Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The salts hexa­aqua­magnesium furan-2,5-dicarboxyl­ate, [Mg(H2O)6](C6H2O5), (I), and hexa­aqua­nickel furan-2,5-di­carboxyl­ate, [Ni(H2O)6](C6H2O5), (II), provide the first crystallographic characterization of the furan-2,5-dicarboxyl­ate dianion. Both structures exhibit extensive three-dimensional hydrogen-bonding networks between the octa­hedral coordinated hexa­aquametal(II) ions and the dicarboxyl­ate anions. Although the two structures are not isomorphous, they contain essentially identical two-dimensional slabs. The distinction between the structures is that these slabs are related by translation in (II), whereas adjacent slabs in (I) are reflected relative to each other by the action of a glide plane. The reflection occurs so that the local contacts between slabs are not changed, and thus the hydrogen-bond networks are identical except for the orientation of the water mol­ecules at the inter­face between slabs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111036535/bi3023sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111036535/bi3023Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111036535/bi3023IIsup3.hkl
Contains datablock II

CCDC references: 851733; 851734

Comment top

2,5-Furandicarboxylic acid (FDA) has been identified by the US Department of Energy (DOE) biomass programme as one of the 12 chemicals that in the future can be used as a feedstock from biomass in biorefineries (Werpy & Petersen, 2004; Bozell & Petersen, 2010). Owing to the presence of the two carboxylic acid groups, FDA is considered to be a biorenewable building block in the formation of polymers from biomass and therefore may become an alternative to terephthalic, isophthalic and adipic acids, which are all produced from fossil fuel resources (Bozell & Petersen, 2010). In order to be able to use FDA as a building block for polymers, the compound must be of high purity. Herein we show that it is possible to crystallize 2,5-furandicarboxylate as magnesium and nickel salts starting from FDA and the metal carbonates in water.

The title compounds, magnesium(I) and nickel(II) salts of 2,5-furandicarboxylate, have the same molecular structure and the crystals are constitutionally identical. The asymmetric unit comprises one [M(OH2)6]2+ cation and one 2,5-furandicarboxylate anion. The two structures are illustrated in Figs. 1 and 2, respectively. The metal–water distances in the cations as well as the bond lengths in the dianions are unexceptional. With Mg—O(water) bond lengths of 2.0289 (7)–2.1077 (7) Å and Ni—O(water) bond lengths of 2.0219 (5)–2.0840 (6) Å, all distances are approximately equal to the average bond lengths of previously characterized [M(OH2)6]2+ complexes (Mg—O 2.0719 Å; Ni—O 2.0589 Å) in the Cambridge Structural Database (CSD; Allen, 2002; version 5.32, November 2010). All bond lengths in the dianions are approximately equal to the bond lengths of the parent 2,5-furandicarboxylic acid (Martuscelli & Pedone, 1968) and also the monoanion in potassium catena(2,5-dicarboxyfuran) (Jaulmes et al., 1982).

The intermolecular interactions are consequently the most interesting features of the structures. The packing in both (I) and (II) is governed by an elaborate three-dimensional hydrogen-bonding scheme. The presence of both an excellent hydrogen-bond donor (aqua ion) and acceptor (dicarboxylate) should lead to strong intermolecular interactions, and in both structures the packing allows short, almost linear O—H···O hydrogen bonds, consistent with strong interactions (Jeffrey, 1997). It is also in the packing that the only significant distinction between the two structures becomes apparent. In (II), all of the 2,5-furandicarboxylate anions are coplanar, whereas in (I) there exists two sets of anions where the molecular planes form an angle of 28.14 (2)° to each other.

Although the two compounds are not isomorphous, there is a very close relationship between them, which is expressed by the cell parameters: c in (I) [18.579 (3) Å] b in (II) [18.4255 (9) Å], a in (I) [6.6577 (17) Å] c in (II) [6.5942 (8) Å] and β in (I) = α in (II) = 90°. Consequently, the structures contain almost identical two-dimensional slabs parallel to these specified unit-cell faces. The structures appear essentially identical in projection along the a axis for (I) and along the c axis for (II) (see Figs. 3 and 4). The crystallographic repeat unit of the two-dimensional slabs corresponds to the unit-cell contents of (II) (Fig. 4). In (II), adjacent slabs are related by direct translation along the a axis. This gives rise to a monoclinic structure. In (I), the arrangement is such that the next slab is reflected compared to its neighbour (see Fig. 5), by virtue of the glide planes lying perpendicular to the a axis. The reflection occurs between every slab so that the crystallographic translation encompasses two slabs and is perpendicular to the plane of the slabs. Thus, (I) is orthorhombic. The resulting relationship between the cell parameters in the two structures is: b axis in (I) [2×a× cos(β - 90)] in (II).

The reflection of adjacent slabs in (I) occurs so that the local contacts between layers are not changed compared to those in (II), i.e. the positions of the atoms in contact between layers remain essentially unchanged. Thus, the hydrogen bonding between slabs is essentially identical in the two structures. The difference is the orientation of the water molecules at the interface between slabs.

This difference in structure for these two compounds with identical composition and comparable size of the metal ion is interesting but difficult to explain. The answer might be a subtle difference in the preferred geometry of the hexaaqua ions as a result of the different d-orbital configuration. The d0-configuration of Mg2+ does not impose any energetic penalty on the orientation of the coordinated water ligands compared to nickel (d8), thus accommodating a packing which leads to a structure with higher symmetry.

Related literature top

For related literature, see: Allen (2002); Bozell & Petersen (2010); Gorbanev et al. (2009); Jaulmes et al. (1982); Jeffrey (1997); Martuscelli & Pedone (1968); Paluchowska et al. (1994); Werpy & Petersen (2004).

Experimental top

The two compounds were prepared by adaptation of the reported synthesis of the related compound pentaaqua(2-furancarboxylato)nickel(II)(2-furancarboxylate) (Paluchowska et al., 1994). 2,5-Furandicarboxylic acid was prepared as previously described (Gorbanev et al., 2009). The compound was recrystallized in warm water and precipitated with hydrochloric acid before use.

To a hot aqueous solution (10 ml) of 2,5-furandicarboxylic acid (1 mmol, 156 mg) was added the carbonate salt of magnesium or nickel (1 mmol). The solutions were cooled to room temperature. Water was slowly evaporated at room temperature for a few days and colourless (I) or green (II) crystals suitable for X-ray analysis were obtained. Elemental analysis found (calculated): (I) C 24.27% (25.16%), H 4.53% (4.93%); (II) C 22.69% (22.46%), H 4.30% (4.40%).

Refinement top

H atoms of the FDA anions were included in idealized positions and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atoms of the water molecules were located in a Fourier map and their positions were refined with the O—H distances restrained to 0.85 (2) Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the molecular structure of (II) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 3] Fig. 3. Packing diagram of (I) seen in projection along the a axis. For clarity, the extensive hydrogen-bonding network is not shown.
[Figure 4] Fig. 4. Packing diagram of (II) seen in projection along the c axis. For clarity, the extensive hydrogen-bonding network is not shown.
[Figure 5] Fig. 5. Packing diagram of (I) in projection along the c axis and (II) in projection along the b axis. In (I), the unit-cell repeat along the b axis encompasses two slabs, while in (I) the unit-cell repeat along the a axis encompasses only one slab.
(I) Hexaaquamagnesium(ii) (2,5-furandicarboxylate) top
Crystal data top
[Mg(OH2)6](C6H2O5)F(000) = 1200
Mr = 286.48Dx = 1.698 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 34835 reflections
a = 6.6577 (17) Åθ = 2.2–37.8°
b = 18.1234 (3) ŵ = 0.21 mm1
c = 18.579 (3) ÅT = 122 K
V = 2241.8 (6) Å3Plate, colourless
Z = 80.31 × 0.23 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
5972 independent reflections
Radiation source: fine-focus sealed tube4551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω and ϕ scansθmax = 37.8°, θmin = 2.2°
Absorption correction: integration
(Coppens, 1970)
h = 1111
Tmin = 0.936, Tmax = 0.986k = 3030
107023 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.7075P]
where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.63 e Å3
12 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Mg(OH2)6](C6H2O5)V = 2241.8 (6) Å3
Mr = 286.48Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.6577 (17) ŵ = 0.21 mm1
b = 18.1234 (3) ÅT = 122 K
c = 18.579 (3) Å0.31 × 0.23 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
5972 independent reflections
Absorption correction: integration
(Coppens, 1970)
4551 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.986Rint = 0.082
107023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03512 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.63 e Å3
5972 reflectionsΔρmin = 0.39 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.08740 (4)0.153863 (15)0.415313 (14)0.00840 (6)
O10.08761 (10)0.06538 (3)0.34841 (3)0.01304 (11)
H1A0.0633 (19)0.0210 (6)0.3572 (7)0.016*
H1B0.0823 (19)0.0688 (7)0.3029 (6)0.016*
O20.10729 (10)0.24404 (3)0.48344 (3)0.01243 (11)
H2A0.097 (2)0.2276 (7)0.5264 (6)0.015*
H2B0.1884 (19)0.2809 (7)0.4858 (7)0.015*
O30.15370 (9)0.12244 (3)0.48213 (3)0.01103 (10)
H3A0.2385 (18)0.0946 (6)0.4636 (6)0.013*
H3B0.1111 (19)0.1018 (7)0.5204 (6)0.013*
O40.32049 (9)0.18971 (3)0.35173 (3)0.01233 (11)
H4A0.3930 (18)0.2269 (7)0.3588 (7)0.015*
H4B0.3929 (19)0.1561 (7)0.3360 (7)0.015*
O50.27399 (10)0.09377 (4)0.48307 (3)0.01549 (12)
H5A0.244 (2)0.0751 (7)0.5209 (6)0.019*
H5B0.3753 (19)0.0711 (7)0.4670 (7)0.019*
O60.13612 (9)0.19410 (3)0.34671 (3)0.01196 (10)
H6A0.2088 (19)0.1598 (6)0.3345 (6)0.014*
H6B0.2038 (19)0.2319 (6)0.3524 (7)0.014*
O110.01048 (9)0.04770 (3)0.25621 (3)0.00899 (10)
O120.09522 (9)0.08005 (3)0.19312 (3)0.01174 (10)
O130.09398 (9)0.02701 (3)0.08340 (3)0.01187 (10)
O140.01172 (9)0.07630 (3)0.39458 (3)0.01118 (10)
O150.07711 (9)0.19615 (3)0.37582 (3)0.01119 (10)
C10.07362 (11)0.02589 (4)0.15085 (4)0.00913 (12)
C20.01777 (11)0.04610 (4)0.18321 (4)0.00875 (12)
C30.03056 (12)0.11393 (4)0.15587 (4)0.01021 (12)
H30.03670.12740.10650.012*
C40.06995 (12)0.16039 (4)0.21632 (4)0.00970 (12)
H40.10820.21090.21530.012*
C50.04146 (11)0.11743 (4)0.27593 (4)0.00836 (11)
C60.04484 (11)0.13071 (4)0.35420 (4)0.00842 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00863 (12)0.00803 (11)0.00854 (11)0.00015 (9)0.00002 (9)0.00038 (8)
O10.0212 (3)0.0080 (2)0.0099 (2)0.0022 (2)0.0001 (2)0.00110 (17)
O20.0150 (3)0.0110 (2)0.0112 (2)0.0025 (2)0.0001 (2)0.00155 (19)
O30.0109 (2)0.0124 (2)0.0098 (2)0.00215 (19)0.00149 (19)0.00067 (18)
O40.0111 (2)0.0097 (2)0.0162 (3)0.00146 (19)0.0036 (2)0.00108 (19)
O50.0159 (3)0.0206 (3)0.0099 (2)0.0067 (2)0.0023 (2)0.0040 (2)
O60.0112 (2)0.0097 (2)0.0149 (3)0.00069 (19)0.0025 (2)0.00009 (19)
O110.0124 (2)0.0071 (2)0.0075 (2)0.00150 (18)0.00070 (18)0.00015 (16)
O120.0143 (3)0.0092 (2)0.0117 (2)0.00103 (19)0.0007 (2)0.00006 (18)
O130.0129 (3)0.0140 (2)0.0087 (2)0.0003 (2)0.00114 (19)0.00223 (18)
O140.0161 (3)0.0087 (2)0.0088 (2)0.00145 (19)0.00014 (19)0.00093 (17)
O150.0143 (3)0.0075 (2)0.0117 (2)0.00068 (19)0.00128 (19)0.00140 (17)
C10.0075 (3)0.0099 (3)0.0100 (3)0.0004 (2)0.0002 (2)0.0014 (2)
C20.0097 (3)0.0095 (3)0.0071 (3)0.0001 (2)0.0010 (2)0.0001 (2)
C30.0113 (3)0.0107 (3)0.0087 (3)0.0009 (2)0.0000 (2)0.0014 (2)
C40.0100 (3)0.0087 (3)0.0104 (3)0.0009 (2)0.0003 (2)0.0015 (2)
C50.0097 (3)0.0071 (2)0.0083 (3)0.0005 (2)0.0007 (2)0.0001 (2)
C60.0077 (3)0.0084 (3)0.0091 (3)0.0003 (2)0.0006 (2)0.0006 (2)
Geometric parameters (Å, º) top
Mg1—O12.0289 (7)O6—H6A0.819 (11)
Mg1—O22.0715 (7)O6—H6B0.826 (11)
Mg1—O32.1077 (7)C2—O111.3573 (9)
Mg1—O42.0556 (7)C5—O111.3605 (9)
Mg1—O52.0770 (7)C1—O121.2653 (9)
Mg1—O62.0907 (7)C1—O131.2607 (9)
O1—H1A0.836 (11)C6—O141.2583 (9)
O1—H1B0.849 (12)C6—O151.2705 (9)
O2—H2A0.855 (11)C1—C21.4838 (10)
O2—H2B0.860 (11)C2—C31.3685 (10)
O3—H3A0.832 (11)C3—C41.4280 (11)
O3—H3B0.852 (11)C3—H30.9500
O4—H4A0.839 (11)C4—C51.3669 (10)
O4—H4B0.831 (11)C4—H40.9500
O5—H5A0.806 (11)C5—C61.4741 (10)
O5—H5B0.845 (12)
O1—Mg1—O484.10 (3)H4A—O4—H4B108.1 (13)
O1—Mg1—O2176.29 (3)Mg1—O5—H5A127.0 (10)
O4—Mg1—O293.07 (3)Mg1—O5—H5B121.3 (10)
O1—Mg1—O587.50 (3)H5A—O5—H5B107.5 (13)
O4—Mg1—O593.58 (3)Mg1—O6—H6A109.0 (9)
O2—Mg1—O590.29 (3)Mg1—O6—H6B126.8 (9)
O1—Mg1—O684.42 (3)H6A—O6—H6B110.0 (13)
O4—Mg1—O694.40 (3)C2—O11—C5107.35 (6)
O2—Mg1—O698.21 (3)O13—C1—O12126.32 (7)
O5—Mg1—O6167.99 (3)O13—C1—C2116.35 (7)
O1—Mg1—O398.50 (3)O12—C1—C2117.33 (7)
O4—Mg1—O3177.22 (3)O11—C2—C3110.07 (6)
O2—Mg1—O384.37 (3)O11—C2—C1115.63 (6)
O5—Mg1—O387.53 (3)C3—C2—C1134.30 (7)
O6—Mg1—O384.91 (3)C2—C3—C4106.32 (6)
Mg1—O1—H1A129.8 (9)C2—C3—H3126.8
Mg1—O1—H1B123.6 (9)C4—C3—H3126.8
H1A—O1—H1B104.9 (13)C5—C4—C3106.01 (6)
Mg1—O2—H2A106.9 (9)C5—C4—H4127.0
Mg1—O2—H2B133.1 (9)C3—C4—H4127.0
H2A—O2—H2B105.8 (12)O11—C5—C4110.25 (6)
Mg1—O3—H3A115.9 (8)O11—C5—C6114.91 (6)
Mg1—O3—H3B110.9 (9)C4—C5—C6134.76 (7)
H3A—O3—H3B107.7 (12)O14—C6—O15124.93 (7)
Mg1—O4—H4A126.7 (9)O14—C6—C5117.23 (6)
Mg1—O4—H4B114.1 (9)O15—C6—C5117.83 (6)
Mg1—O1—H1A—H1B165.0 (14)Mg1—O4—H4A—H4B141.2 (13)
Mg1—O2—H2A—H2B146.0 (10)Mg1—O5—H5A—H5B156.8 (14)
Mg1—O3—H3A—H3B124.9 (11)Mg1—O6—H6A—H6B143.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O110.84 (1)2.28 (1)2.7201 (8)113 (1)
O1—H1B···O120.85 (1)2.05 (1)2.8978 (9)175 (1)
O1—H1A···O140.84 (1)1.96 (1)2.7869 (8)170 (1)
O2—H2A···O15i0.86 (1)1.91 (1)2.7624 (9)177 (1)
O2—H2B···O3ii0.86 (1)2.13 (1)2.9658 (9)165 (1)
O3—H3A···O13iii0.83 (1)1.87 (1)2.7011 (9)174 (1)
O3—H3B···O14i0.85 (1)1.84 (1)2.6756 (9)167 (1)
O4—H4A···O15iv0.84 (1)1.88 (1)2.7200 (9)174 (1)
O4—H4B···O12v0.83 (1)2.00 (1)2.8267 (9)172 (1)
O5—H5A···O14i0.81 (1)2.21 (1)2.8839 (9)142 (1)
O5—H5B···O13v0.85 (1)1.91 (1)2.7437 (10)171 (1)
O6—H6A···O12iii0.82 (1)2.01 (1)2.8318 (9)176 (1)
O6—H6B···O15vi0.83 (1)2.01 (1)2.8096 (9)165 (1)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y, z+1/2; (vi) x1/2, y+1/2, z.
(II) Hexaaquanickel(ii) (2,5-furandicarboxylate) top
Crystal data top
[Ni(OH2)6](C6H2O5)F(000) = 664
Mr = 320.88Dx = 1.945 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29998 reflections
a = 9.2242 (5) Åθ = 2.2–45.1°
b = 18.4255 (9) ŵ = 1.83 mm1
c = 6.5942 (8) ÅT = 122 K
β = 102.066 (6)°Plate, green
V = 1095.99 (15) Å30.46 × 0.24 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
9072 independent reflections
Radiation source: fine-focus sealed tube7619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω and ϕ scansθmax = 45.1°, θmin = 2.2°
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
h = 1818
Tmin = 0.505, Tmax = 0.950k = 3636
68883 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.008P)2 + 0.4828P]
where P = (Fo2 + 2Fc2)/3
9072 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.73 e Å3
12 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Ni(OH2)6](C6H2O5)V = 1095.99 (15) Å3
Mr = 320.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2242 (5) ŵ = 1.83 mm1
b = 18.4255 (9) ÅT = 122 K
c = 6.5942 (8) Å0.46 × 0.24 × 0.03 mm
β = 102.066 (6)°
Data collection top
Nonius KappaCCD
diffractometer
9072 independent reflections
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
7619 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.950Rint = 0.053
68883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02812 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.73 e Å3
9072 reflectionsΔρmin = 0.87 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.191537 (9)0.413277 (5)0.326955 (13)0.00661 (2)
O10.37555 (6)0.35091 (3)0.36385 (9)0.01125 (8)
H1A0.4573 (13)0.3617 (7)0.431 (2)0.014*
H1B0.3730 (15)0.3058 (6)0.376 (2)0.014*
O20.00435 (6)0.47761 (3)0.25108 (9)0.01238 (8)
H2A0.0667 (14)0.4820 (7)0.313 (2)0.015*
H2B0.0357 (15)0.5196 (6)0.238 (2)0.015*
O30.11800 (6)0.34921 (3)0.06949 (8)0.01087 (8)
H3A0.0436 (13)0.3583 (7)0.0180 (19)0.013*
H3B0.1823 (14)0.3339 (7)0.012 (2)0.013*
O40.25782 (6)0.47912 (3)0.58678 (8)0.01039 (8)
H4A0.3195 (13)0.4592 (7)0.6829 (18)0.012*
H4B0.2975 (14)0.5169 (6)0.554 (2)0.012*
O50.11680 (6)0.34019 (3)0.51743 (8)0.01028 (8)
H5A0.1859 (14)0.3268 (7)0.6121 (19)0.012*
H5B0.0464 (13)0.3511 (7)0.570 (2)0.012*
O60.28678 (6)0.48435 (3)0.15164 (8)0.01110 (8)
H6A0.3294 (14)0.5212 (7)0.207 (2)0.013*
H6B0.3426 (14)0.4663 (7)0.0791 (19)0.013*
C10.76421 (7)0.35682 (3)0.63886 (9)0.00744 (8)
O120.65495 (6)0.39796 (3)0.57216 (8)0.00984 (8)
O130.89499 (6)0.37838 (3)0.71385 (8)0.01033 (8)
C20.73699 (7)0.27795 (3)0.62444 (9)0.00751 (8)
O110.59692 (5)0.25824 (3)0.52969 (8)0.00808 (7)
C30.82335 (7)0.21777 (4)0.67803 (10)0.00872 (9)
H30.92470.21670.74670.010*
C40.73011 (7)0.15694 (4)0.60977 (10)0.00905 (9)
H40.75710.10720.62360.011*
C50.59396 (7)0.18460 (3)0.52043 (10)0.00788 (8)
C60.45003 (7)0.15202 (4)0.41850 (10)0.00843 (9)
O140.34214 (6)0.19477 (3)0.35846 (8)0.01080 (8)
O150.44705 (6)0.08383 (3)0.40061 (8)0.01104 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00602 (3)0.00660 (3)0.00720 (3)0.00026 (2)0.00134 (2)0.00007 (2)
O10.00727 (17)0.00887 (19)0.0165 (2)0.00114 (15)0.00004 (15)0.00093 (16)
O20.00967 (19)0.0123 (2)0.0156 (2)0.00321 (16)0.00355 (16)0.00186 (17)
O30.00848 (18)0.0139 (2)0.00975 (17)0.00052 (16)0.00089 (14)0.00252 (15)
O40.01192 (19)0.00886 (19)0.00985 (17)0.00099 (15)0.00103 (14)0.00060 (14)
O50.00885 (18)0.0119 (2)0.01034 (17)0.00048 (15)0.00270 (14)0.00179 (15)
O60.0138 (2)0.00850 (18)0.01233 (19)0.00079 (16)0.00579 (16)0.00090 (15)
C10.0071 (2)0.0074 (2)0.00805 (19)0.00042 (17)0.00212 (16)0.00048 (16)
O120.00793 (17)0.00723 (17)0.01374 (19)0.00103 (14)0.00089 (14)0.00015 (14)
O130.00691 (17)0.01013 (19)0.01344 (19)0.00163 (14)0.00098 (14)0.00146 (15)
C20.00641 (19)0.0075 (2)0.00836 (19)0.00002 (16)0.00103 (16)0.00059 (16)
O110.00648 (16)0.00608 (16)0.01098 (17)0.00015 (13)0.00025 (13)0.00040 (13)
C30.0076 (2)0.0088 (2)0.0093 (2)0.00140 (17)0.00066 (16)0.00017 (17)
C40.0096 (2)0.0072 (2)0.0101 (2)0.00152 (18)0.00128 (17)0.00063 (17)
C50.0085 (2)0.0060 (2)0.0091 (2)0.00034 (17)0.00177 (16)0.00020 (16)
C60.0087 (2)0.0085 (2)0.0083 (2)0.00140 (17)0.00235 (16)0.00044 (16)
O140.00792 (17)0.0107 (2)0.01312 (19)0.00001 (15)0.00074 (14)0.00033 (15)
O150.01271 (19)0.00747 (18)0.01318 (19)0.00246 (15)0.00326 (15)0.00133 (15)
Geometric parameters (Å, º) top
Ni1—O12.0219 (5)O6—H6A0.831 (11)
Ni1—O22.0678 (6)O6—H6B0.841 (11)
Ni1—O32.0626 (6)C2—O111.3617 (8)
Ni1—O42.0840 (6)C5—O111.3583 (8)
Ni1—O52.0563 (5)C1—O121.2644 (8)
Ni1—O62.0610 (6)C1—O131.2682 (8)
O1—H1A0.815 (11)C6—O141.2661 (9)
O1—H1B0.836 (11)C6—O151.2618 (8)
O2—H2A0.847 (12)C1—C21.4744 (9)
O2—H2B0.836 (11)C2—C31.3680 (9)
O3—H3A0.816 (11)C3—C41.4270 (9)
O3—H3B0.820 (11)C3—H30.9500
O4—H4A0.842 (11)C4—C51.3692 (9)
O4—H4B0.835 (11)C4—H40.9500
O5—H5A0.831 (11)C5—C61.4838 (9)
O5—H5B0.824 (11)
O1—Ni1—O586.24 (2)H4A—O4—H4B107.0 (13)
O1—Ni1—O689.03 (2)Ni1—O5—H5A110.5 (9)
O5—Ni1—O6174.48 (2)Ni1—O5—H5B119.5 (9)
O1—Ni1—O384.10 (2)H5A—O5—H5B107.7 (13)
O5—Ni1—O391.92 (2)Ni1—O6—H6A119.2 (9)
O6—Ni1—O390.42 (2)Ni1—O6—H6B116.8 (9)
O1—Ni1—O2172.96 (2)H6A—O6—H6B106.6 (12)
O5—Ni1—O298.84 (2)O12—C1—O13124.89 (6)
O6—Ni1—O286.12 (2)O12—C1—C2117.13 (6)
O3—Ni1—O290.84 (2)O13—C1—C2117.98 (6)
O1—Ni1—O497.89 (2)O11—C2—C3110.35 (6)
O5—Ni1—O487.55 (2)O11—C2—C1115.15 (5)
O6—Ni1—O490.29 (2)C3—C2—C1134.44 (6)
O3—Ni1—O4177.90 (2)C5—O11—C2107.17 (5)
O2—Ni1—O487.24 (2)C2—C3—C4105.97 (6)
Ni1—O1—H1A125.8 (10)C2—C3—H3127.0
Ni1—O1—H1B122.5 (9)C4—C3—H3127.0
H1A—O1—H1B103.4 (13)C5—C4—C3106.35 (6)
Ni1—O2—H2A129.0 (9)C5—C4—H4126.8
Ni1—O2—H2B105.4 (9)C3—C4—H4126.8
H2A—O2—H2B106.5 (13)O11—C5—C4110.15 (6)
Ni1—O3—H3A123.2 (9)O11—C5—C6115.61 (5)
Ni1—O3—H3B115.7 (9)C4—C5—C6134.24 (6)
H3A—O3—H3B109.0 (13)O15—C6—O14126.16 (6)
Ni1—O4—H4A113.6 (9)O15—C6—C5116.44 (6)
Ni1—O4—H4B110.1 (9)O14—C6—C5117.41 (6)
Ni1—O1—H1A—H1B148.4 (13)Ni1—O4—H4A—H4B121.7 (11)
Ni1—O2—H2A—H2B126.6 (13)Ni1—O5—H5A—H5B132.2 (11)
Ni1—O3—H3A—H3B140.7 (13)Ni1—O6—H6A—H6B134.9 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O110.84 (1)2.28 (1)2.7107 (7)113 (1)
O1—H1A···O120.82 (1)1.98 (1)2.7929 (8)173 (1)
O1—H1B···O140.84 (1)2.07 (1)2.8929 (8)170 (1)
O2—H2A···O4i0.85 (1)2.13 (1)2.9510 (8)163 (1)
O2—H2B···O13ii0.84 (1)1.99 (1)2.8048 (8)164 (1)
O3—H3A···O13iii0.82 (1)2.03 (1)2.8290 (8)165 (1)
O3—H3B···O14iv0.82 (1)2.02 (1)2.8409 (8)175 (1)
O4—H4A···O15v0.84 (1)1.84 (1)2.6766 (8)177 (1)
O4—H4B···O12ii0.84 (1)1.87 (1)2.6885 (8)166 (1)
O5—H5B···O13vi0.82 (1)1.91 (1)2.7325 (8)175 (1)
O5—H5A···O14v0.83 (1)1.97 (1)2.7997 (8)173 (1)
O6—H6A···O12ii0.83 (1)2.07 (1)2.8105 (8)149 (1)
O6—H6B···O15iv0.84 (1)1.91 (1)2.7435 (8)172 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mg(OH2)6](C6H2O5)[Ni(OH2)6](C6H2O5)
Mr286.48320.88
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)122122
a, b, c (Å)6.6577 (17), 18.1234 (3), 18.579 (3)9.2242 (5), 18.4255 (9), 6.5942 (8)
α, β, γ (°)90, 90, 9090, 102.066 (6), 90
V3)2241.8 (6)1095.99 (15)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.211.83
Crystal size (mm)0.31 × 0.23 × 0.070.46 × 0.24 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Integration
(Gaussian integration; Coppens, 1970)
Tmin, Tmax0.936, 0.9860.505, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
107023, 5972, 4551 68883, 9072, 7619
Rint0.0820.053
(sin θ/λ)max1)0.8620.997
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.06 0.028, 0.060, 1.10
No. of reflections59729072
No. of parameters199199
No. of restraints1212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.390.73, 0.87

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O110.836 (11)2.280 (13)2.7201 (8)113.2 (11)
O1—H1B···O120.849 (12)2.051 (12)2.8978 (9)175.0 (12)
O1—H1A···O140.836 (11)1.961 (12)2.7869 (8)169.6 (13)
O2—H2A···O15i0.855 (11)1.908 (11)2.7624 (9)176.9 (13)
O2—H2B···O3ii0.860 (11)2.128 (12)2.9658 (9)164.5 (12)
O3—H3A···O13iii0.832 (11)1.872 (11)2.7011 (9)173.8 (13)
O3—H3B···O14i0.852 (11)1.838 (11)2.6756 (9)167.3 (13)
O4—H4A···O15iv0.839 (11)1.884 (11)2.7200 (9)174.4 (13)
O4—H4B···O12v0.831 (11)2.001 (12)2.8267 (9)172.4 (13)
O5—H5A···O14i0.806 (11)2.205 (12)2.8839 (9)142.2 (13)
O5—H5B···O13v0.845 (12)1.906 (12)2.7437 (10)170.9 (14)
O6—H6A···O12iii0.819 (11)2.014 (11)2.8318 (9)175.7 (13)
O6—H6B···O15vi0.826 (11)2.005 (11)2.8096 (9)164.5 (12)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y, z+1/2; (vi) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O110.836 (11)2.277 (13)2.7107 (7)112.7 (11)
O1—H1A···O120.815 (11)1.982 (11)2.7929 (8)173.4 (13)
O1—H1B···O140.836 (11)2.066 (12)2.8929 (8)170.2 (13)
O2—H2A···O4i0.847 (12)2.131 (12)2.9510 (8)162.9 (13)
O2—H2B···O13ii0.836 (11)1.991 (12)2.8048 (8)164.2 (13)
O3—H3A···O13iii0.816 (11)2.032 (11)2.8290 (8)165.2 (13)
O3—H3B···O14iv0.820 (11)2.024 (11)2.8409 (8)174.9 (13)
O4—H4A···O15v0.842 (11)1.835 (11)2.6766 (8)177.1 (13)
O4—H4B···O12ii0.835 (11)1.872 (11)2.6885 (8)165.8 (13)
O5—H5B···O13vi0.824 (11)1.911 (11)2.7325 (8)175.1 (13)
O5—H5A···O14v0.831 (11)1.974 (11)2.7997 (8)172.7 (13)
O6—H6A···O12ii0.831 (11)2.065 (12)2.8105 (8)149.1 (12)
O6—H6B···O15iv0.841 (11)1.909 (11)2.7435 (8)172.0 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds