Download citation
Download citation
link to html
The title mol­ecular salts, N2H5+·C7H5O3-·C7H6O3 and N2H5+·C11H7O3-·C11H8O3, are acid adducts containing a hydrazin­ium cation, one mol­ecule of a deprotonated acid and one mol­ecule of a neutral acid. The two compounds contain essentially identical hydrogen-bond networks between the hydrazinium cation and the acid mol­ecules, which define closely comparable two-dimensional layers in the structures. The planes of the aromatic rings within both structures are approximately parallel and the layers are stacked with comparable inter­molecular inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111054722/bi3027sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111054722/bi3027Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111054722/bi3027IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270111054722/bi3027sup4.pdf
Supplementary material

CCDC references: 727571; 731505

Comment top

Acid adducts comprise a combination of an acid and a salt of that acid held together in a single crystal stabilized by hydrogen bonds. Structurally characterized examples include 8-hydroxyquinoline salicylate salicylic acid (Jebamony & Thomas Muthiah, 1998), pyridinium 3,5-dinitrosalicylate 3,5-dinitrosalicylic acid (Smith et al., 2003) and tetra-n-butylammonium 2,6-dihydroxybenzoate 2,6-dihydroxybenzoic acid (Almeida Paz et al., 2003). Hydrazine, a diacidic base, forms many crystalline salts with carboxylic acids and their structures have been studied (Nilsson et al., 1968; Hady et al., 1969; Thomas, 1973; Thomas & Liminga, 1978; Gajapathy et al., 1983; Chevrier et al., 1987; Fun et al., 1995; Bhogala et al., 2005; Starosta & Leciejewicz, 2008). Amongst hydroxy-substituted aromatic acids, the formation of hydrazinium 2-hydroxybenzoate has been reported (Kuppusamy et al., 1995), although its crystal structure has not been determined. In this paper, we report the crystal structure of the acid adduct hydrazinium 2-hydroxybenzoate–2-hydroxybenzoic acid (1/1), (I), and the closely related adduct hydrazinium 3-hydroxy-2-naphthoate–3-hydroxy-2-naphthoic acid (1/1), (II).

The asymmetric units of (I) and (II) contain one acid anion and one neutral acid molecule linked by the N2H5+ cation (Figs. 1 and 2). After transferring its proton to hydrazine, the deprotonated carboxylate group shows closely comparable bond lengths: C7—O1 = 1.2507 (13) Å and C7—O2 = 1.2648 (12) Å in (I), and C1—O1 = 1.2465 (14) Å and C1—O2 = 1.2635 (13) Å in (II). The C2—C1—C7—O2 torsion angle in (I) is 19.03 (15)°, while the comparable angle in (II), C11—C2—C1—O2, is 21.44 (15)°. Thus, the deprotonated carboxylate group is twisted from the plane of the aromatic ring in both structures. By contrast, the protonated carboxylic acid group remains essentially coplanar with the aromatic ring, as shown by the torsion angles C13—C8—C14—O5 = 2.06 (17)° in (I) and O5—C12—C13—C14 = 1.52 (16)° in (II). For the hydrazinium cation, the N1—N2 bond length [1.4380 (16) Å in (I) and 1.4391 (15) Å in (II)] is statistically equivalent in the two structures, and in good agreement with the mean value of 1.442 (11) Å derived from 49 hydrazinium salts identified in the Cambridge Structural Database (Version 5.32 plus updates; Allen, 2002; see Supplementary material).

Hydrogen bonding plays a major role in the construction of acid adducts. The title adducts (I) and (II) contain two types of intermolecular hydrogen bond (Tables 1 and 2), with N2H5+ acting as either a donor or an acceptor (Fig. 3). Intramolecular O—H···O hydrogen bonds are also evident within the acid molecules (Fig. 1 and 2). The hydrogen bonding is essentially identical in the two structures, defining closely comparable two-dimensional layers parallel to the (001) planes (Figs. 4 and 5). In order to highlight the similarity in the (001) planes, adduct (II) is reported using an unconventional nonreduced unit cell. The corresponding reduced cell is: a = 7.376 (5), b = 7.915 (5), c = 16.778 (5) Å, α = 90.752 (5), β = 93.037 (5) and γ = 100.609 (5)°. The planes of the aromatic rings within both structures are approximately parallel [interplanar angle = 5.3 (1)° in (I) and 3.6 (1)° in (II)], and the layers are stacked with closely comparable intermolecular interactions between the aromatic rings [Cg1···Cg1iv = 4.86 (1) Å in (I) and 4.83 (1) Å in (II), where Cg1 is the centroid of atoms C8–C13 in (I) and atoms C15–C20 in (II); symmetry code: (iv) -x + 1, -y + 2, -z + 2].

Related literature top

For related literature, see: Allen (2002); Almeida Paz, Soares-Santos, Nogueira, Trindade & Klinowski (2003); Bhogala et al. (2005); Chevrier et al. (1987); Fun et al. (1995); Gajapathy et al. (1983); Hady et al. (1969); Jebamony & Thomas Muthiah (1998); Kuppusamy et al. (1995); Nilsson et al. (1968); Smith et al. (2003); Starosta & Leciejewicz (2008); Thomas (1973); Thomas & Liminga (1978).

Experimental top

Adduct (I) was prepared by dissolving 2-hydroxybenzoic acid (13.8 g, 0.1 mol) in distilled water (50 ml), then neutralizing this solution with an aqueous solution of hydrazine hydrate (5 ml in 20 ml of water). The clear solution formed at pH 6 was concentrated to half its volume in a water bath at 353 K, then left to evaporate slowly. After 2 d, colourless needles of (I) were filtered off and washed with ethanol. After complete evaporation of the filtrate, the bulk product comprised the simple salt hydrazinium 2-hydroxybenzoate, which has already been reported (Kuppusamy et al., 1995).

Adduct (II) was prepared by dissolving stoichiometric quantities of hydrazine hydrate (99.98% pure; 0.05 ml, 1 mmol) and 3-hydroxy-2-napthoic acid (0.376 g, 2 mmol) in absolute ethanol (40 ml) at pH 4. The solution was left to evaporate to dryness, and colourless needles of (II) were formed after 3 d. These crystals were recrystallized from ethanol.

Refinement top

In both structures, C-bound H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the hydrazinium cations were located in difference Fourier maps and refined without restraint with isotropic displacement parameters.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of adduct (I), showing 50% probablity displacement ellipsoids. Thin lines denote hydrogen bonds.
[Figure 2] Fig. 2. The asymmetric unit of adduct (II), showing 50% probablity displacement ellipsoids. Thin lines denote hydrogen bonds.
[Figure 3] Fig. 3. The hydrogen-bonding pattern (thin lines) formed around the hydrazinium cation in (I). The arrangement in (II) is essentially identical. [Symmetry code: (iii) -x + 1, -y + 1, -z + 1.]
[Figure 4] Fig. 4. A packing diagram for (I), viewed along the b axis.
[Figure 5] Fig. 5. A packing diagram for (II), viewed along the b axis.
(I) hydrazinium 2-hydroxybenzoate–2-hydroxybenzoic acid (1/1) top
Crystal data top
N2H5+·C7H5O3·C7H6O3Z = 2
Mr = 308.29F(000) = 324
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3434 (2) ÅCell parameters from 5800 reflections
b = 7.9884 (2) Åθ = 2.6–29.3°
c = 12.7593 (4) ŵ = 0.11 mm1
α = 96.497 (2)°T = 293 K
β = 92.783 (2)°Block, colourless
γ = 101.303 (1)°0.25 × 0.20 × 0.20 mm
V = 727.33 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4054 independent reflections
Radiation source: fine-focus sealed tube2980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 29.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.973, Tmax = 0.978k = 1111
17523 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.061P)2 + 0.090P]
where P = (Fo2 + 2Fc2)/3
4053 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
N2H5+·C7H5O3·C7H6O3γ = 101.303 (1)°
Mr = 308.29V = 727.33 (4) Å3
Triclinic, P1Z = 2
a = 7.3434 (2) ÅMo Kα radiation
b = 7.9884 (2) ŵ = 0.11 mm1
c = 12.7593 (4) ÅT = 293 K
α = 96.497 (2)°0.25 × 0.20 × 0.20 mm
β = 92.783 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4054 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2980 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.025
17523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4053 reflectionsΔρmin = 0.23 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11688 (12)0.90155 (10)0.38561 (7)0.0481 (2)
O20.28699 (11)0.75805 (10)0.47500 (7)0.0432 (2)
O30.17889 (12)0.42868 (11)0.45566 (7)0.0464 (2)
H30.236 (2)0.538 (2)0.4808 (14)0.076 (5)*
C10.08807 (14)0.60392 (13)0.32973 (8)0.0340 (2)
C20.09687 (14)0.44382 (13)0.36105 (9)0.0362 (2)
C30.01800 (17)0.29354 (15)0.29527 (11)0.0488 (3)
H3A0.02170.18680.31690.059*
C40.06508 (19)0.30375 (19)0.19850 (11)0.0583 (4)
H4A0.11790.20320.15460.070*
C50.07172 (19)0.4607 (2)0.16503 (10)0.0585 (4)
H5A0.12640.46590.09850.070*
C60.00326 (17)0.60997 (17)0.23087 (9)0.0456 (3)
H6A0.00300.71590.20880.055*
C70.16895 (14)0.76583 (13)0.40108 (9)0.0347 (2)
O40.41211 (12)0.51034 (11)0.65033 (7)0.0481 (2)
O50.46778 (14)0.36107 (12)0.78022 (8)0.0545 (2)
H50.395 (3)0.266 (3)0.7252 (16)0.097 (6)*
O60.49556 (14)0.83926 (12)0.67909 (7)0.0531 (2)
H60.445 (3)0.729 (3)0.6520 (14)0.084 (6)*
C80.55767 (15)0.66335 (15)0.81202 (9)0.0403 (2)
C90.56545 (16)0.82352 (15)0.77658 (9)0.0425 (3)
C100.6461 (2)0.97329 (19)0.84192 (12)0.0613 (4)
H10A0.65141.08010.81850.074*
C110.7177 (3)0.9616 (2)0.94119 (13)0.0803 (5)
H11A0.77281.06160.98500.096*
C120.7099 (3)0.8044 (3)0.97778 (12)0.0789 (5)
H12A0.75800.79931.04590.095*
C130.6314 (2)0.6562 (2)0.91370 (10)0.0582 (4)
H13A0.62720.55030.93810.070*
C140.47353 (15)0.50631 (15)0.74049 (9)0.0405 (2)
N10.32233 (15)0.15602 (12)0.53020 (9)0.0416 (2)
H1A0.282 (2)0.254 (2)0.5219 (12)0.065 (4)*
H1B0.258 (2)0.070 (2)0.4734 (13)0.069 (5)*
H1C0.449 (2)0.1745 (18)0.5279 (12)0.055 (4)*
N20.28335 (16)0.10961 (13)0.63366 (9)0.0460 (3)
H2A0.314 (2)0.008 (2)0.6358 (13)0.067 (5)*
H2B0.160 (2)0.095 (2)0.6343 (12)0.064 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0475 (5)0.0316 (4)0.0636 (5)0.0077 (3)0.0115 (4)0.0064 (3)
O20.0393 (4)0.0376 (4)0.0492 (5)0.0054 (3)0.0135 (3)0.0015 (3)
O30.0541 (5)0.0326 (4)0.0512 (5)0.0088 (3)0.0106 (4)0.0061 (3)
C10.0277 (5)0.0360 (5)0.0368 (5)0.0050 (4)0.0008 (4)0.0019 (4)
C20.0307 (5)0.0345 (5)0.0415 (6)0.0050 (4)0.0005 (4)0.0005 (4)
C30.0463 (7)0.0365 (6)0.0581 (7)0.0022 (5)0.0037 (6)0.0063 (5)
C40.0522 (8)0.0564 (8)0.0548 (8)0.0000 (6)0.0027 (6)0.0198 (6)
C50.0521 (8)0.0789 (10)0.0377 (6)0.0082 (7)0.0089 (5)0.0074 (6)
C60.0408 (6)0.0549 (7)0.0406 (6)0.0094 (5)0.0031 (5)0.0068 (5)
C70.0292 (5)0.0320 (5)0.0416 (5)0.0037 (4)0.0012 (4)0.0045 (4)
O40.0572 (5)0.0424 (4)0.0418 (4)0.0074 (4)0.0077 (4)0.0029 (3)
O50.0585 (6)0.0460 (5)0.0587 (6)0.0077 (4)0.0072 (4)0.0157 (4)
O60.0669 (6)0.0417 (5)0.0470 (5)0.0052 (4)0.0138 (4)0.0081 (4)
C80.0351 (5)0.0497 (6)0.0349 (5)0.0067 (4)0.0001 (4)0.0051 (4)
C90.0407 (6)0.0466 (6)0.0381 (6)0.0074 (5)0.0019 (5)0.0013 (5)
C100.0704 (9)0.0506 (7)0.0557 (8)0.0042 (6)0.0075 (7)0.0045 (6)
C110.0980 (13)0.0757 (11)0.0524 (9)0.0012 (9)0.0170 (8)0.0160 (8)
C120.0915 (13)0.0967 (13)0.0395 (7)0.0058 (10)0.0177 (8)0.0026 (8)
C130.0594 (8)0.0715 (9)0.0417 (7)0.0062 (7)0.0048 (6)0.0151 (6)
C140.0353 (5)0.0444 (6)0.0426 (6)0.0085 (4)0.0021 (4)0.0091 (5)
N10.0388 (5)0.0288 (4)0.0560 (6)0.0072 (4)0.0070 (4)0.0044 (4)
N20.0430 (6)0.0338 (5)0.0615 (7)0.0077 (4)0.0007 (5)0.0094 (4)
Geometric parameters (Å, º) top
O1—C71.2507 (13)O6—H60.91 (2)
O2—C71.2648 (12)C8—C131.3928 (16)
O3—C21.3511 (13)C8—C91.3964 (16)
O3—H30.906 (19)C8—C141.4734 (16)
C1—C61.3895 (15)C9—C101.3877 (17)
C1—C21.3947 (15)C10—C111.368 (2)
C1—C71.4948 (14)C10—H10A0.9300
C2—C31.3904 (15)C11—C121.380 (3)
C3—C41.3684 (19)C11—H11A0.9300
C3—H3A0.9300C12—C131.368 (2)
C4—C51.378 (2)C12—H12A0.9300
C4—H4A0.9300C13—H13A0.9300
C5—C61.3791 (18)N1—N21.4380 (16)
C5—H5A0.9300N1—H1A0.905 (18)
C6—H6A0.9300N1—H1B0.971 (18)
O4—C141.2212 (13)N1—H1C0.915 (16)
O5—C141.3119 (14)N2—H2A0.891 (17)
O5—H51.02 (2)N2—H2B0.889 (17)
O6—C91.3510 (14)
C2—O3—H3103.9 (11)O6—C9—C10117.71 (11)
C6—C1—C2118.74 (10)O6—C9—C8122.02 (10)
C6—C1—C7120.69 (10)C10—C9—C8120.28 (12)
C2—C1—C7120.58 (9)C11—C10—C9119.07 (14)
O3—C2—C3117.86 (10)C11—C10—H10A120.5
O3—C2—C1121.81 (9)C9—C10—H10A120.5
C3—C2—C1120.33 (11)C10—C11—C12121.42 (14)
C4—C3—C2119.54 (12)C10—C11—H11A119.3
C4—C3—H3A120.2C12—C11—H11A119.3
C2—C3—H3A120.2C13—C12—C11119.85 (14)
C3—C4—C5121.07 (12)C13—C12—H12A120.1
C3—C4—H4A119.5C11—C12—H12A120.1
C5—C4—H4A119.5C12—C13—C8120.27 (14)
C4—C5—C6119.56 (12)C12—C13—H13A119.9
C4—C5—H5A120.2C8—C13—H13A119.9
C6—C5—H5A120.2O4—C14—O5121.95 (11)
C5—C6—C1120.75 (12)O4—C14—C8122.50 (10)
C5—C6—H6A119.6O5—C14—C8115.55 (10)
C1—C6—H6A119.6N2—N1—H1A109.1 (10)
O1—C7—O2123.16 (9)N2—N1—H1B113.1 (9)
O1—C7—C1118.99 (9)H1A—N1—H1B106.1 (14)
O2—C7—C1117.86 (9)N2—N1—H1C106.2 (9)
C14—O5—H5106.5 (11)H1A—N1—H1C110.0 (14)
C9—O6—H6103.1 (11)H1B—N1—H1C112.3 (13)
C13—C8—C9119.10 (12)N1—N2—H2A106.0 (10)
C13—C8—C14121.76 (11)N1—N2—H2B104.3 (10)
C9—C8—C14119.14 (10)H2A—N2—H2B108.2 (14)
C6—C1—C2—O3179.36 (10)C13—C8—C9—O6179.62 (12)
C7—C1—C2—O30.44 (16)C14—C8—C9—O61.02 (18)
C6—C1—C2—C31.54 (16)C13—C8—C9—C100.16 (19)
C7—C1—C2—C3178.66 (10)C14—C8—C9—C10179.19 (12)
O3—C2—C3—C4179.51 (11)O6—C9—C10—C11179.85 (15)
C1—C2—C3—C41.35 (18)C8—C9—C10—C110.0 (2)
C2—C3—C4—C50.1 (2)C9—C10—C11—C120.5 (3)
C3—C4—C5—C61.3 (2)C10—C11—C12—C130.8 (3)
C4—C5—C6—C11.1 (2)C11—C12—C13—C80.6 (3)
C2—C1—C6—C50.31 (18)C9—C8—C13—C120.1 (2)
C7—C1—C6—C5179.88 (11)C14—C8—C13—C12179.45 (13)
C6—C1—C7—O119.57 (16)C13—C8—C14—O4178.31 (12)
C2—C1—C7—O1160.63 (10)C9—C8—C14—O41.02 (18)
C6—C1—C7—O2160.77 (10)C13—C8—C14—O52.06 (17)
C2—C1—C7—O219.03 (15)C9—C8—C14—O5178.61 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.906 (19)1.736 (18)2.5747 (11)152.7 (16)
O5—H5···N21.02 (2)1.67 (2)2.6840 (14)177.9 (18)
O6—H6···O40.91 (2)1.71 (2)2.5579 (12)153.6 (17)
N1—H1A···O30.905 (18)1.963 (17)2.8335 (13)161.0 (15)
N1—H1B···O1i0.971 (18)1.774 (18)2.7370 (13)170.7 (14)
N1—H1B···O2i0.971 (18)2.546 (16)3.1341 (12)119.0 (11)
N1—H1C···O2ii0.915 (15)1.911 (15)2.8219 (14)173.1 (13)
N2—H2A···O6i0.891 (17)2.163 (17)2.9905 (14)154.1 (14)
N2—H2B···O1iii0.889 (17)2.044 (18)2.9204 (14)168.1 (14)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
(II) hydrazinium 3-hydroxy-2-naphthoate–3-hydroxy-2-naphthoic acid (1/1) top
Crystal data top
N2H5+·C11H7O3·C11H8O3Z = 2
Mr = 408.40F(000) = 428
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.376 (5) ÅCell parameters from 7727 reflections
b = 7.915 (5) Åθ = 2.4–27.4°
c = 16.778 (5) ŵ = 0.10 mm1
α = 89.248 (5)°T = 293 K
β = 86.963 (5)°Block, colourless
γ = 100.609 (5)°0.30 × 0.25 × 0.20 mm
V = 961.2 (9) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 27.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.970, Tmax = 0.980k = 1010
20463 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.1183P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4362 reflectionsΔρmax = 0.27 e Å3
304 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
N2H5+·C11H7O3·C11H8O3γ = 100.609 (5)°
Mr = 408.40V = 961.2 (9) Å3
Triclinic, P1Z = 2
a = 7.376 (5) ÅMo Kα radiation
b = 7.915 (5) ŵ = 0.10 mm1
c = 16.778 (5) ÅT = 293 K
α = 89.248 (5)°0.30 × 0.25 × 0.20 mm
β = 86.963 (5)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3408 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.026
20463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
4362 reflectionsΔρmin = 0.18 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13779 (11)0.92904 (9)0.41504 (5)0.0427 (2)
O20.29469 (11)0.76482 (10)0.48039 (5)0.0403 (2)
O30.18565 (12)0.43761 (10)0.47036 (5)0.0414 (2)
H30.237 (2)0.534 (2)0.4865 (10)0.071 (5)*
C10.18963 (14)0.78972 (13)0.42607 (6)0.0317 (2)
C20.12546 (14)0.64283 (13)0.37236 (6)0.0304 (2)
C30.06926 (15)0.67270 (14)0.29829 (7)0.0359 (2)
H3A0.06890.78520.28160.043*
C40.01141 (15)0.53689 (16)0.24609 (7)0.0399 (3)
C50.04166 (19)0.5665 (2)0.16811 (8)0.0557 (4)
H5A0.03810.67830.14940.067*
C60.0983 (2)0.4304 (3)0.12017 (9)0.0693 (5)
H6A0.13220.45020.06880.083*
C70.1055 (2)0.2625 (2)0.14790 (9)0.0688 (5)
H7A0.14640.17140.11490.083*
C80.05434 (19)0.2295 (2)0.22167 (9)0.0560 (4)
H8A0.05940.11640.23880.067*
C90.00744 (15)0.36674 (15)0.27341 (7)0.0404 (3)
C100.06631 (16)0.33703 (14)0.34944 (7)0.0386 (3)
H10A0.06400.22490.36740.046*
C110.12711 (14)0.47123 (13)0.39757 (6)0.0320 (2)
O40.37960 (13)0.47294 (10)0.61522 (5)0.0460 (2)
O50.40530 (13)0.29446 (10)0.71466 (5)0.0493 (2)
H50.345 (3)0.212 (3)0.6722 (12)0.098 (6)*
O60.46208 (13)0.79770 (11)0.63173 (5)0.0466 (2)
H60.415 (3)0.694 (2)0.6133 (10)0.086 (6)*
C120.42173 (15)0.44921 (14)0.68334 (7)0.0366 (3)
C130.49233 (15)0.59234 (14)0.73570 (7)0.0347 (2)
C140.54130 (16)0.56337 (16)0.81142 (7)0.0418 (3)
H14A0.53190.45090.83030.050*
C150.60566 (17)0.70036 (18)0.86147 (7)0.0459 (3)
C160.6557 (2)0.6732 (2)0.94031 (8)0.0649 (4)
H16A0.64790.56190.96040.078*
C170.7153 (3)0.8101 (3)0.98679 (10)0.0877 (6)
H17A0.74740.79161.03860.105*
C180.7285 (3)0.9773 (3)0.95727 (11)0.0901 (6)
H18A0.77021.06910.98970.108*
C190.6820 (2)1.0091 (2)0.88229 (10)0.0689 (4)
H19A0.69111.12190.86390.083*
C200.61941 (17)0.87077 (17)0.83168 (7)0.0463 (3)
C210.57106 (17)0.89896 (15)0.75377 (7)0.0434 (3)
H21A0.58141.01090.73400.052*
C220.50890 (15)0.76404 (14)0.70643 (7)0.0363 (3)
N10.31600 (14)0.14701 (12)0.52578 (6)0.0363 (2)
H1A0.2770 (19)0.250 (2)0.5193 (8)0.052 (4)*
H1B0.266 (2)0.074 (2)0.4842 (9)0.066 (5)*
H1C0.444 (2)0.1652 (17)0.5227 (8)0.049 (4)*
N20.25397 (15)0.07702 (12)0.60419 (6)0.0398 (2)
H2A0.2839 (19)0.028 (2)0.6051 (8)0.053 (4)*
H2B0.131 (2)0.0661 (19)0.6032 (9)0.056 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0490 (5)0.0272 (4)0.0537 (5)0.0077 (3)0.0172 (4)0.0060 (3)
O20.0418 (5)0.0361 (4)0.0446 (5)0.0064 (3)0.0191 (4)0.0066 (3)
O30.0546 (5)0.0302 (4)0.0415 (5)0.0094 (4)0.0170 (4)0.0019 (3)
C10.0302 (5)0.0288 (5)0.0352 (6)0.0023 (4)0.0060 (4)0.0027 (4)
C20.0269 (5)0.0300 (5)0.0341 (6)0.0041 (4)0.0050 (4)0.0037 (4)
C30.0346 (6)0.0381 (5)0.0350 (6)0.0052 (4)0.0062 (4)0.0005 (4)
C40.0308 (6)0.0557 (7)0.0321 (6)0.0037 (5)0.0038 (4)0.0078 (5)
C50.0475 (7)0.0821 (10)0.0365 (7)0.0071 (7)0.0102 (6)0.0052 (6)
C60.0543 (9)0.1166 (15)0.0353 (7)0.0075 (9)0.0119 (6)0.0219 (8)
C70.0567 (9)0.0924 (12)0.0531 (9)0.0013 (8)0.0071 (7)0.0387 (9)
C80.0485 (8)0.0617 (8)0.0534 (8)0.0022 (6)0.0009 (6)0.0280 (6)
C90.0308 (6)0.0470 (6)0.0410 (6)0.0005 (5)0.0001 (5)0.0162 (5)
C100.0397 (6)0.0300 (5)0.0452 (7)0.0035 (4)0.0021 (5)0.0076 (4)
C110.0303 (5)0.0314 (5)0.0346 (6)0.0059 (4)0.0040 (4)0.0033 (4)
O40.0597 (6)0.0397 (4)0.0396 (5)0.0080 (4)0.0149 (4)0.0080 (3)
O50.0602 (6)0.0358 (4)0.0528 (5)0.0074 (4)0.0156 (4)0.0015 (4)
O60.0626 (6)0.0372 (4)0.0406 (5)0.0062 (4)0.0188 (4)0.0008 (4)
C120.0339 (6)0.0365 (5)0.0401 (6)0.0071 (4)0.0055 (5)0.0035 (5)
C130.0306 (5)0.0393 (5)0.0344 (6)0.0058 (4)0.0052 (4)0.0037 (4)
C140.0376 (6)0.0473 (6)0.0390 (6)0.0036 (5)0.0047 (5)0.0024 (5)
C150.0368 (6)0.0650 (8)0.0336 (6)0.0022 (5)0.0044 (5)0.0048 (5)
C160.0593 (9)0.0931 (12)0.0391 (7)0.0035 (8)0.0115 (6)0.0004 (7)
C170.0923 (14)0.1295 (18)0.0380 (8)0.0060 (12)0.0223 (8)0.0164 (10)
C180.1048 (15)0.1045 (15)0.0572 (10)0.0013 (12)0.0247 (10)0.0376 (10)
C190.0750 (11)0.0710 (10)0.0577 (9)0.0004 (8)0.0143 (8)0.0274 (7)
C200.0394 (6)0.0561 (7)0.0414 (7)0.0016 (5)0.0047 (5)0.0141 (5)
C210.0443 (7)0.0384 (6)0.0467 (7)0.0037 (5)0.0073 (5)0.0060 (5)
C220.0338 (6)0.0399 (6)0.0356 (6)0.0066 (4)0.0060 (4)0.0038 (4)
N10.0392 (6)0.0269 (4)0.0447 (6)0.0076 (4)0.0132 (4)0.0056 (4)
N20.0420 (6)0.0291 (5)0.0489 (6)0.0062 (4)0.0093 (5)0.0026 (4)
Geometric parameters (Å, º) top
O1—C11.2465 (14)O6—H60.894 (19)
O2—C11.2635 (13)C12—C131.4777 (16)
O3—C111.3558 (13)C13—C141.3670 (16)
O3—H30.844 (18)C13—C221.4206 (18)
C1—C21.5026 (15)C14—C151.4081 (18)
C2—C31.3621 (15)C14—H14A0.9300
C2—C111.4197 (17)C15—C161.4162 (18)
C3—C41.4142 (16)C15—C201.416 (2)
C3—H3A0.9300C16—C171.364 (3)
C4—C91.412 (2)C16—H16A0.9300
C4—C51.4141 (17)C17—C181.391 (3)
C5—C61.369 (2)C17—H17A0.9300
C5—H5A0.9300C18—C191.354 (2)
C6—C71.393 (3)C18—H18A0.9300
C6—H6A0.9300C19—C201.4189 (18)
C7—C81.349 (2)C19—H19A0.9300
C7—H7A0.9300C20—C211.3988 (18)
C8—C91.4235 (16)C21—C221.3646 (16)
C8—H8A0.9300C21—H21A0.9300
C9—C101.3998 (17)N1—N21.4391 (15)
C10—C111.3663 (15)N1—H1A0.917 (15)
C10—H10A0.9300N1—H1B0.957 (17)
O4—C121.2213 (14)N1—H1C0.926 (15)
O5—C121.3088 (16)N2—H2A0.896 (15)
O5—H51.03 (2)N2—H2B0.895 (16)
O6—C221.3534 (14)
C11—O3—H3104.6 (11)C14—C13—C22119.41 (10)
O1—C1—O2123.35 (9)C14—C13—C12121.63 (11)
O1—C1—C2118.98 (10)C22—C13—C12118.96 (10)
O2—C1—C2117.67 (9)C13—C14—C15121.34 (12)
C3—C2—C11119.17 (9)C13—C14—H14A119.3
C3—C2—C1120.55 (10)C15—C14—H14A119.3
C11—C2—C1120.26 (10)C14—C15—C16122.25 (14)
C2—C3—C4121.62 (11)C14—C15—C20118.52 (12)
C2—C3—H3A119.2C16—C15—C20119.22 (13)
C4—C3—H3A119.2C17—C16—C15120.06 (17)
C9—C4—C5119.49 (11)C17—C16—H16A120.0
C9—C4—C3118.32 (11)C15—C16—H16A120.0
C5—C4—C3122.20 (12)C16—C17—C18120.50 (16)
C6—C5—C4119.92 (15)C16—C17—H17A119.7
C6—C5—H5A120.0C18—C17—H17A119.7
C4—C5—H5A120.0C19—C18—C17121.38 (15)
C5—C6—C7120.43 (14)C19—C18—H18A119.3
C5—C6—H6A119.8C17—C18—H18A119.3
C7—C6—H6A119.8C18—C19—C20120.15 (17)
C8—C7—C6121.29 (13)C18—C19—H19A119.9
C8—C7—H7A119.4C20—C19—H19A119.9
C6—C7—H7A119.4C21—C20—C15119.66 (11)
C7—C8—C9120.36 (15)C21—C20—C19121.66 (13)
C7—C8—H8A119.8C15—C20—C19118.68 (13)
C9—C8—H8A119.8C22—C21—C20120.71 (11)
C10—C9—C4119.73 (10)C22—C21—H21A119.6
C10—C9—C8121.77 (12)C20—C21—H21A119.6
C4—C9—C8118.50 (12)O6—C22—C21118.58 (11)
C11—C10—C9120.60 (11)O6—C22—C13121.08 (10)
C11—C10—H10A119.7C21—C22—C13120.33 (11)
C9—C10—H10A119.7N2—N1—H1A108.7 (9)
O3—C11—C10118.94 (10)N2—N1—H1B112.5 (9)
O3—C11—C2120.57 (9)H1A—N1—H1B107.1 (13)
C10—C11—C2120.48 (11)N2—N1—H1C107.5 (8)
C12—O5—H5105.6 (11)H1A—N1—H1C109.8 (12)
C22—O6—H6104.1 (11)H1B—N1—H1C111.2 (13)
O4—C12—O5121.73 (10)N1—N2—H2A104.9 (9)
O4—C12—C13122.40 (10)N1—N2—H2B102.4 (9)
O5—C12—C13115.87 (11)H2A—N2—H2B109.2 (13)
O1—C1—C2—C322.85 (16)O4—C12—C13—C14179.06 (11)
O2—C1—C2—C3156.98 (10)O5—C12—C13—C141.52 (16)
O1—C1—C2—C11158.72 (10)O4—C12—C13—C221.15 (17)
O2—C1—C2—C1121.44 (15)O5—C12—C13—C22178.27 (10)
C11—C2—C3—C40.41 (16)C22—C13—C14—C150.84 (18)
C1—C2—C3—C4178.85 (10)C12—C13—C14—C15178.96 (10)
C2—C3—C4—C91.94 (17)C13—C14—C15—C16179.49 (12)
C2—C3—C4—C5177.94 (11)C13—C14—C15—C200.14 (19)
C9—C4—C5—C60.74 (19)C14—C15—C16—C17179.26 (15)
C3—C4—C5—C6179.38 (12)C20—C15—C16—C170.4 (2)
C4—C5—C6—C70.5 (2)C15—C16—C17—C180.3 (3)
C5—C6—C7—C81.2 (2)C16—C17—C18—C190.4 (3)
C6—C7—C8—C90.5 (2)C17—C18—C19—C200.4 (3)
C5—C4—C9—C10177.65 (11)C14—C15—C20—C210.63 (18)
C3—C4—C9—C102.24 (17)C16—C15—C20—C21179.73 (12)
C5—C4—C9—C81.39 (17)C14—C15—C20—C19179.22 (12)
C3—C4—C9—C8178.72 (10)C16—C15—C20—C190.4 (2)
C7—C8—C9—C10178.21 (12)C18—C19—C20—C21179.69 (15)
C7—C8—C9—C40.80 (19)C18—C19—C20—C150.5 (2)
C4—C9—C10—C110.19 (17)C15—C20—C21—C220.70 (19)
C8—C9—C10—C11179.19 (11)C19—C20—C21—C22179.15 (13)
C9—C10—C11—O3179.02 (10)C20—C21—C22—O6179.37 (11)
C9—C10—C11—C22.23 (17)C20—C21—C22—C130.00 (18)
C3—C2—C11—O3178.74 (10)C14—C13—C22—O6179.87 (10)
C1—C2—C11—O30.29 (15)C12—C13—C22—O60.32 (16)
C3—C2—C11—C102.54 (16)C14—C13—C22—C210.78 (17)
C1—C2—C11—C10179.02 (10)C12—C13—C22—C21179.03 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.844 (18)1.795 (18)2.5771 (19)153.3 (16)
O5—H5···N21.03 (2)1.66 (2)2.6905 (15)178.5 (18)
O6—H6···O40.894 (19)1.723 (19)2.5525 (19)153.0 (17)
N1—H1A···O30.917 (15)1.934 (15)2.8164 (18)160.9 (13)
N1—H1B···O1i0.957 (17)1.819 (17)2.7684 (15)171.1 (14)
N1—H1B···O2i0.957 (17)2.496 (16)3.107 (2)121.7 (11)
N1—H1C···O2ii0.927 (15)1.903 (15)2.824 (2)172.0 (12)
N2—H2A···O6i0.896 (15)2.134 (15)2.9590 (19)152.7 (12)
N2—H2B···O1iii0.895 (16)2.030 (17)2.916 (2)170.1 (13)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaN2H5+·C7H5O3·C7H6O3N2H5+·C11H7O3·C11H8O3
Mr308.29408.40
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)7.3434 (2), 7.9884 (2), 12.7593 (4)7.376 (5), 7.915 (5), 16.778 (5)
α, β, γ (°)96.497 (2), 92.783 (2), 101.303 (1)89.248 (5), 86.963 (5), 100.609 (5)
V3)727.33 (4)961.2 (9)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.110.10
Crystal size (mm)0.25 × 0.20 × 0.200.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Bruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.973, 0.9780.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
17523, 4054, 2980 20463, 4362, 3408
Rint0.0250.026
(sin θ/λ)max1)0.6940.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.03 0.037, 0.117, 1.03
No. of reflections40534362
No. of parameters231304
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.230.27, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.906 (19)1.736 (18)2.5747 (11)152.7 (16)
O5—H5···N21.02 (2)1.67 (2)2.6840 (14)177.9 (18)
O6—H6···O40.91 (2)1.71 (2)2.5579 (12)153.6 (17)
N1—H1A···O30.905 (18)1.963 (17)2.8335 (13)161.0 (15)
N1—H1B···O1i0.971 (18)1.774 (18)2.7370 (13)170.7 (14)
N1—H1B···O2i0.971 (18)2.546 (16)3.1341 (12)119.0 (11)
N1—H1C···O2ii0.915 (15)1.911 (15)2.8219 (14)173.1 (13)
N2—H2A···O6i0.891 (17)2.163 (17)2.9905 (14)154.1 (14)
N2—H2B···O1iii0.889 (17)2.044 (18)2.9204 (14)168.1 (14)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.844 (18)1.795 (18)2.5771 (19)153.3 (16)
O5—H5···N21.03 (2)1.66 (2)2.6905 (15)178.5 (18)
O6—H6···O40.894 (19)1.723 (19)2.5525 (19)153.0 (17)
N1—H1A···O30.917 (15)1.934 (15)2.8164 (18)160.9 (13)
N1—H1B···O1i0.957 (17)1.819 (17)2.7684 (15)171.1 (14)
N1—H1B···O2i0.957 (17)2.496 (16)3.107 (2)121.7 (11)
N1—H1C···O2ii0.927 (15)1.903 (15)2.824 (2)172.0 (12)
N2—H2A···O6i0.896 (15)2.134 (15)2.9590 (19)152.7 (12)
N2—H2B···O1iii0.895 (16)2.030 (17)2.916 (2)170.1 (13)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds