7)0.0043 (7)
C50.0255 (9)0.0239 (9)0.0257 (10)0.0107 (7)0.0055 (8)0.0015 (7)
C60.0242 (9)0.0192 (8)0.0205 (9)0.0029 (7)0.0079 (7)0.0031 (7)
C70.0201 (8)0.0191 (8)0.0132 (8)0.0021 (7)0.0056 (7)0.0012 (6)
C80.0181 (8)0.0147 (7)0.0172 (8)0.0017 (6)0.0063 (7)0.0023 (6)
C90.0173 (8)0.0153 (7)0.0194 (9)0.0016 (6)0.0065 (7)0.0059 (6)
C100.0137 (8)0.0188 (8)0.0185 (9)0.0018 (6)0.0039 (7)0.0065 (6)
C110.0206 (9)0.0195 (8)0.0238 (9)0.0009 (7)0.0054 (7)0.0082 (7)
C120.0251 (9)0.0251 (9)0.0261 (10)0.0034 (7)0.0062 (8)0.0148 (7)
C130.0233 (9)0.0299 (9)0.0177 (9)0.0010 (7)0.0033 (7)0.0101 (7)
C140.0181 (8)0.0221 (8)0.0188 (9)0.0013 (7)0.0038 (7)0.0056 (7)
C150.0136 (8)0.0193 (8)0.0202 (9)0.0008 (6)0.0038 (7)0.0073 (6)
C160.0133 (8)0.0186 (7)0.0163 (8)0.0024 (6)0.0029 (6)0.0044 (6)
C170.0174 (8)0.0171 (7)0.0171 (8)0.0036 (6)0.0051 (7)0.0040 (6)
C180.0186 (8)0.0186 (8)0.0199 (9)0.0002 (7)0.0085 (7)0.0078 (6)
C190.0250 (9)0.0209 (8)0.0222 (9)0.0010 (7)0.0105 (7)0.0046 (7)
C200.0296 (10)0.0173 (8)0.0268 (10)0.0030 (7)0.0157 (8)0.0025 (7)
C210.0253 (9)0.0213 (8)0.0336 (11)0.0082 (7)0.0147 (8)0.0119 (7)
C220.0197 (9)0.0229 (8)0.0266 (10)0.0014 (7)0.0069 (7)0.0099 (7)
C230.0185 (8)0.0183 (8)0.0212 (9)0.0012 (7)0.0077 (7)0.0074 (6)
C240.0178 (8)0.0200 (8)0.0180 (9)0.0007 (7)0.0049 (7)0.0097 (6)
C250.0178 (8)0.0174 (8)0.0213 (9)0.0015 (6)0.0036 (7)0.0086 (6)
C260.0220 (9)0.0209 (8)0.0248 (10)0.0035 (7)0.0096 (7)0.0053 (7)
C270.0336 (11)0.0202 (8)0.0464 (13)0.0032 (8)0.0239 (10)0.0110 (8)
C280.0285 (10)0.0323 (10)0.0559 (14)0.0096 (9)0.0164 (10)0.0292 (10)
C290.0351 (11)0.0385 (11)0.0336 (11)0.0005 (9)0.0012 (9)0.0224 (9)
C300.0332 (11)0.0253 (9)0.0215 (10)0.0029 (8)0.0023 (8)0.0077 (7)
B10.0158 (9)0.0169 (8)0.0160 (9)0.0012 (7)0.0028 (7)0.0054 (7)
Geometric parameters (Å, º) top
S1—O31.4263 (12)C10—C151.420 (2)
S1—O21.4275 (12)C11—C121.380 (2)
S1—O11.5525 (11)C11—H11A0.9500
S1—C251.7580 (16)C12—C131.400 (2)
O1—B11.498 (2)C12—H12A0.9500
N1—C81.366 (2)C13—C141.384 (2)
N1—C11.367 (2)C13—H13A0.9500
N1—B11.476 (2)C14—C151.394 (2)
N2—C91.342 (2)C14—H14A0.9500
N2—C81.344 (2)C15—C161.449 (2)
N3—C161.371 (2)C17—C181.458 (2)
N3—C91.3761 (19)C18—C191.390 (2)
N3—B11.477 (2)C18—C231.420 (2)
N4—C171.338 (2)C19—C201.385 (2)
N4—C161.342 (2)C19—H19A0.9500
N5—C171.367 (2)C20—C211.397 (3)
N5—C241.367 (2)C20—H20A0.9500
N5—B11.476 (2)C21—C221.380 (2)
N6—C241.339 (2)C21—H21A0.9500
N6—C11.343 (2)C22—C231.391 (2)
C1—C21.451 (2)C22—H22A0.9500
C2—C31.397 (2)C23—C241.459 (2)
C2—C71.423 (2)C25—C261.384 (2)
C3—C41.374 (2)C25—C301.387 (2)
C3—H3A0.9500C26—C271.387 (2)
C4—C51.400 (3)C26—H26A0.9500
C4—H4A0.9500C27—C281.379 (3)
C5—C61.377 (2)C27—H27A0.9500
C5—H5A0.9500C28—C291.380 (3)
C6—C71.392 (2)C28—H28A0.9500
C6—H6A0.9500C29—C301.386 (3)
C7—C81.449 (2)C29—H29A0.9500
C9—C101.449 (2)C30—H30A0.9500
C10—C111.395 (2)
O3—S1—O2119.16 (8)C13—C14—C15117.74 (16)
O3—S1—O1109.10 (7)C13—C14—H14A121.1
O2—S1—O1105.92 (7)C15—C14—H14A121.1
O3—S1—C25109.75 (8)C14—C15—C10121.02 (15)
O2—S1—C25108.46 (8)C14—C15—C16131.29 (15)
O1—S1—C25103.24 (7)C10—C15—C16107.50 (14)
B1—O1—S1125.67 (10)N4—C16—N3123.03 (14)
C8—N1—C1113.57 (13)N4—C16—C15129.70 (15)
C8—N1—B1122.62 (14)N3—C16—C15105.69 (13)
C1—N1—B1122.40 (13)N4—C17—N5122.12 (14)
C9—N2—C8117.37 (13)N4—C17—C18131.91 (15)
C16—N3—C9112.48 (13)N5—C17—C18104.97 (13)
C16—N3—B1122.80 (13)C19—C18—C23121.11 (15)
C9—N3—B1122.60 (13)C19—C18—C17131.60 (16)
C17—N4—C16117.05 (14)C23—C18—C17107.28 (14)
C17—N5—C24113.66 (13)C20—C19—C18117.38 (17)
C17—N5—B1123.47 (13)C20—C19—H19A121.3
C24—N5—B1122.17 (13)C18—C19—H19A121.3
C24—N6—C1116.64 (14)C19—C20—C21121.72 (16)
N6—C1—N1122.89 (14)C19—C20—H20A119.1
N6—C1—C2130.56 (15)C21—C20—H20A119.1
N1—C1—C2105.23 (13)C22—C21—C20121.20 (16)
C3—C2—C7120.30 (15)C22—C21—H21A119.4
C3—C2—C1132.03 (15)C20—C21—H21A119.4
C7—C2—C1107.42 (14)C21—C22—C23118.14 (17)
C4—C3—C2118.10 (16)C21—C22—H22A120.9
C4—C3—H3A121.0C23—C22—H22A120.9
C2—C3—H3A121.0C22—C23—C18120.35 (15)
C3—C4—C5121.48 (16)C22—C23—C24132.26 (16)
C3—C4—H4A119.3C18—C23—C24107.39 (14)
C5—C4—H4A119.3N6—C24—N5122.52 (14)
C6—C5—C4121.38 (16)N6—C24—C23131.30 (15)
C6—C5—H5A119.3N5—C24—C23104.84 (14)
C4—C5—H5A119.3C26—C25—C30121.73 (16)
C5—C6—C7118.09 (16)C26—C25—S1119.68 (13)
C5—C6—H6A121.0C30—C25—S1118.55 (13)
C7—C6—H6A121.0C25—C26—C27118.47 (17)
C6—C7—C2120.52 (15)C25—C26—H26A120.8
C6—C7—C8132.05 (16)C27—C26—H26A120.8
C2—C7—C8107.21 (14)C28—C27—C26120.29 (18)
N2—C8—N1122.60 (14)C28—C27—H27A119.9
N2—C8—C7130.20 (14)C26—C27—H27A119.9
N1—C8—C7105.43 (14)C27—C28—C29120.78 (17)
N2—C9—N3122.10 (15)C27—C28—H28A119.6
N2—C9—C10130.06 (14)C29—C28—H28A119.6
N3—C9—C10105.68 (13)C28—C29—C30119.82 (19)
C11—C10—C15120.32 (15)C28—C29—H29A120.1
C11—C10—C9132.19 (15)C30—C29—H29A120.1
C15—C10—C9107.19 (13)C29—C30—C25118.89 (17)
C12—C11—C10117.98 (15)C29—C30—H30A120.6
C12—C11—H11A121.0C25—C30—H30A120.6
C10—C11—H11A121.0N5—B1—N1105.22 (13)
C11—C12—C13121.65 (16)N5—B1—N3105.30 (13)
C11—C12—H12A119.2N1—B1—N3105.89 (13)
C13—C12—H12A119.2N5—B1—O1115.26 (13)
C14—C13—C12121.27 (16)N1—B1—O1108.04 (13)
C14—C13—H13A119.4N3—B1—O1116.22 (14)
C12—C13—H13A119.4
O3—S1—O1—B133.24 (14)C16—N4—C17—C18161.40 (16)
O2—S1—O1—B1162.67 (12)C24—N5—C17—N4155.84 (15)
C25—S1—O1—B183.42 (13)B1—N5—C17—N414.8 (2)
C24—N6—C1—N110.1 (2)C24—N5—C17—C1813.95 (17)
C24—N6—C1—C2154.82 (16)B1—N5—C17—C18175.42 (14)
C8—N1—C1—N6157.41 (15)N4—C17—C18—C1921.3 (3)
B1—N1—C1—N69.3 (2)N5—C17—C18—C19170.33 (17)
C8—N1—C1—C210.73 (18)N4—C17—C18—C23160.35 (17)
B1—N1—C1—C2177.47 (14)N5—C17—C18—C238.01 (17)
N6—C1—C2—C313.0 (3)C23—C18—C19—C202.1 (2)
N1—C1—C2—C3179.89 (17)C17—C18—C19—C20176.10 (16)
N6—C1—C2—C7161.01 (17)C18—C19—C20—C212.9 (3)
N1—C1—C2—C75.86 (17)C19—C20—C21—C220.8 (3)
C7—C2—C3—C43.4 (2)C20—C21—C22—C232.2 (3)
C1—C2—C3—C4176.83 (17)C21—C22—C23—C183.0 (2)
C2—C3—C4—C53.0 (3)C21—C22—C23—C24176.13 (17)
C3—C4—C5—C60.1 (3)C19—C18—C23—C220.9 (2)
C4—C5—C6—C72.8 (3)C17—C18—C23—C22179.44 (15)
C5—C6—C7—C22.3 (2)C19—C18—C23—C24178.44 (15)
C5—C6—C7—C8176.19 (17)C17—C18—C23—C240.11 (17)
C3—C2—C7—C60.8 (2)C1—N6—C24—N56.5 (2)
C1—C2—C7—C6175.69 (14)C1—N6—C24—C23158.18 (17)
C3—C2—C7—C8174.43 (15)C17—N5—C24—N6154.32 (15)
C1—C2—C7—C80.43 (18)B1—N5—C24—N616.4 (2)
C9—N2—C8—N18.3 (2)C17—N5—C24—C2313.86 (18)
C9—N2—C8—C7154.19 (17)B1—N5—C24—C23175.37 (14)
C1—N1—C8—N2155.23 (15)C22—C23—C24—N621.9 (3)
B1—N1—C8—N211.5 (2)C18—C23—C24—N6158.89 (17)
C1—N1—C8—C711.02 (18)C22—C23—C24—N5171.39 (17)
B1—N1—C8—C7177.72 (14)C18—C23—C24—N57.83 (17)
C6—C7—C8—N216.3 (3)O3—S1—C25—C2612.64 (16)
C2—C7—C8—N2158.23 (16)O2—S1—C25—C26144.37 (14)
C6—C7—C8—N1178.93 (17)O1—S1—C25—C26103.57 (14)
C2—C7—C8—N16.57 (17)O3—S1—C25—C30169.76 (13)
C8—N2—C9—N38.3 (2)O2—S1—C25—C3038.04 (16)
C8—N2—C9—C10152.54 (17)O1—S1—C25—C3074.02 (15)
C16—N3—C9—N2152.38 (15)C30—C25—C26—C271.3 (3)
B1—N3—C9—N211.5 (2)S1—C25—C26—C27176.19 (13)
C16—N3—C9—C1012.50 (18)C25—C26—C27—C280.4 (3)
B1—N3—C9—C10176.36 (14)C26—C27—C28—C291.0 (3)
N2—C9—C10—C1118.2 (3)C27—C28—C29—C301.4 (3)
N3—C9—C10—C11178.59 (17)C28—C29—C30—C250.4 (3)
N2—C9—C10—C15155.33 (17)C26—C25—C30—C290.9 (3)
N3—C9—C10—C157.89 (17)S1—C25—C30—C29176.62 (15)
C15—C10—C11—C121.2 (2)C17—N5—B1—N1138.94 (15)
C9—C10—C11—C12174.00 (17)C24—N5—B1—N130.9 (2)
C10—C11—C12—C131.0 (3)C17—N5—B1—N327.3 (2)
C11—C12—C13—C140.3 (3)C24—N5—B1—N3142.55 (14)
C12—C13—C14—C151.4 (3)C17—N5—B1—O1102.16 (17)
C13—C14—C15—C101.2 (2)C24—N5—B1—O187.98 (18)
C13—C14—C15—C16175.56 (17)C8—N1—B1—N5138.06 (15)
C11—C10—C15—C140.1 (2)C1—N1—B1—N527.5 (2)
C9—C10—C15—C14174.52 (15)C8—N1—B1—N326.8 (2)
C11—C10—C15—C16175.49 (15)C1—N1—B1—N3138.69 (15)
C9—C10—C15—C161.05 (18)C8—N1—B1—O198.31 (17)
C17—N4—C16—N38.2 (2)C1—N1—B1—O196.15 (17)
C17—N4—C16—C15155.35 (16)C16—N3—B1—N524.2 (2)
C9—N3—C16—N4155.08 (15)C9—N3—B1—N5138.00 (15)
B1—N3—C16—N48.7 (2)C16—N3—B1—N1135.36 (15)
C9—N3—C16—C1511.84 (18)C9—N3—B1—N126.8 (2)
B1—N3—C16—C15175.67 (14)C16—N3—B1—O1104.69 (17)
C14—C15—C16—N415.4 (3)C9—N3—B1—O193.10 (18)
C10—C15—C16—N4159.51 (16)S1—O1—B1—N553.60 (18)
C14—C15—C16—N3178.84 (17)S1—O1—B1—N1170.93 (10)
C10—C15—C16—N36.21 (17)S1—O1—B1—N370.29 (17)
C16—N4—C17—N55.3 (2)
(II) (3-nitrobenzenesulfonato)(subphthalocyaninato)boron top
Crystal data top
C30H16BN7O5SF(000) = 1224
Mr = 597.37Dx = 1.552 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 5951 reflections
a = 13.8349 (7) Åθ = 3.5–65.1°
b = 13.8988 (8) ŵ = 1.64 mm1
c = 14.3887 (8) ÅT = 150 K
β = 112.466 (4)°Cube, purple
V = 2556.8 (2) Å30.09 × 0.09 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEX DUO CCD area-detector
diffractometer
4159 independent reflections
Radiation source: Bruker ImuS3342 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.042
ϕ and ω scansθmax = 65.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.867, Tmax = 0.867k = 1616
13374 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1371P)2 + 2.6986P]
where P = (Fo2 + 2Fc2)/3
4159 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C30H16BN7O5SV = 2556.8 (2) Å3
Mr = 597.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.8349 (7) ŵ = 1.64 mm1
b = 13.8988 (8) ÅT = 150 K
c = 14.3887 (8) Å0.09 × 0.09 × 0.09 mm
β = 112.466 (4)°
Data collection top
Bruker Kappa APEX DUO CCD area-detector
diffractometer
4159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3342 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.867Rint = 0.042
13374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.07Δρmax = 1.14 e Å3
4159 reflectionsΔρmin = 0.60 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77332 (7)0.23044 (7)0.64888 (7)0.0306 (3)
O10.6980 (2)0.25242 (17)0.70014 (19)0.0290 (6)
O20.7192 (2)0.2467 (2)0.5450 (2)0.0377 (7)
O30.8192 (2)0.1367 (2)0.6813 (2)0.0447 (7)
O41.2200 (3)0.3828 (5)0.8887 (4)0.1102 (19)
O51.1647 (3)0.2373 (4)0.8834 (3)0.0872 (15)
N10.6526 (2)0.3209 (2)0.8313 (2)0.0262 (7)
N20.5089 (2)0.2212 (2)0.8194 (2)0.0332 (7)
N30.6703 (2)0.1522 (2)0.8330 (2)0.0282 (7)
N40.8367 (2)0.0849 (2)0.9283 (2)0.0296 (7)
N50.8205 (2)0.25115 (19)0.8835 (2)0.0228 (6)
N60.8012 (2)0.4169 (2)0.9177 (2)0.0285 (7)
N71.1518 (3)0.3221 (5)0.8621 (3)0.0670 (14)
C10.6973 (3)0.4052 (3)0.8737 (2)0.0270 (8)
C20.6108 (3)0.4630 (3)0.8787 (3)0.0315 (8)
C30.6039 (3)0.5575 (3)0.9067 (3)0.0379 (9)
H3A0.66290.59900.92680.045*
C40.5074 (3)0.5894 (3)0.9044 (3)0.0396 (10)
H4A0.49980.65420.92140.048*
C50.4220 (3)0.5272 (3)0.8775 (3)0.0420 (10)
H5A0.35770.55070.87770.050*
C60.4273 (3)0.4346 (3)0.8510 (3)0.0371 (9)
H6A0.36840.39320.83360.045*
C70.5218 (3)0.4020 (3)0.8500 (3)0.0324 (9)
C80.5525 (3)0.3085 (3)0.8260 (2)0.0294 (8)
C90.5712 (3)0.1449 (3)0.8305 (3)0.0332 (9)
C100.5634 (3)0.0473 (3)0.8649 (3)0.0356 (9)
C110.4791 (4)0.0035 (3)0.8723 (3)0.0426 (10)
H11A0.41060.02300.84890.051*
C120.5007 (4)0.0948 (3)0.9156 (3)0.0434 (11)
H12A0.44470.13200.91930.052*
C130.6002 (4)0.1329 (3)0.9533 (3)0.0470 (11)
H13A0.61160.19460.98410.056*
C140.6824 (4)0.0830 (3)0.9469 (3)0.0426 (10)
H14A0.75110.10890.97390.051*
C150.6636 (3)0.0067 (3)0.9002 (3)0.0343 (9)
C160.7341 (3)0.0779 (3)0.8847 (3)0.0306 (8)
C170.8784 (3)0.1728 (3)0.9322 (3)0.0268 (8)
C180.9759 (3)0.2119 (3)1.0016 (3)0.0284 (8)
C191.0678 (3)0.1686 (3)1.0674 (3)0.0353 (9)
H19A1.07560.10061.07070.042*
C201.1475 (3)0.2289 (3)1.1281 (3)0.0428 (10)
H20A1.21170.20141.17170.051*
C211.1352 (3)0.3285 (3)1.1265 (3)0.0400 (10)
H21A1.19090.36711.16980.048*
C221.0451 (3)0.3722 (3)1.0643 (3)0.0364 (9)
H22A1.03740.44011.06470.044*
C230.9649 (3)0.3143 (3)1.0001 (3)0.0292 (8)
C240.8606 (3)0.3374 (2)0.9283 (3)0.0252 (8)
C250.8728 (3)0.3169 (3)0.6966 (3)0.0353 (9)
C260.9705 (3)0.2850 (3)0.7593 (3)0.0385 (10)
H26A0.98470.21890.77580.046*
C271.0461 (4)0.3550 (4)0.7964 (3)0.0500 (12)
C281.0275 (4)0.4519 (4)0.7725 (4)0.0612 (15)
H28A1.08160.49810.79960.073*
C290.9286 (5)0.4795 (4)0.7085 (4)0.0626 (14)
H29A0.91400.54530.69080.075*
C300.8506 (4)0.4110 (3)0.6700 (3)0.0468 (11)
H30A0.78240.42940.62560.056*
B10.7118 (3)0.2429 (3)0.8090 (3)0.0256 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (5)0.0381 (5)0.0237 (5)0.0016 (4)0.0120 (4)0.0038 (4)
O10.0282 (13)0.0399 (15)0.0190 (13)0.0007 (10)0.0089 (10)0.0020 (10)
O20.0408 (16)0.0511 (17)0.0211 (15)0.0045 (12)0.0115 (12)0.0046 (11)
O30.0471 (17)0.0303 (15)0.0602 (19)0.0017 (12)0.0245 (15)0.0004 (13)
O40.053 (2)0.182 (6)0.090 (3)0.056 (3)0.020 (2)0.043 (3)
O50.039 (2)0.145 (5)0.062 (3)0.001 (2)0.0020 (19)0.032 (3)
N10.0295 (16)0.0291 (16)0.0196 (15)0.0034 (12)0.0090 (12)0.0007 (12)
N20.0296 (17)0.0470 (19)0.0206 (16)0.0087 (14)0.0067 (13)0.0045 (13)
N30.0289 (16)0.0354 (17)0.0215 (15)0.0076 (13)0.0111 (13)0.0050 (12)
N40.0389 (18)0.0243 (15)0.0289 (17)0.0008 (13)0.0166 (14)0.0040 (12)
N50.0267 (15)0.0239 (15)0.0180 (15)0.0001 (11)0.0089 (12)0.0005 (11)
N60.0412 (18)0.0226 (15)0.0240 (16)0.0009 (13)0.0151 (13)0.0025 (11)
N70.041 (2)0.118 (4)0.041 (2)0.028 (3)0.0146 (19)0.010 (3)
C10.0299 (19)0.0307 (18)0.0179 (17)0.0020 (15)0.0063 (15)0.0044 (14)
C20.040 (2)0.037 (2)0.0166 (17)0.0105 (16)0.0098 (15)0.0042 (14)
C30.048 (2)0.039 (2)0.026 (2)0.0080 (18)0.0142 (18)0.0016 (17)
C40.053 (3)0.035 (2)0.032 (2)0.0188 (19)0.0168 (19)0.0050 (16)
C50.042 (2)0.054 (3)0.032 (2)0.015 (2)0.0157 (19)0.0088 (18)
C60.033 (2)0.051 (2)0.027 (2)0.0090 (18)0.0107 (16)0.0061 (17)
C70.032 (2)0.045 (2)0.0175 (18)0.0059 (16)0.0065 (15)0.0017 (15)
C80.0303 (19)0.043 (2)0.0132 (16)0.0084 (16)0.0064 (14)0.0009 (15)
C90.032 (2)0.044 (2)0.0212 (18)0.0016 (17)0.0080 (15)0.0061 (16)
C100.047 (2)0.037 (2)0.0242 (19)0.0181 (18)0.0156 (17)0.0107 (16)
C110.046 (2)0.054 (3)0.030 (2)0.016 (2)0.0166 (19)0.0142 (19)
C120.063 (3)0.038 (2)0.035 (2)0.026 (2)0.025 (2)0.0134 (18)
C130.065 (3)0.036 (2)0.047 (3)0.016 (2)0.030 (2)0.0071 (19)
C140.061 (3)0.034 (2)0.039 (2)0.0077 (19)0.026 (2)0.0049 (17)
C150.041 (2)0.035 (2)0.029 (2)0.0102 (17)0.0157 (17)0.0076 (16)
C160.042 (2)0.0273 (19)0.0244 (19)0.0031 (16)0.0153 (16)0.0041 (14)
C170.0325 (19)0.0297 (18)0.0207 (17)0.0049 (15)0.0129 (15)0.0016 (14)
C180.0278 (19)0.036 (2)0.0223 (18)0.0018 (15)0.0103 (15)0.0017 (15)
C190.037 (2)0.044 (2)0.026 (2)0.0094 (17)0.0129 (17)0.0042 (16)
C200.030 (2)0.071 (3)0.024 (2)0.006 (2)0.0069 (17)0.0059 (19)
C210.033 (2)0.050 (3)0.033 (2)0.0074 (18)0.0071 (17)0.0008 (18)
C220.034 (2)0.042 (2)0.028 (2)0.0096 (17)0.0064 (17)0.0026 (16)
C230.031 (2)0.035 (2)0.0214 (18)0.0035 (16)0.0098 (15)0.0017 (15)
C240.0296 (18)0.0256 (17)0.0190 (17)0.0038 (14)0.0077 (14)0.0018 (13)
C250.042 (2)0.038 (2)0.028 (2)0.0120 (18)0.0157 (18)0.0048 (16)
C260.036 (2)0.051 (2)0.029 (2)0.0095 (19)0.0131 (18)0.0022 (18)
C270.043 (2)0.073 (3)0.036 (2)0.024 (2)0.017 (2)0.010 (2)
C280.070 (4)0.062 (3)0.062 (3)0.040 (3)0.037 (3)0.027 (3)
C290.084 (4)0.045 (3)0.065 (3)0.022 (3)0.036 (3)0.011 (2)
C300.058 (3)0.041 (2)0.043 (2)0.001 (2)0.021 (2)0.0010 (19)
B10.030 (2)0.032 (2)0.017 (2)0.0014 (16)0.0110 (17)0.0019 (15)
Geometric parameters (Å, º) top
S1—O21.411 (3)C9—C101.463 (6)
S1—O31.446 (3)C10—C151.400 (6)
S1—O11.520 (3)C10—C111.401 (6)
S1—C251.757 (4)C11—C121.395 (6)
O1—B11.510 (5)C11—H11A0.9500
O4—N71.213 (6)C12—C131.378 (7)
O5—N71.214 (7)C12—H12A0.9500
N1—C11.356 (5)C13—C141.365 (6)
N1—C81.368 (5)C13—H13A0.9500
N1—B11.466 (5)C14—C151.392 (6)
N2—C91.337 (5)C14—H14A0.9500
N2—C81.344 (5)C15—C161.465 (5)
N3—C91.361 (5)C17—C181.444 (5)
N3—C161.377 (5)C18—C191.398 (5)
N3—B11.480 (5)C18—C231.431 (5)
N4—C161.318 (5)C19—C201.395 (6)
N4—C171.344 (5)C19—H19A0.9500
N5—C171.374 (4)C20—C211.395 (6)
N5—C241.374 (4)C20—H20A0.9500
N5—B11.481 (5)C21—C221.368 (6)
N6—C11.341 (5)C21—H21A0.9500
N6—C241.350 (5)C22—C231.396 (5)
N7—C271.478 (7)C22—H22A0.9500
C1—C21.465 (5)C23—C241.453 (5)
C2—C31.388 (5)C25—C301.365 (6)
C2—C71.420 (6)C25—C261.380 (6)
C3—C41.395 (6)C26—C271.378 (6)
C3—H3A0.9500C26—H26A0.9500
C4—C51.394 (6)C27—C281.389 (8)
C4—H4A0.9500C28—C291.380 (9)
C5—C61.352 (6)C28—H28A0.9500
C5—H5A0.9500C29—C301.386 (7)
C6—C71.388 (5)C29—H29A0.9500
C6—H6A0.9500C30—H30A0.9500
C7—C81.449 (5)
O2—S1—O3118.41 (18)C14—C13—H13A119.7
O2—S1—O1107.30 (16)C12—C13—H13A119.7
O3—S1—O1108.77 (16)C13—C14—C15118.8 (4)
O2—S1—C25108.88 (18)C13—C14—H14A120.6
O3—S1—C25107.97 (19)C15—C14—H14A120.6
O1—S1—C25104.66 (17)C14—C15—C10120.8 (4)
B1—O1—S1130.3 (2)C14—C15—C16131.8 (4)
C1—N1—C8114.3 (3)C10—C15—C16107.3 (3)
C1—N1—B1122.7 (3)N4—C16—N3123.6 (3)
C8—N1—B1122.2 (3)N4—C16—C15129.5 (4)
C9—N2—C8117.1 (3)N3—C16—C15105.2 (3)
C9—N3—C16112.9 (3)N4—C17—N5122.8 (3)
C9—N3—B1122.2 (3)N4—C17—C18130.1 (3)
C16—N3—B1122.6 (3)N5—C17—C18105.2 (3)
C16—N4—C17117.0 (3)C19—C18—C23120.2 (3)
C17—N5—C24113.6 (3)C19—C18—C17132.3 (4)
C17—N5—B1122.7 (3)C23—C18—C17107.3 (3)
C24—N5—B1121.6 (3)C20—C19—C18117.5 (4)
C1—N6—C24116.8 (3)C20—C19—H19A121.3
O4—N7—O5125.0 (6)C18—C19—H19A121.3
O4—N7—C27116.6 (6)C21—C20—C19121.6 (4)
O5—N7—C27118.4 (4)C21—C20—H20A119.2
N6—C1—N1122.6 (3)C19—C20—H20A119.2
N6—C1—C2131.2 (3)C22—C21—C20121.8 (4)
N1—C1—C2104.8 (3)C22—C21—H21A119.1
C3—C2—C7120.0 (4)C20—C21—H21A119.1
C3—C2—C1132.9 (4)C21—C22—C23118.2 (4)
C7—C2—C1107.0 (3)C21—C22—H22A120.9
C2—C3—C4117.7 (4)C23—C22—H22A120.9
C2—C3—H3A121.1C22—C23—C18120.6 (3)
C4—C3—H3A121.1C22—C23—C24131.7 (4)
C5—C4—C3120.8 (4)C18—C23—C24107.6 (3)
C5—C4—H4A119.6N6—C24—N5122.8 (3)
C3—C4—H4A119.6N6—C24—C23131.1 (3)
C6—C5—C4122.5 (4)N5—C24—C23104.7 (3)
C6—C5—H5A118.8C30—C25—C26123.4 (4)
C4—C5—H5A118.8C30—C25—S1119.1 (3)
C5—C6—C7117.7 (4)C26—C25—S1117.4 (3)
C5—C6—H6A121.1C27—C26—C25115.8 (4)
C7—C6—H6A121.1C27—C26—H26A122.1
C6—C7—C2121.2 (4)C25—C26—H26A122.1
C6—C7—C8131.1 (4)C26—C27—C28123.2 (5)
C2—C7—C8107.6 (3)C26—C27—N7116.7 (5)
N2—C8—N1122.4 (3)C28—C27—N7120.1 (4)
N2—C8—C7131.5 (3)C29—C28—C27118.5 (4)
N1—C8—C7104.9 (3)C29—C28—H28A120.7
N2—C9—N3122.8 (4)C27—C28—H28A120.7
N2—C9—C10130.4 (4)C28—C29—C30119.8 (5)
N3—C9—C10105.3 (3)C28—C29—H29A120.1
C15—C10—C11120.5 (4)C30—C29—H29A120.1
C15—C10—C9107.8 (3)C25—C30—C29119.3 (5)
C11—C10—C9131.6 (4)C25—C30—H30A120.4
C12—C11—C10116.7 (4)C29—C30—H30A120.4
C12—C11—H11A121.6N1—B1—N3106.3 (3)
C10—C11—H11A121.6N1—B1—N5106.4 (3)
C13—C12—C11122.5 (4)N3—B1—N5105.9 (3)
C13—C12—H12A118.8N1—B1—O1107.6 (3)
C11—C12—H12A118.8N3—B1—O1114.2 (3)
C14—C13—C12120.7 (4)N5—B1—O1115.8 (3)
O2—S1—O1—B1176.6 (3)C24—N5—C17—C1813.0 (4)
O3—S1—O1—B147.4 (3)B1—N5—C17—C18176.7 (3)
C25—S1—O1—B167.8 (3)N4—C17—C18—C1919.3 (7)
C24—N6—C1—N17.2 (5)N5—C17—C18—C19176.0 (4)
C24—N6—C1—C2157.1 (4)N4—C17—C18—C23156.8 (4)
C8—N1—C1—N6155.6 (3)N5—C17—C18—C237.9 (4)
B1—N1—C1—N614.4 (5)C23—C18—C19—C201.8 (5)
C8—N1—C1—C212.3 (4)C17—C18—C19—C20177.4 (4)
B1—N1—C1—C2177.7 (3)C18—C19—C20—C212.4 (6)
N6—C1—C2—C319.3 (7)C19—C20—C21—C221.1 (6)
N1—C1—C2—C3174.3 (4)C20—C21—C22—C231.0 (6)
N6—C1—C2—C7158.8 (4)C21—C22—C23—C181.6 (6)
N1—C1—C2—C77.6 (4)C21—C22—C23—C24178.0 (4)
C7—C2—C3—C40.7 (5)C19—C18—C23—C220.2 (5)
C1—C2—C3—C4178.7 (4)C17—C18—C23—C22176.4 (3)
C2—C3—C4—C51.7 (6)C19—C18—C23—C24177.4 (3)
C3—C4—C5—C61.1 (6)C17—C18—C23—C240.8 (4)
C4—C5—C6—C70.7 (6)C1—N6—C24—N59.9 (5)
C5—C6—C7—C21.8 (5)C1—N6—C24—C23154.3 (4)
C5—C6—C7—C8179.7 (4)C17—N5—C24—N6155.3 (3)
C3—C2—C7—C61.1 (5)B1—N5—C24—N68.6 (5)
C1—C2—C7—C6177.3 (3)C17—N5—C24—C2312.4 (4)
C3—C2—C7—C8179.4 (3)B1—N5—C24—C23176.3 (3)
C1—C2—C7—C81.0 (4)C22—C23—C24—N617.0 (7)
C9—N2—C8—N18.0 (5)C18—C23—C24—N6159.7 (3)
C9—N2—C8—C7157.2 (4)C22—C23—C24—N5176.6 (4)
C1—N1—C8—N2156.9 (3)C18—C23—C24—N56.6 (4)
B1—N1—C8—N213.2 (5)O2—S1—C25—C3045.5 (4)
C1—N1—C8—C711.7 (4)O3—S1—C25—C30175.2 (3)
B1—N1—C8—C7178.2 (3)O1—S1—C25—C3069.0 (4)
C6—C7—C8—N216.9 (6)O2—S1—C25—C26134.2 (3)
C2—C7—C8—N2161.2 (4)O3—S1—C25—C264.4 (4)
C6—C7—C8—N1176.0 (4)O1—S1—C25—C26111.3 (3)
C2—C7—C8—N16.0 (4)C30—C25—C26—C271.3 (6)
C8—N2—C9—N310.0 (5)S1—C25—C26—C27179.1 (3)
C8—N2—C9—C10153.9 (4)C25—C26—C27—C280.7 (6)
C16—N3—C9—N2154.6 (3)C25—C26—C27—N7178.8 (4)
B1—N3—C9—N29.0 (5)O4—N7—C27—C26174.8 (4)
C16—N3—C9—C1012.8 (4)O5—N7—C27—C263.6 (7)
B1—N3—C9—C10176.3 (3)O4—N7—C27—C283.4 (7)
N2—C9—C10—C15157.3 (4)O5—N7—C27—C28178.3 (5)
N3—C9—C10—C158.6 (4)C26—C27—C28—C290.0 (7)
N2—C9—C10—C1118.5 (7)N7—C27—C28—C29178.0 (4)
N3—C9—C10—C11175.5 (4)C27—C28—C29—C300.2 (8)
C15—C10—C11—C120.1 (5)C26—C25—C30—C291.1 (7)
C9—C10—C11—C12175.6 (4)S1—C25—C30—C29179.2 (4)
C10—C11—C12—C132.4 (6)C28—C29—C30—C250.3 (7)
C11—C12—C13—C141.9 (6)C1—N1—B1—N3141.3 (3)
C12—C13—C14—C151.0 (6)C8—N1—B1—N327.9 (4)
C13—C14—C15—C103.3 (6)C1—N1—B1—N528.8 (4)
C13—C14—C15—C16177.7 (4)C8—N1—B1—N5140.5 (3)
C11—C10—C15—C142.7 (6)C1—N1—B1—O195.9 (4)
C9—C10—C15—C14173.7 (3)C8—N1—B1—O194.9 (4)
C11—C10—C15—C16178.3 (3)C9—N3—B1—N126.0 (5)
C9—C10—C15—C161.9 (4)C16—N3—B1—N1136.0 (3)
C17—N4—C16—N38.3 (5)C9—N3—B1—N5138.9 (3)
C17—N4—C16—C15154.3 (4)C16—N3—B1—N523.1 (4)
C9—N3—C16—N4154.6 (3)C9—N3—B1—O192.5 (4)
B1—N3—C16—N48.9 (5)C16—N3—B1—O1105.5 (4)
C9—N3—C16—C1511.6 (4)C17—N5—B1—N1136.7 (3)
B1—N3—C16—C15175.1 (3)C24—N5—B1—N125.7 (4)
C14—C15—C16—N415.3 (7)C17—N5—B1—N323.9 (4)
C10—C15—C16—N4159.6 (4)C24—N5—B1—N3138.5 (3)
C14—C15—C16—N3179.6 (4)C17—N5—B1—O1103.8 (4)
C10—C15—C16—N35.4 (4)C24—N5—B1—O193.8 (4)
C16—N4—C17—N57.5 (5)S1—O1—B1—N1146.1 (3)
C16—N4—C17—C18154.8 (4)S1—O1—B1—N396.2 (4)
C24—N5—C17—N4153.1 (3)S1—O1—B1—N527.3 (5)
B1—N5—C17—N410.6 (5)
(III) (methanesulfonato)(subphthalocyaninato)boron top
Crystal data top
C25H15BN6O3SF(000) = 1008
Mr = 490.30Dx = 1.521 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 4770 reflections
a = 11.3713 (7) Åθ = 4.6–66.3°
b = 11.6114 (7) ŵ = 1.72 mm1
c = 16.2760 (11) ÅT = 147 K
β = 94.774 (4)°Needle, purple
V = 2141.6 (2) Å30.20 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker Kappa APEX DUO CCD area-detector
diffractometer
3672 independent reflections
Radiation source: Bruker ImuS3399 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.034
ϕ and ω scansθmax = 66.3°, θmin = 4.6°
Absorption correction: multi-scan
(TWINABS; Bruker, 2007)
h = 1313
Tmin = 0.655, Tmax = 0.753k = 1313
23640 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0339P)2 + 2.5651P]
where P = (Fo2 + 2Fc2)/3
3672 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C25H15BN6O3SV = 2141.6 (2) Å3
Mr = 490.30Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.3713 (7) ŵ = 1.72 mm1
b = 11.6114 (7) ÅT = 147 K
c = 16.2760 (11) Å0.20 × 0.06 × 0.04 mm
β = 94.774 (4)°
Data collection top
Bruker Kappa APEX DUO CCD area-detector
diffractometer
3672 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2007)
3399 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.753Rint = 0.034
23640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.16Δρmax = 0.25 e Å3
3672 reflectionsΔρmin = 0.49 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26680 (4)0.49346 (4)0.25798 (3)0.01652 (15)
O10.18445 (13)0.58102 (13)0.29663 (9)0.0206 (3)
O20.22321 (14)0.46980 (14)0.17479 (10)0.0266 (4)
O30.28507 (15)0.39803 (14)0.31254 (11)0.0321 (4)
N10.00254 (15)0.65125 (15)0.34437 (10)0.0159 (4)
N20.02642 (15)0.82460 (15)0.26745 (11)0.0178 (4)
N30.01493 (15)0.64919 (15)0.19978 (10)0.0159 (4)
N40.05018 (15)0.48029 (15)0.12626 (11)0.0169 (4)
N50.00843 (15)0.47548 (15)0.27181 (10)0.0154 (4)
N60.07033 (15)0.48428 (15)0.40795 (11)0.0175 (4)
C10.04755 (18)0.59762 (18)0.40785 (12)0.0159 (4)
C20.09309 (18)0.68946 (18)0.45711 (12)0.0171 (4)
C30.15675 (19)0.68749 (19)0.52657 (13)0.0204 (5)
H3A0.17120.61710.55370.025*
C40.1983 (2)0.7907 (2)0.55492 (14)0.0251 (5)
H4A0.24210.79110.60210.030*
C50.1770 (2)0.8950 (2)0.51536 (14)0.0279 (5)
H5A0.20460.96490.53730.033*
C60.1166 (2)0.8981 (2)0.44503 (13)0.0237 (5)
H6A0.10330.96890.41800.028*
C70.07585 (18)0.79453 (18)0.41496 (13)0.0176 (4)
C80.02389 (18)0.76595 (17)0.33881 (13)0.0166 (4)
C90.01437 (18)0.76344 (18)0.19856 (13)0.0172 (4)
C100.05696 (19)0.78898 (19)0.11345 (13)0.0186 (5)
C110.0985 (2)0.8894 (2)0.07491 (14)0.0241 (5)
H11A0.09280.96130.10290.029*
C120.1486 (2)0.8818 (2)0.00559 (15)0.0280 (5)
H12A0.17670.94970.03320.034*
C130.1585 (2)0.7764 (2)0.04675 (14)0.0263 (5)
H13A0.19460.77380.10150.032*
C140.11704 (19)0.6759 (2)0.00964 (13)0.0212 (5)
H14A0.12400.60440.03800.025*
C150.06473 (18)0.68238 (18)0.07057 (13)0.0171 (4)
C160.02605 (18)0.59288 (18)0.12885 (13)0.0166 (4)
C170.04610 (18)0.42409 (18)0.19839 (13)0.0165 (4)
C180.10273 (18)0.31780 (18)0.22040 (13)0.0173 (4)
C190.15140 (19)0.22745 (18)0.17264 (14)0.0202 (5)
H19A0.15000.22760.11440.024*
C200.20181 (19)0.13750 (19)0.21295 (15)0.0223 (5)
H20A0.23400.07410.18180.027*
C210.20653 (19)0.13771 (19)0.29900 (15)0.0228 (5)
H21A0.24140.07430.32470.027*
C220.16145 (19)0.22841 (18)0.34705 (14)0.0207 (5)
H22A0.16680.22930.40500.025*
C230.10792 (18)0.31842 (18)0.30744 (13)0.0171 (4)
C240.05561 (18)0.42585 (18)0.33832 (13)0.0163 (4)
C250.39701 (19)0.5744 (2)0.25912 (15)0.0253 (5)
H25A0.45850.52850.23590.038*
H25B0.42300.59570.31600.038*
H25C0.38230.64430.22610.038*
B10.0539 (2)0.5873 (2)0.27744 (14)0.0160 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0152 (3)0.0177 (3)0.0171 (3)0.00066 (19)0.00366 (19)0.00011 (19)
O10.0156 (7)0.0244 (8)0.0216 (8)0.0015 (6)0.0005 (6)0.0078 (6)
O20.0241 (8)0.0364 (9)0.0198 (8)0.0035 (7)0.0036 (6)0.0095 (7)
O30.0320 (9)0.0292 (9)0.0367 (10)0.0077 (7)0.0120 (8)0.0162 (8)
N10.0153 (9)0.0161 (9)0.0161 (9)0.0006 (7)0.0001 (7)0.0016 (7)
N20.0198 (9)0.0159 (9)0.0178 (9)0.0026 (7)0.0028 (7)0.0016 (7)
N30.0159 (9)0.0160 (9)0.0159 (9)0.0005 (7)0.0029 (7)0.0026 (7)
N40.0160 (9)0.0180 (9)0.0169 (9)0.0020 (7)0.0026 (7)0.0023 (7)
N50.0149 (8)0.0158 (9)0.0152 (9)0.0021 (7)0.0006 (7)0.0011 (7)
N60.0183 (9)0.0172 (9)0.0165 (9)0.0035 (7)0.0018 (7)0.0003 (7)
C10.0146 (10)0.0191 (11)0.0136 (10)0.0020 (8)0.0015 (8)0.0009 (8)
C20.0165 (10)0.0201 (11)0.0141 (10)0.0022 (8)0.0026 (8)0.0012 (8)
C30.0212 (11)0.0243 (11)0.0154 (10)0.0015 (9)0.0011 (8)0.0007 (9)
C40.0281 (13)0.0303 (13)0.0171 (11)0.0062 (10)0.0036 (9)0.0020 (9)
C50.0366 (14)0.0242 (12)0.0228 (12)0.0097 (10)0.0024 (10)0.0063 (10)
C60.0321 (13)0.0194 (11)0.0194 (11)0.0033 (9)0.0009 (9)0.0018 (9)
C70.0174 (10)0.0200 (11)0.0151 (10)0.0016 (8)0.0012 (8)0.0023 (8)
C80.0156 (10)0.0150 (10)0.0188 (11)0.0015 (8)0.0001 (8)0.0025 (8)
C90.0162 (10)0.0163 (10)0.0192 (11)0.0029 (8)0.0023 (8)0.0006 (8)
C100.0186 (11)0.0210 (11)0.0167 (11)0.0022 (9)0.0052 (8)0.0015 (8)
C110.0315 (13)0.0193 (11)0.0222 (12)0.0008 (10)0.0066 (10)0.0022 (9)
C120.0358 (14)0.0245 (12)0.0236 (12)0.0053 (10)0.0022 (10)0.0081 (10)
C130.0297 (13)0.0329 (13)0.0160 (11)0.0033 (10)0.0007 (9)0.0036 (10)
C140.0217 (11)0.0245 (11)0.0180 (11)0.0007 (9)0.0055 (9)0.0008 (9)
C150.0164 (10)0.0194 (11)0.0160 (10)0.0007 (8)0.0043 (8)0.0015 (8)
C160.0139 (10)0.0199 (11)0.0162 (10)0.0007 (8)0.0031 (8)0.0029 (8)
C170.0145 (10)0.0176 (10)0.0172 (10)0.0035 (8)0.0011 (8)0.0048 (8)
C180.0142 (10)0.0163 (10)0.0212 (11)0.0043 (8)0.0007 (8)0.0005 (8)
C190.0171 (11)0.0202 (11)0.0227 (11)0.0033 (9)0.0018 (9)0.0023 (9)
C200.0159 (10)0.0178 (11)0.0325 (13)0.0004 (8)0.0019 (9)0.0030 (9)
C210.0162 (11)0.0185 (11)0.0337 (13)0.0001 (9)0.0022 (9)0.0027 (9)
C220.0182 (11)0.0202 (11)0.0236 (12)0.0038 (9)0.0019 (9)0.0015 (9)
C230.0136 (10)0.0167 (10)0.0205 (11)0.0045 (8)0.0011 (8)0.0002 (8)
C240.0146 (10)0.0175 (10)0.0165 (10)0.0035 (8)0.0006 (8)0.0017 (8)
C250.0177 (11)0.0289 (12)0.0295 (12)0.0027 (9)0.0038 (9)0.0032 (10)
B10.0151 (11)0.0175 (12)0.0154 (11)0.0013 (9)0.0016 (9)0.0024 (9)
Geometric parameters (Å, º) top
S1—O31.4243 (16)C6—H6A0.9500
S1—O21.4292 (16)C7—C81.455 (3)
S1—O11.5507 (15)C9—C101.459 (3)
S1—C251.752 (2)C10—C111.388 (3)
O1—B11.493 (3)C10—C151.420 (3)
N1—C81.367 (3)C11—C121.387 (3)
N1—C11.370 (3)C11—H11A0.9500
N1—B11.478 (3)C12—C131.395 (3)
N2—C91.344 (3)C12—H12A0.9500
N2—C81.344 (3)C13—C141.379 (3)
N3—C91.368 (3)C13—H13A0.9500
N3—C161.374 (3)C14—C151.391 (3)
N3—B11.489 (3)C14—H14A0.9500
N4—C161.336 (3)C15—C161.450 (3)
N4—C171.341 (3)C17—C181.451 (3)
N5—C171.372 (3)C18—C191.393 (3)
N5—C241.374 (3)C18—C231.423 (3)
N5—B11.479 (3)C19—C201.383 (3)
N6—C11.341 (3)C19—H19A0.9500
N6—C241.343 (3)C20—C211.406 (3)
C1—C21.455 (3)C20—H20A0.9500
C2—C31.392 (3)C21—C221.385 (3)
C2—C71.421 (3)C21—H21A0.9500
C3—C41.382 (3)C22—C231.394 (3)
C3—H3A0.9500C22—H22A0.9500
C4—C51.402 (3)C23—C241.454 (3)
C4—H4A0.9500C25—H25A0.9800
C5—C61.384 (3)C25—H25B0.9800
C5—H5A0.9500C25—H25C0.9800
C6—C71.392 (3)
O3—S1—O2117.53 (11)C11—C12—C13121.3 (2)
O3—S1—O1108.59 (9)C11—C12—H12A119.3
O2—S1—O1109.68 (9)C13—C12—H12A119.3
O3—S1—C25109.35 (11)C14—C13—C12121.4 (2)
O2—S1—C25109.83 (11)C14—C13—H13A119.3
O1—S1—C25100.50 (10)C12—C13—H13A119.3
B1—O1—S1124.81 (13)C13—C14—C15118.0 (2)
C8—N1—C1112.95 (17)C13—C14—H14A121.0
C8—N1—B1122.59 (18)C15—C14—H14A121.0
C1—N1—B1122.83 (18)C14—C15—C10120.9 (2)
C9—N2—C8117.17 (18)C14—C15—C16131.1 (2)
C9—N3—C16112.60 (17)C10—C15—C16107.46 (18)
C9—N3—B1122.36 (17)N4—C16—N3123.14 (19)
C16—N3—B1122.68 (18)N4—C16—C15129.07 (19)
C16—N4—C17117.18 (18)N3—C16—C15105.77 (18)
C17—N5—C24112.93 (18)N4—C17—N5122.44 (19)
C17—N5—B1123.31 (18)N4—C17—C18130.29 (19)
C24—N5—B1122.42 (18)N5—C17—C18105.53 (18)
C1—N6—C24117.19 (18)C19—C18—C23120.8 (2)
N6—C1—N1122.63 (19)C19—C18—C17131.8 (2)
N6—C1—C2129.85 (19)C23—C18—C17107.31 (18)
N1—C1—C2105.77 (17)C20—C19—C18117.7 (2)
C3—C2—C7120.53 (19)C20—C19—H19A121.1
C3—C2—C1131.9 (2)C18—C19—H19A121.1
C7—C2—C1107.06 (18)C19—C20—C21121.5 (2)
C4—C3—C2118.2 (2)C19—C20—H20A119.2
C4—C3—H3A120.9C21—C20—H20A119.2
C2—C3—H3A120.9C22—C21—C20121.4 (2)
C3—C4—C5121.3 (2)C22—C21—H21A119.3
C3—C4—H4A119.4C20—C21—H21A119.3
C5—C4—H4A119.4C21—C22—C23117.7 (2)
C6—C5—C4121.3 (2)C21—C22—H22A121.2
C6—C5—H5A119.4C23—C22—H22A121.2
C4—C5—H5A119.4C22—C23—C18120.83 (19)
C5—C6—C7118.1 (2)C22—C23—C24131.7 (2)
C5—C6—H6A120.9C18—C23—C24107.39 (18)
C7—C6—H6A120.9N6—C24—N5122.48 (19)
C6—C7—C2120.57 (19)N6—C24—C23130.47 (19)
C6—C7—C8131.8 (2)N5—C24—C23105.24 (18)
C2—C7—C8107.31 (18)S1—C25—H25A109.5
N2—C8—N1122.66 (19)S1—C25—H25B109.5
N2—C8—C7129.73 (19)H25A—C25—H25B109.5
N1—C8—C7105.57 (18)S1—C25—H25C109.5
N2—C9—N3122.83 (19)H25A—C25—H25C109.5
N2—C9—C10129.5 (2)H25B—C25—H25C109.5
N3—C9—C10105.79 (18)N1—B1—N5105.67 (17)
C11—C10—C15120.3 (2)N1—B1—N3106.01 (17)
C11—C10—C9132.3 (2)N5—B1—N3105.31 (17)
C15—C10—C9106.95 (18)N1—B1—O1108.50 (17)
C12—C11—C10118.1 (2)N5—B1—O1115.63 (18)
C12—C11—H11A121.0N3—B1—O1114.93 (18)
C10—C11—H11A121.0
O3—S1—O1—B195.71 (18)C9—N3—C16—C1512.0 (2)
O2—S1—O1—B133.94 (19)B1—N3—C16—C15174.84 (18)
C25—S1—O1—B1149.58 (17)C14—C15—C16—N413.8 (4)
C24—N6—C1—N18.0 (3)C10—C15—C16—N4157.4 (2)
C24—N6—C1—C2154.7 (2)C14—C15—C16—N3177.7 (2)
C8—N1—C1—N6155.29 (19)C10—C15—C16—N36.5 (2)
B1—N1—C1—N610.5 (3)C16—N4—C17—N55.9 (3)
C8—N1—C1—C211.0 (2)C16—N4—C17—C18156.8 (2)
B1—N1—C1—C2176.72 (18)C24—N5—C17—N4153.84 (19)
N6—C1—C2—C312.0 (4)B1—N5—C17—N413.2 (3)
N1—C1—C2—C3176.8 (2)C24—N5—C17—C1812.6 (2)
N6—C1—C2—C7159.9 (2)B1—N5—C17—C18179.62 (18)
N1—C1—C2—C75.0 (2)N4—C17—C18—C1919.2 (4)
C7—C2—C3—C42.5 (3)N5—C17—C18—C19175.8 (2)
C1—C2—C3—C4173.4 (2)N4—C17—C18—C23158.1 (2)
C2—C3—C4—C50.2 (3)N5—C17—C18—C236.8 (2)
C3—C4—C5—C61.9 (4)C23—C18—C19—C201.7 (3)
C4—C5—C6—C70.8 (4)C17—C18—C19—C20178.7 (2)
C5—C6—C7—C21.9 (3)C18—C19—C20—C211.4 (3)
C5—C6—C7—C8171.1 (2)C19—C20—C21—C220.4 (3)
C3—C2—C7—C63.6 (3)C20—C21—C22—C231.8 (3)
C1—C2—C7—C6176.57 (19)C21—C22—C23—C181.5 (3)
C3—C2—C7—C8170.93 (19)C21—C22—C23—C24178.1 (2)
C1—C2—C7—C82.0 (2)C19—C18—C23—C220.2 (3)
C9—N2—C8—N17.1 (3)C17—C18—C23—C22177.95 (18)
C9—N2—C8—C7154.2 (2)C19—C18—C23—C24177.06 (19)
C1—N1—C8—N2152.99 (19)C17—C18—C23—C240.6 (2)
B1—N1—C8—N212.8 (3)C1—N6—C24—N56.3 (3)
C1—N1—C8—C712.2 (2)C1—N6—C24—C23156.1 (2)
B1—N1—C8—C7178.00 (18)C17—N5—C24—N6153.21 (19)
C6—C7—C8—N218.3 (4)B1—N5—C24—N614.0 (3)
C2—C7—C8—N2155.4 (2)C17—N5—C24—C2312.9 (2)
C6—C7—C8—N1178.0 (2)B1—N5—C24—C23179.88 (18)
C2—C7—C8—N18.3 (2)C22—C23—C24—N620.1 (4)
C8—N2—C9—N38.6 (3)C18—C23—C24—N6156.8 (2)
C8—N2—C9—C10153.4 (2)C22—C23—C24—N5175.2 (2)
C16—N3—C9—N2153.33 (19)C18—C23—C24—N57.9 (2)
B1—N3—C9—N29.6 (3)C8—N1—B1—N5138.21 (19)
C16—N3—C9—C1012.3 (2)C1—N1—B1—N526.2 (3)
B1—N3—C9—C10175.25 (18)C8—N1—B1—N326.8 (3)
N2—C9—C10—C1115.7 (4)C1—N1—B1—N3137.65 (19)
N3—C9—C10—C11179.9 (2)C8—N1—B1—O197.2 (2)
N2—C9—C10—C15156.8 (2)C1—N1—B1—O198.4 (2)
N3—C9—C10—C157.5 (2)C17—N5—B1—N1138.03 (19)
C15—C10—C11—C120.8 (3)C24—N5—B1—N127.8 (3)
C9—C10—C11—C12171.0 (2)C17—N5—B1—N326.1 (3)
C10—C11—C12—C130.7 (4)C24—N5—B1—N3139.75 (18)
C11—C12—C13—C141.2 (4)C17—N5—B1—O1102.0 (2)
C12—C13—C14—C150.0 (3)C24—N5—B1—O192.2 (2)
C13—C14—C15—C101.5 (3)C9—N3—B1—N125.2 (3)
C13—C14—C15—C16171.7 (2)C16—N3—B1—N1136.03 (19)
C11—C10—C15—C141.9 (3)C9—N3—B1—N5136.91 (19)
C9—C10—C15—C14171.71 (19)C16—N3—B1—N524.3 (3)
C11—C10—C15—C16174.2 (2)C9—N3—B1—O194.6 (2)
C9—C10—C15—C160.6 (2)C16—N3—B1—O1104.1 (2)
C17—N4—C16—N37.6 (3)S1—O1—B1—N1160.97 (14)
C17—N4—C16—C15153.9 (2)S1—O1—B1—N542.5 (2)
C9—N3—C16—N4153.15 (19)S1—O1—B1—N380.6 (2)
B1—N3—C16—N49.7 (3)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC30H17BN6O3SC30H16BN7O5SC25H15BN6O3S
Mr552.37597.37490.30
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, P21/n
Temperature (K)150150147
a, b, c (Å)10.5118 (9), 11.0929 (10), 11.2047 (10)13.8349 (7), 13.8988 (8), 14.3887 (8)11.3713 (7), 11.6114 (7), 16.2760 (11)
α, β, γ (°)72.749 (2), 75.862 (2), 81.398 (2)90, 112.466 (4), 9090, 94.774 (4), 90
V3)1205.77 (18)2556.8 (2)2141.6 (2)
Z244
Radiation typeMo KαCu KαCu Kα
µ (mm1)0.181.641.72
Crystal size (mm)0.20 × 0.10 × 0.080.09 × 0.09 × 0.090.20 × 0.06 × 0.04
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Bruker Kappa APEX DUO CCD area-detector
diffractometer
Bruker Kappa APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(TWINABS; Bruker, 2007)
Tmin, Tmax0.715, 0.9460.867, 0.8670.655, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
20057, 5579, 4211 13374, 4159, 3342 23640, 3672, 3399
Rint0.0350.0420.034
(sin θ/λ)max1)0.6530.5910.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.02 0.074, 0.216, 1.07 0.040, 0.101, 1.16
No. of reflections557941593672
No. of parameters370397325
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.521.14, 0.600.25, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds