metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­phenyl­stann­yl) thio­phene-2,5-di­carboxyl­ate

aThe Affiliated Ruikang Hospital of Guangxi Traditional Chinese Medical College, Nanning, Guangxi 530011, People's Republic of China
*Correspondence e-mail: zlchy@163.com

(Received 29 April 2009; accepted 27 May 2009; online 6 June 2009)

Mol­ecules of the title compound, [Sn2(C6H5)6(C6H2O4S)], lie on inversion centres with the central thio­phene ring disordered equally over two orientations. The carboxyl­ate groups are approximately coplanar with the thio­phene ring [dihedral angle = 4.0 (1)°] and the Sn—O bond distance of 2.058 (4) Å is comparable to that in related organotin carboxyl­ates.

Related literature

For background literature concerning organotin chemisty, see: Prabusankar & Murugavel (2004[Prabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644-5647.]); Holmes (1989[Holmes, R. R. (1989). Acc. Chem. Res. 22, 190-197.]). For related structures, see: Pellei et al. (2008[Pellei, M., Alidori, S., Benetollo, F., Lobbia, G. G., Mancini, M., Lobbia, G. G. & Santini, C. (2008). J. Organomet. Chem. 693, 996-1004.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C6H5)6(C6H2O4S)]

  • Mr = 870.12

  • Monoclinic, P 21 /c

  • a = 10.1302 (10) Å

  • b = 18.699 (2) Å

  • c = 10.3584 (11) Å

  • β = 108.213 (2)°

  • V = 1863.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 K

  • 0.21 × 0.11 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.752, Tmax = 0.919

  • 9058 measured reflections

  • 3281 independent reflections

  • 2342 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.110

  • S = 1.02

  • 3281 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structural diversity of organotin carboxylates is well recognized and a wide variety of coordination geometries have been reported (Holmes, 1989). It is generally believed that a combination of steric and electronic factors determine the specific structure adapted by a particular organotin carboxylate (Prabusankar & Murugavel, 2004). This is supported through the observation of monomeric, dimeric, tetrameric, oligomeric ladder, cyclic, and drum structures. Furthermore, it has been reported that the size of the carboxylic acids used and the stoichiometry of the reactants play an important role in the formation of solid-state frameworks.

Related literature top

For background literature concerning organotin chemisty, see: Prabusankar & Murugavel (2004); Holmes (1989). For related structures, see: Pellei et al. (2008).

Experimental top

The reaction was carried out under a nitrogen atmosphere. Thiophene-2,5-dicarboxylic acid (10 mmol) and sodium ethoxide (20 mmol) were added to a stirred solution of benzene (50 ml) in a three-necked flask and stirred for 0.5 h. Triphenyltin chloride (20 mmol) was then added and the reaction mixture was stirred for 6 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks of the title compound. Elemental analysis: calculated C 57.97, H 3.71 %; found: C 57.68, H 3.55 %.

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids, with H atoms are omitted. Unlabelled atoms are related to labelled atoms by the symmetry code: 2-x, -y, 1-z. The symmetry-generated component of the disordered thiophene ring is not shown.
Bis(triphenylstannyl) thiophene-2,5-dicarboxylate top
Crystal data top
[Sn2(C6H5)6(C6H2O4S)]F(000) = 864
Mr = 870.12Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3030 reflections
a = 10.1302 (10) Åθ = 2.4–25.2°
b = 18.699 (2) ŵ = 1.44 mm1
c = 10.3584 (11) ÅT = 298 K
β = 108.213 (2)°Needle, colorless
V = 1863.8 (3) Å30.21 × 0.11 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3281 independent reflections
Radiation source: fine-focus sealed tube2342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 126
Tmin = 0.752, Tmax = 0.919k = 2220
9058 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0214P)2 + 10.153P]
where P = (Fo2 + 2Fc2)/3
3281 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Sn2(C6H5)6(C6H2O4S)]V = 1863.8 (3) Å3
Mr = 870.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.1302 (10) ŵ = 1.44 mm1
b = 18.699 (2) ÅT = 298 K
c = 10.3584 (11) Å0.21 × 0.11 × 0.06 mm
β = 108.213 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3281 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2342 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.919Rint = 0.040
9058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0214P)2 + 10.153P]
where P = (Fo2 + 2Fc2)/3
3281 reflectionsΔρmax = 0.77 e Å3
244 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.66000 (5)0.07183 (3)0.78299 (5)0.04647 (17)
S10.9299 (4)0.0123 (2)0.4533 (4)0.0479 (9)0.50
O10.7511 (5)0.0595 (3)0.6325 (5)0.0547 (13)
O20.9220 (7)0.0178 (4)0.7991 (8)0.110 (3)
C10.8710 (9)0.0308 (4)0.6808 (10)0.061 (2)
C20.9687 (17)0.0005 (9)0.6205 (18)0.053 (4)0.50
C31.0869 (15)0.0332 (8)0.6787 (16)0.056 (4)0.50
H31.12270.04250.77130.067*0.50
C41.1513 (16)0.0519 (8)0.5836 (15)0.057 (4)0.50
H41.23410.07750.60670.068*0.50
C51.0826 (16)0.0293 (8)0.4493 (19)0.048 (4)0.50
C60.4678 (8)0.1119 (5)0.6546 (9)0.074 (3)
C70.4344 (10)0.1137 (5)0.5168 (10)0.089 (3)
H70.49850.09810.47520.107*
C80.3042 (12)0.1388 (6)0.4372 (12)0.107 (4)
H80.28120.14010.34300.129*
C90.2123 (12)0.1611 (6)0.4998 (14)0.113 (4)
H90.12750.17980.44710.136*
C100.2392 (11)0.1573 (7)0.6336 (14)0.123 (5)
H100.17230.17090.67310.147*
C110.3691 (9)0.1327 (6)0.7143 (12)0.107 (4)
H110.38940.13040.80820.128*
C120.7680 (8)0.1508 (4)0.9236 (7)0.0532 (19)
C130.7151 (11)0.2181 (5)0.9169 (11)0.100 (3)
H130.63620.23020.84570.120*
C140.7770 (12)0.2686 (6)1.0144 (12)0.109 (4)
H140.73750.31381.00890.131*
C150.8898 (11)0.2541 (6)1.1140 (11)0.091 (3)
H150.93090.28841.17930.109*
C160.9439 (12)0.1896 (7)1.1196 (12)0.121 (4)
H161.02440.17881.18990.145*
C170.8848 (11)0.1373 (5)1.0241 (10)0.102 (4)
H170.92670.09271.03010.123*
C180.6293 (11)0.0309 (5)0.8534 (9)0.072 (3)
C190.4946 (13)0.0581 (6)0.8128 (10)0.101 (3)
H190.42190.03010.76000.121*
C200.4668 (15)0.1284 (7)0.8514 (12)0.115 (4)
H200.37700.14650.82930.138*
C210.5790 (17)0.1672 (7)0.9219 (13)0.127 (5)
H210.56340.21440.94180.152*
C220.7120 (16)0.1434 (7)0.9663 (12)0.130 (5)
H220.78400.17251.01720.156*
C230.7362 (14)0.0732 (6)0.9321 (10)0.110 (4)
H230.82580.05470.96290.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0405 (3)0.0537 (3)0.0483 (3)0.0019 (3)0.0182 (2)0.0062 (3)
S10.040 (2)0.052 (2)0.054 (3)0.0089 (19)0.0192 (19)0.0058 (19)
O10.050 (3)0.062 (3)0.060 (3)0.008 (3)0.028 (3)0.005 (3)
O20.092 (5)0.082 (5)0.118 (6)0.012 (4)0.023 (5)0.006 (4)
C10.048 (5)0.061 (5)0.080 (6)0.002 (4)0.026 (5)0.017 (5)
C20.042 (10)0.055 (10)0.062 (11)0.012 (8)0.018 (9)0.000 (8)
C30.049 (9)0.065 (10)0.057 (10)0.017 (8)0.020 (8)0.002 (8)
C40.046 (9)0.064 (10)0.059 (10)0.015 (8)0.015 (8)0.002 (8)
C50.040 (9)0.047 (10)0.064 (12)0.010 (8)0.025 (9)0.005 (9)
C60.053 (5)0.082 (6)0.079 (6)0.014 (5)0.010 (5)0.042 (5)
C70.069 (6)0.092 (7)0.090 (7)0.017 (5)0.003 (6)0.041 (6)
C80.087 (8)0.110 (9)0.099 (8)0.020 (7)0.008 (7)0.038 (7)
C90.080 (8)0.111 (9)0.121 (10)0.026 (7)0.010 (8)0.038 (8)
C100.074 (7)0.142 (11)0.134 (11)0.040 (7)0.006 (8)0.056 (9)
C110.060 (6)0.134 (9)0.111 (8)0.032 (6)0.007 (6)0.055 (7)
C120.050 (4)0.061 (5)0.055 (5)0.002 (4)0.025 (4)0.011 (4)
C130.090 (7)0.081 (7)0.104 (8)0.019 (6)0.004 (6)0.039 (6)
C140.098 (8)0.086 (7)0.119 (9)0.012 (7)0.001 (8)0.043 (7)
C150.082 (7)0.092 (8)0.092 (8)0.016 (6)0.019 (6)0.046 (6)
C160.099 (9)0.110 (9)0.111 (9)0.002 (8)0.031 (7)0.031 (8)
C170.089 (7)0.081 (7)0.096 (8)0.015 (6)0.030 (6)0.024 (6)
C180.090 (7)0.079 (6)0.053 (5)0.033 (6)0.033 (5)0.012 (5)
C190.121 (9)0.104 (8)0.080 (7)0.043 (7)0.035 (7)0.015 (6)
C200.130 (11)0.116 (10)0.096 (9)0.064 (9)0.033 (8)0.014 (7)
C210.149 (13)0.119 (11)0.102 (10)0.045 (10)0.023 (10)0.019 (8)
C220.151 (13)0.113 (10)0.103 (9)0.036 (9)0.006 (9)0.020 (8)
C230.146 (11)0.092 (8)0.072 (7)0.044 (8)0.006 (7)0.019 (6)
Geometric parameters (Å, º) top
Sn1—O12.058 (4)C10—H100.930
Sn1—C182.112 (9)C11—H110.930
Sn1—C62.121 (9)C12—C171.333 (11)
Sn1—C122.122 (7)C12—C131.359 (11)
S1—C21.669 (18)C13—C141.382 (12)
S1—C51.744 (15)C13—H130.930
O1—C11.279 (9)C14—C151.307 (13)
O2—C11.197 (10)C14—H140.930
C1—C21.449 (17)C15—C161.320 (14)
C2—C31.31 (2)C15—H150.930
C3—C41.385 (19)C16—C171.386 (13)
C3—H30.930C16—H160.930
C4—C51.41 (2)C17—H170.930
C4—H40.930C18—C231.382 (14)
C5—C1i1.560 (19)C18—C191.392 (13)
C6—C71.361 (12)C19—C201.428 (14)
C6—C111.386 (12)C19—H190.930
C7—C81.400 (13)C20—C211.354 (16)
C7—H70.930C20—H200.930
C8—C91.356 (15)C21—C221.355 (16)
C8—H80.930C21—H210.930
C9—C101.328 (15)C22—C231.402 (14)
C9—H90.930C22—H220.930
C10—C111.399 (13)C23—H230.930
O1—Sn1—C18108.0 (3)C6—C11—H11120.0
O1—Sn1—C696.1 (3)C10—C11—H11120.0
C18—Sn1—C6109.4 (4)C17—C12—C13117.1 (8)
O1—Sn1—C12109.9 (2)C17—C12—Sn1123.0 (6)
C18—Sn1—C12119.7 (3)C13—C12—Sn1119.9 (6)
C6—Sn1—C12111.1 (3)C12—C13—C14120.9 (9)
C2—S1—C592.1 (7)C12—C13—H13119.6
C1—O1—Sn1110.3 (5)C14—C13—H13119.6
O2—C1—O1122.7 (8)C15—C14—C13121.4 (10)
O2—C1—C2103.0 (11)C15—C14—H14119.3
O1—C1—C2134.0 (11)C13—C14—H14119.3
C3—C2—C1129.7 (16)C14—C15—C16118.2 (10)
C3—C2—S1115.5 (12)C14—C15—H15120.9
C1—C2—S1114.7 (12)C16—C15—H15120.9
C2—C3—C4110.8 (15)C15—C16—C17122.2 (10)
C2—C3—H3124.6C15—C16—H16118.9
C4—C3—H3124.6C17—C16—H16118.9
C3—C4—C5115.4 (15)C12—C17—C16120.2 (10)
C3—C4—H4122.3C12—C17—H17119.9
C5—C4—H4122.3C16—C17—H17119.9
C4—C5—S1106.1 (13)C23—C18—C19118.9 (9)
C1i—C5—S1122.5 (12)C23—C18—Sn1123.4 (7)
C7—C6—C11118.9 (9)C19—C18—Sn1117.6 (8)
C7—C6—Sn1123.0 (6)C18—C19—C20120.8 (12)
C11—C6—Sn1117.9 (7)C18—C19—H19119.6
C6—C7—C8120.4 (10)C20—C19—H19119.6
C6—C7—H7119.8C21—C20—C19116.0 (12)
C8—C7—H7119.8C21—C20—H20122.0
C9—C8—C7118.9 (11)C19—C20—H20122.0
C9—C8—H8120.6C20—C21—C22125.8 (13)
C7—C8—H8120.6C20—C21—H21117.1
C10—C9—C8122.3 (11)C22—C21—H21117.1
C10—C9—H9118.8C21—C22—C23117.1 (13)
C8—C9—H9118.8C21—C22—H22121.5
C9—C10—C11119.3 (12)C23—C22—H22121.5
C9—C10—H10120.4C18—C23—C22121.2 (12)
C11—C10—H10120.4C18—C23—H23119.4
C6—C11—C10120.1 (11)C22—C23—H23119.4
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn2(C6H5)6(C6H2O4S)]
Mr870.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.1302 (10), 18.699 (2), 10.3584 (11)
β (°) 108.213 (2)
V3)1863.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.21 × 0.11 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.752, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
9058, 3281, 2342
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.110, 1.02
No. of reflections3281
No. of parameters244
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0214P)2 + 10.153P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.77, 0.63

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Foundation of the Affiliated Ruikang Hospital of Guangxi Traditional Chinese Medical College (grant No. LG0901).

References

First citationHolmes, R. R. (1989). Acc. Chem. Res. 22, 190–197.  CrossRef CAS Web of Science Google Scholar
First citationPellei, M., Alidori, S., Benetollo, F., Lobbia, G. G., Mancini, M., Lobbia, G. G. & Santini, C. (2008). J. Organomet. Chem. 693, 996–1004.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644–5647.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds