metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[copper(II)-bis­(μ-2,4-di­chloro-6-formyl­phenolato)-κ3O,O′:Cl4;κ3Cl4:O,O′]

aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn

(Received 25 June 2008; accepted 3 July 2008; online 9 July 2008)

In the title compound, [Cu(C7H3Cl2O2)2]n, the CuII atom lies on a centre of inversion and adopts a [4+2] coordination mode, with two long axial Cu—Cl coordinative bonds complementing four Cu—O bonds from two 2,4-dichloro-6-formyl­phenolate ligands in a distorted square plane. ππ stacking inter­actions are also formed between neighbouring aromatic rings, with a centroid–centroid separation of 3.624 (2) Å.

Related literature

For related compounds, see: Duan et al. (2007[Duan, X. F., Zeng, J., Zhang, Z. B. & Zi, G. F. (2007). J. Org. Chem. 72, 10283-10286.]); Fan, You, Liu et al. (2008[Fan, Y., You, W., Liu, J.-L., Qian, H.-F. & Huang, W. (2008). Acta Cryst. E64, o1080.]); Fan, You, Qian et al. (2008[Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2008). Acta Cryst. E64, o799.]); Harkat et al. (2008[Harkat, H., Blanc, A., Weibel, J. M. & Pale, P. (2008). J. Org. Chem. 73, 1620-1623.]); Sun & Gao (2005[Sun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354-m355.]); Zhang et al. (2006[Zhang, G., Yang, G. & Ma, J. S. (2006). J. Chem. Res. pp. 19-21.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3Cl2O2)2]

  • Mr = 443.53

  • Orthorhombic, P b c a

  • a = 8.1564 (8) Å

  • b = 12.4746 (12) Å

  • c = 14.7296 (14) Å

  • V = 1498.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 291 (2) K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.811

  • 7424 measured reflections

  • 1471 independent reflections

  • 1215 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.103

  • S = 1.06

  • 1471 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.906 (2)
Cu1—O2 1.943 (2)
Cu1—Cl2ii 3.207 (1)
O1—Cu1—O1i 180
O1—Cu1—O2i 87.13 (8)
O1—Cu1—O2 92.87 (8)
O2i—Cu1—O2 180
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of derivatives of salicylaldehyde and their metal complexes are fascinating areas of research, which can be used in a variety of studies such as drug design, life science, catalysis, and so on (Harkat et al., 2008; Duan et al., 2007). In our previous studies, we have reported the X-ray single-crystal structures of 3,5-dichloro-2-hydroxybenzaldehyde and 3,5-dibromo-2-hydroxybenzaldehyde (Fan et al., 2008a, b). In this paper, we report the X-ray single-crystal structure of the title CuII complex.

In the title compound (Fig. 1), the coordination geometry of the central CuII ion can be described as [4 + 2]. Four Cu—O bonds from two 3,5-dichloro-2-hydroxybenzaldehyde anions constitute a distorted square coordination plane with the bond lengths varying from 1.906 (2) to 1.943 (2) Å (Table 1), which are in good agreement with those found in similar CuII complexes (Sun & Gao, 2005; Zhang et al., 2006). Two adjacent Cl atoms from two 3,5-dichloro-2-hydroxybenzaldehyde anions (Cl2, symmetry codes: 1 + x, y, z and 1 - x, 2 - y, 1 - z) occupy two axial positions by weak coordinative bonds with the same Cu—Cl bond length of 3.207 (1) Å (Fig. 2). In addition, these molecules are further stabilized by π-π stacking interactions with the centroid-to-centroid separation of 3.624 (2) Å, forming one-dimensional chain motifs (Fig. 2). A dihedral angle of 45.3 (1) ° is formed between the planes of molecules in neighbouring chains.

Related literature top

For related compounds, see: Duan et al. (2007); Fan, You, Liu et al. (2008); Fan, You, Qian et al. (2008); Harkat et al. (2008); Sun & Gao (2005); Zhang et al. (2006).

Experimental top

A solution of Cu(OAc)2.H2O (0.1 mmol, 0.020 g) in methanol (5 ml) was added to a methanol solution (20 ml) of 3,5-dichloro-2-hydroxybenzaldehyde (0.2 mmol, 0.039 g). The resulting mixture was refluxed for 2 h, cooled and evaporated slowly at room temperature in air to give dark red single crystals suitable for X-ray diffraction measurement. Analysis calculated for C14H6O4Cl4Cu: C, 37.91. H, 1.36%; found: C, 37.85; H, 1.59%.

FT—IR (KBr pellets, cm-1): 3058 (m), 1605 (vs), 1510 (s), 1438 (s), 1420 (s), 1337 (s), 1217 (s), 1162 (s), 887 (m), 766 (s), 720 (m), 600 (m) and 455 (m).

Refinement top

H atoms bonded to C atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids at the 30% probability level for non-H atoms. Cu1 lies on a centre of inversion: unlabelled atoms are related to labelled atoms by the symmetry code 2-x, 2-y, 1-z.
[Figure 2] Fig. 2. A perspective view of one chain motif, showing long Cu—Cl coordinative bonds and ππ stacking interactions (dashed lines).
catena-Poly[copper(II)-bis(µ-2,4-dichloro-6-formylphenolato)-κ3O,O':Cl4;κ3Cl4:O,O'] top
Crystal data top
[Cu(C7H3Cl2O2)2]F(000) = 876
Mr = 443.53Dx = 1.966 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3128 reflections
a = 8.1564 (8) Åθ = 2.8–27.6°
b = 12.4746 (12) ŵ = 2.19 mm1
c = 14.7296 (14) ÅT = 291 K
V = 1498.7 (3) Å3Block, red
Z = 40.14 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1471 independent reflections
Radiation source: fine-focus sealed tube1215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.750, Tmax = 0.811k = 1515
7424 measured reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.6132P]
where P = (Fo2 + 2Fc2)/3
1471 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu(C7H3Cl2O2)2]V = 1498.7 (3) Å3
Mr = 443.53Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.1564 (8) ŵ = 2.19 mm1
b = 12.4746 (12) ÅT = 291 K
c = 14.7296 (14) Å0.14 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1215 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.811Rint = 0.043
7424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
1471 reflectionsΔρmin = 0.83 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.00000.50000.0350 (2)
C10.6397 (3)0.9163 (2)0.43110 (19)0.0300 (6)
C20.6929 (3)1.0203 (2)0.4048 (2)0.0283 (6)
C30.5807 (4)1.0793 (2)0.3514 (2)0.0310 (6)
C40.4281 (4)1.0410 (2)0.3285 (2)0.0348 (7)
H40.35691.08290.29430.042*
C50.3807 (3)0.9390 (2)0.3569 (2)0.0334 (7)
C60.4844 (3)0.8770 (2)0.4061 (2)0.0324 (7)
H60.45280.80830.42330.039*
C70.7396 (4)0.8478 (3)0.4859 (2)0.0371 (7)
H70.69690.78050.49930.045*
Cl10.64045 (10)1.20455 (6)0.31242 (6)0.0445 (3)
Cl20.18463 (10)0.89331 (8)0.33032 (6)0.0473 (3)
O10.8330 (2)1.06231 (16)0.42655 (15)0.0367 (5)
O20.8767 (3)0.86838 (18)0.51754 (15)0.0413 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0256 (3)0.0313 (3)0.0481 (4)0.0010 (2)0.0058 (2)0.0057 (2)
C10.0251 (14)0.0316 (15)0.0332 (16)0.0020 (11)0.0008 (12)0.0006 (12)
C20.0244 (14)0.0287 (14)0.0318 (15)0.0025 (11)0.0021 (12)0.0003 (11)
C30.0304 (15)0.0287 (14)0.0339 (15)0.0033 (12)0.0019 (13)0.0006 (12)
C40.0309 (15)0.0380 (16)0.0356 (17)0.0081 (14)0.0035 (13)0.0012 (13)
C50.0241 (13)0.0436 (17)0.0325 (15)0.0012 (13)0.0007 (12)0.0059 (13)
C60.0302 (15)0.0319 (16)0.0352 (16)0.0033 (12)0.0001 (12)0.0019 (12)
C70.0322 (16)0.0310 (15)0.0481 (18)0.0002 (14)0.0035 (14)0.0044 (13)
Cl10.0438 (5)0.0313 (4)0.0583 (5)0.0029 (3)0.0019 (4)0.0106 (3)
Cl20.0299 (4)0.0576 (5)0.0544 (5)0.0064 (4)0.0109 (3)0.0036 (4)
O10.0258 (10)0.0321 (11)0.0522 (13)0.0022 (9)0.0064 (9)0.0076 (9)
O20.0302 (12)0.0345 (12)0.0592 (14)0.0006 (9)0.0110 (10)0.0104 (10)
Geometric parameters (Å, º) top
Cu1—O11.906 (2)C2—C31.413 (4)
Cu1—O1i1.906 (2)C3—C41.375 (4)
Cu1—O2i1.943 (2)C3—Cl11.735 (3)
Cu1—O21.943 (2)C4—C51.394 (4)
Cu1—Cl2ii3.207 (1)C4—H40.930
Cu1—Cl2iii3.207 (1)C5—C61.356 (4)
C1—C61.408 (4)C5—Cl21.742 (3)
C1—C21.422 (4)C6—H60.930
C1—C71.431 (4)C7—O21.238 (4)
C2—O11.297 (3)C7—H70.930
O1—Cu1—O1i180C3—C4—C5119.7 (3)
O1—Cu1—O2i87.13 (8)C3—C4—H4120.2
O1i—Cu1—O2i92.87 (8)C5—C4—H4120.2
O1—Cu1—O292.87 (8)C6—C5—C4120.5 (3)
O1i—Cu1—O287.13 (8)C6—C5—Cl2120.4 (2)
O2i—Cu1—O2180C4—C5—Cl2119.1 (2)
C6—C1—C2121.4 (3)C5—C6—C1120.2 (3)
C6—C1—C7116.9 (3)C5—C6—H6119.9
C2—C1—C7121.7 (3)C1—C6—H6119.9
O1—C2—C3119.8 (2)O2—C7—C1127.0 (3)
O1—C2—C1124.7 (3)O2—C7—H7116.5
C3—C2—C1115.4 (2)C1—C7—H7116.5
C4—C3—C2122.8 (3)C2—O1—Cu1127.25 (18)
C4—C3—Cl1119.1 (2)C7—O2—Cu1126.4 (2)
C2—C3—Cl1118.1 (2)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H3Cl2O2)2]
Mr443.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)8.1564 (8), 12.4746 (12), 14.7296 (14)
V3)1498.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.750, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
7424, 1471, 1215
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.103, 1.06
No. of reflections1471
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.83

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.906 (2)Cu1—O21.943 (2)
Cu1—O1i1.906 (2)Cu1—Cl2ii3.207 (1)
Cu1—O2i1.943 (2)Cu1—Cl2iii3.207 (1)
O1—Cu1—O1i180O1—Cu1—O292.87 (8)
O1—Cu1—O2i87.13 (8)O1i—Cu1—O287.13 (8)
O1i—Cu1—O2i92.87 (8)O2i—Cu1—O2180
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+1.
 

Footnotes

Additional correspondence author.

Acknowledgements

WH acknowledges financial aid from the National Natural Science Foundation of China (grant No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, X. F., Zeng, J., Zhang, Z. B. & Zi, G. F. (2007). J. Org. Chem. 72, 10283–10286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFan, Y., You, W., Liu, J.-L., Qian, H.-F. & Huang, W. (2008). Acta Cryst. E64, o1080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2008). Acta Cryst. E64, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarkat, H., Blanc, A., Weibel, J. M. & Pale, P. (2008). J. Org. Chem. 73, 1620–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354–m355.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, G., Yang, G. & Ma, J. S. (2006). J. Chem. Res. pp. 19–21.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds