inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­potassium cis-dioxido-trans-bis­­(sulfato-κO)sulfato(κ2O,O′)molybdate(VI)

aThe Technical University of Denmark, Department of Chemistry, Building 207, DK-2800 Lyngby, Denmark
*Correspondence e-mail: su@tgy.dk

(Received 2 January 2008; accepted 5 February 2008; online 13 February 2008)

The title compound, K4[MoVIO2(SO4)3], was precipitated from a melt of molybdenum(VI) oxide and potassium sulfate in potassium disulfate. The compound contains monomeric [MoVIO2(SO4)3]4− anions, with the MoVI atom, both oxide ligands, and the S atom and both ligating O atoms of the bidentate sulfate group lying on a crystallographic mirror plane. One of the potassium cations is nine-coordinate, while the other is eight-coordinate.

Related literature

For related literature, see: Topsøe & Nielsen (1947[Topsøe, H. F. A. & Nielsen, A. (1947). Trans. Dan. Akad. Technol. Sci. 1, 18-24.]); Berg & Thorup (2005[Berg, R. W. & Thorup, N. (2005). Inorg. Chem. 44, 3485-3493.]); Borup et al. (1990[Borup, F., Berg, R. W. & Nielsen, K. (1990). Acta Chem. Scand. 44, 328-331.]); Nørbygaard et al. (1998[Nørbygaard, T., Berg, R. W. & Nielsen, K. (1998). Molten Salts XI Electrochem. Soc. Proc. 98-11, 553-565.]); Nielsen et al. (1993[Nielsen, K., Fehrmann, R. & Eriksen, K. M. (1993). Inorg. Chem. 32, 4825-4828.]); Rasmussen et al. (2003[Rasmussen, S. B., Rasmussen, R. M., Fehrmann, R. & Nielsen, K. (2003). Inorg. Chem. 42, 7123-7128.]); Salles et al. (1996[Salles, L., Robert, F., Semmer, V., Jeannin, Y. & Bregeault, J. (1996). Bull. Soc. Chim. Fr. 133, 319-328.]); Schäffer & Berg (2005[Schäffer, S. J. C. & Berg, R. W. (2005). Acta Cryst. E61, i49-i51.]); Tamasi & Cini (2003[Tamasi, G. & Cini, R. (2003). Dalton Trans. pp. 2928-2936.]).

[Scheme 1]

Experimental

Crystal data
  • K4[MoO2(SO4)3]

  • Mr = 572.52

  • Orthorhombic, P n m a

  • a = 7.5931 (5) Å

  • b = 17.1276 (11) Å

  • c = 10.5132 (7) Å

  • V = 1367.26 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.71 mm−1

  • T = 120 (2) K

  • 0.28 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: Gaussian (XPREP; Bruker, 2002[Bruker (2002). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.512, Tmax = 0.684

  • 16179 measured reflections

  • 1693 independent reflections

  • 1681 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.11

  • 1693 reflections

  • 110 parameters

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mo1—O1 1.6889 (18)
Mo1—O2 1.6883 (18)
Mo1—O3 2.2665 (17)
Mo1—O4 2.1837 (16)
Mo1—O6 2.0365 (12)
K1—O5i 2.6408 (12)
K1—O8ii 3.2305 (14)
K2—O8iii 2.7005 (14)
K2—O6iv 3.0239 (13)
O2—Mo1—O1 105.77 (10)
O2—Mo1—O6 98.04 (4)
O1—Mo1—O6 94.84 (4)
O6—Mo1—O6v 158.22 (7)
O2—Mo1—O4 155.71 (8)
O1—Mo1—O4 98.52 (8)
O6—Mo1—O4 79.65 (3)
O2—Mo1—O3 92.29 (8)
O1—Mo1—O3 161.94 (8)
O6—Mo1—O3 82.38 (3)
O4—Mo1—O3 63.43 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Efforts to improve the industrial vanadium-based sulfuric acid catalyst (Topsøe & Nielsen, 1947) have led to investigations of potassium disulfate's use as a suitable solvent for the production of new sulfate-containing catalysts. Many of the previously reported sulfato compounds precipitated from melts of potassium disulfate contain polymeric anions (Nørbygaard et al., 1998, Berg & Thorup, 2005), while some contain dimers (Nielsen et al., 1993, Rasmussen et al., 2003, Schäffer & Berg, 2005). Monomers such as that in the title compound (Fig. 1) are less common (Borup et al., 1990).

The coordination sphere of the MoVI atom contains two oxido ligands, two terminally bound sulfato ligands, and a bidentate sulfato ligand. Because of the bidentate ligand, the coordination sphere angles (see Table 1) in the mirror plane are grossly distorted from octahedral. The O3—Mo1—O4 angle is only 63.43 (6)°, while the O1—Mo1—O2 angle opposite to it is 105.77 (10)°. Deviations of 10° or less are found for the other angles between cis O atoms. The Mo=O bond distances are nearly equivalent (1.6883 (18)Å & 1.6889 (18) Å), which is expected since both bonds are trans to O atoms in the bidentate sulfato ligand. The Mo—O distance to the terminal sulfato [Mo1—O6] is slightly shorter than those to the bidentate sulfato ligand [Mo1—O3 and Mo1—O4]. The Mo—O distances compare well with previously reported values (Salles et al., 1996, Nørbygaard et al., 1998).

The S—O bond distances of 1.5044 (17)–1.5532 (17)Å involving O bound to Mo are longer than the terminal S—O bond lengths of 1.4497–1.4621 (12) Å, an effect typical for sulfato complexes of many different transition metal centers (Borup et al., 1990, Nielsen et al., 1993, Berg & Thorup, 2005). The sulfato ligands have approximately tetrahedral geometry. The angles vary from 101.14° for O3—S1—O4 to 114.68 (10)° for O5—S1—O5i [symmetry code (i): x, 1/2 - y, z]; both extremes involve the bidentate sulfato ligand. Five of the eight remaining independent O—S—O angles deviate by less than 2° from ideal. The potassium cation, K1, is nine-coordinate, while K2 is eight-coordinate. The K—O distances range from 2.6408 to 3.2305 (14) Å.

Related literature top

For related literature, see: Topsøe & Nielsen (1947); Berg & Thorup (2005); Borup et al. (1990); Nørbygaard et al. (1998); Nielsen et al. (1993); Rasmussen et al. (2003); Salles et al. (1996); Schäffer & Berg (2005); Tamasi & Cini (2003).

Experimental top

Crystals were grown from a melt of 28.0 mol% molybdenum(VI) oxide, 43.9 mol% potassium sulfate, and 28.1 mol% potassium disulfate, using a method described previously (Nørbygaard et al., 1998).

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The [MoVIO2(SO4)3]4- anion and four K+ cations, showing displacement ellipsoids at 50% probability.
[Figure 2] Fig. 2. The crystal packing, viewed along the a axis.
Tetrapotassium cis-dioxido-trans-bis(sulfato-\kO)sulfato(κ2O,O')molybdate(VI) top
Crystal data top
K4[MoO2(SO4)3]F(000) = 1112
Mr = 572.52Dx = 2.781 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 9999 reflections
a = 7.5931 (5) Åθ = 2.3–28.0°
b = 17.1276 (11) ŵ = 2.71 mm1
c = 10.5132 (7) ÅT = 120 K
V = 1367.26 (16) Å3Tabular, colorless
Z = 40.28 × 0.18 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1693 independent reflections
Radiation source: normal-focus sealed tube1681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: gaussian
(XPREP; Bruker, 2002)
h = 910
Tmin = 0.512, Tmax = 0.684k = 2222
16179 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0174P)2 + 1.7854P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.59 e Å3
1693 reflectionsΔρmin = 0.46 e Å3
110 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00164 (15)
Crystal data top
K4[MoO2(SO4)3]V = 1367.26 (16) Å3
Mr = 572.52Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.5931 (5) ŵ = 2.71 mm1
b = 17.1276 (11) ÅT = 120 K
c = 10.5132 (7) Å0.28 × 0.18 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1693 independent reflections
Absorption correction: gaussian
(XPREP; Bruker, 2002)
1681 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.684Rint = 0.019
16179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016110 parameters
wR(F2) = 0.0410 restraints
S = 1.11Δρmax = 0.59 e Å3
1693 reflectionsΔρmin = 0.46 e Å3
Special details top

Experimental. Five series of frames were filtered for statistical outliers then corrected for absorption using XPREP in SHELXTL (Sheldrick, 2008) before using SAINT & SADABS (Bruker, 2002) to sort, merge, and scale the combined data. A series of identical frames was collected twice during the experiment to monitor decay, and none was observed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.43682 (4)0.08865 (2)0.24076 (3)0.01208 (8)
K20.25655 (5)0.10844 (2)0.39352 (3)0.01644 (9)
Mo10.32312 (3)0.25000.065899 (18)0.00961 (7)
S10.62301 (7)0.25000.09790 (5)0.00926 (11)
S20.23382 (5)0.06574 (2)0.06161 (3)0.00949 (9)
O10.3105 (3)0.25000.22628 (17)0.0209 (4)
O20.1129 (2)0.25000.0135 (2)0.0219 (4)
O30.4316 (2)0.25000.13493 (15)0.0124 (3)
O40.6095 (2)0.25000.04687 (15)0.0102 (3)
O50.70888 (16)0.17874 (7)0.13903 (11)0.0135 (2)
O60.36968 (15)0.13324 (7)0.05145 (11)0.0134 (2)
O70.16034 (17)0.05557 (8)0.06586 (11)0.0161 (3)
O80.10253 (17)0.08813 (8)0.15593 (12)0.0184 (3)
O90.33322 (16)0.00276 (7)0.10186 (13)0.0176 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01082 (17)0.01361 (16)0.01182 (16)0.00149 (12)0.00089 (12)0.00023 (12)
K20.02176 (19)0.01335 (17)0.01422 (17)0.00508 (14)0.00204 (14)0.00023 (13)
Mo10.00891 (10)0.00789 (10)0.01203 (11)0.0000.00220 (7)0.000
S10.0105 (2)0.0077 (2)0.0096 (2)0.0000.0013 (2)0.000
S20.01081 (18)0.00829 (17)0.00938 (18)0.00132 (14)0.00002 (13)0.00071 (13)
O10.0304 (11)0.0172 (9)0.0150 (9)0.0000.0080 (8)0.000
O20.0117 (8)0.0178 (9)0.0364 (11)0.0000.0020 (8)0.000
O30.0119 (8)0.0139 (8)0.0115 (7)0.0000.0019 (6)0.000
O40.0115 (8)0.0102 (7)0.0089 (7)0.0000.0001 (6)0.000
O50.0158 (6)0.0095 (5)0.0153 (6)0.0017 (4)0.0044 (5)0.0012 (4)
O60.0116 (5)0.0088 (5)0.0197 (6)0.0019 (4)0.0022 (5)0.0001 (4)
O70.0187 (6)0.0186 (6)0.0111 (6)0.0037 (5)0.0034 (4)0.0017 (4)
O80.0163 (6)0.0201 (6)0.0187 (6)0.0045 (5)0.0072 (5)0.0055 (5)
O90.0181 (6)0.0116 (6)0.0232 (6)0.0002 (5)0.0046 (5)0.0058 (5)
Geometric parameters (Å, º) top
Mo1—O11.6889 (18)K2—O8vi2.7005 (14)
Mo1—O21.6883 (18)K2—O4vii2.7419 (8)
Mo1—O32.2665 (17)K2—O82.7799 (14)
Mo1—O42.1837 (16)K2—O5vii2.8710 (13)
Mo1—O62.0365 (12)K2—O7viii2.9106 (14)
Mo1—O6i2.0365 (12)K2—O9viii2.9220 (14)
S1—O31.5044 (17)K2—O13.0229 (11)
S1—O41.5254 (16)K2—O6vii3.0239 (13)
S1—O51.4497 (12)O1—K2i3.0229 (11)
S1—O5i1.4497 (12)O3—K1i2.9794 (7)
S2—O61.5532 (12)O4—K2ix2.7419 (8)
S2—O71.4621 (12)O4—K2vi2.7419 (8)
S2—O81.4575 (13)O5—K1iii2.6408 (12)
S2—O91.4577 (12)O5—K2vi2.8710 (13)
K1—O5ii2.6408 (12)O6—K2vi3.0239 (13)
K1—O7iii2.7083 (12)O7—K1ii2.7083 (12)
K1—O9iv2.7102 (12)O7—K2v2.9106 (14)
K1—O52.7915 (13)O8—K2vii2.7005 (14)
K1—O72.8476 (13)O8—K1viii3.2305 (14)
K1—O32.9794 (7)O9—K1iv2.7102 (12)
K1—O9v3.0176 (13)O9—K2v2.9220 (13)
K1—O63.2064 (12)O9—K1viii3.0176 (13)
K1—O8v3.2305 (14)
O5ii—K1—O7iii100.00 (4)O1—Mo1—O6i94.84 (4)
O5ii—K1—O9iv175.76 (4)O6—Mo1—O6i158.22 (7)
O7iii—K1—O9iv83.52 (4)O2—Mo1—O4155.71 (8)
O5ii—K1—O5110.20 (4)O1—Mo1—O498.52 (8)
O7iii—K1—O586.53 (4)O6—Mo1—O479.65 (3)
O9iv—K1—O567.47 (4)O6i—Mo1—O479.65 (3)
O5ii—K1—O786.68 (4)O2—Mo1—O392.29 (8)
O7iii—K1—O7154.84 (5)O1—Mo1—O3161.94 (8)
O9iv—K1—O791.09 (4)O6—Mo1—O382.38 (3)
O5—K1—O7114.09 (4)O6i—Mo1—O382.38 (3)
O5ii—K1—O368.16 (4)O4—Mo1—O363.43 (6)
O7iii—K1—O3118.86 (4)O3—S1—O4101.14 (9)
O9iv—K1—O3108.11 (4)O5—S1—O5i114.68 (10)
O5—K1—O349.76 (4)O5—S1—O3110.93 (6)
O7—K1—O386.20 (4)O5i—S1—O3110.93 (6)
O5ii—K1—O9v64.98 (4)O5—S1—O4109.14 (6)
O7iii—K1—O9v84.97 (4)O5i—S1—O4109.14 (6)
O9iv—K1—O9v117.94 (5)O8—S2—O9111.62 (8)
O5—K1—O9v169.23 (4)O8—S2—O7113.20 (8)
O7—K1—O9v75.89 (4)O9—S2—O7111.58 (8)
O3—K1—O9v130.39 (4)O8—S2—O6107.77 (7)
O5ii—K1—O6102.42 (4)O9—S2—O6105.97 (7)
O7iii—K1—O6150.31 (4)O7—S2—O6106.20 (7)
O9iv—K1—O673.47 (4)Mo1—O1—K2i126.04 (3)
O5—K1—O667.60 (3)Mo1—O1—K2126.04 (3)
O7—K1—O646.49 (3)K2i—O1—K2106.66 (6)
O3—K1—O654.49 (4)S1—O3—Mo196.32 (8)
O9v—K1—O6122.24 (3)S1—O3—K194.81 (4)
O5ii—K1—O8v109.03 (4)Mo1—O3—K1110.65 (3)
O7iii—K1—O8v67.02 (4)S1—O3—K1i94.81 (4)
O9iv—K1—O8v74.46 (4)Mo1—O3—K1i110.65 (3)
O5—K1—O8v135.67 (3)K1—O3—K1i136.12 (6)
O7—K1—O8v87.85 (4)S1—O4—Mo199.11 (8)
O3—K1—O8v173.55 (4)S1—O4—K2ix101.58 (4)
O9v—K1—O8v45.24 (3)Mo1—O4—K2ix112.62 (4)
O6—K1—O8v122.05 (3)S1—O4—K2vi101.58 (4)
O8vi—K2—O4vii123.65 (4)Mo1—O4—K2vi112.62 (4)
O8vi—K2—O8102.72 (3)K2ix—O4—K2vi124.32 (6)
O4vii—K2—O898.32 (4)S1—O5—K1iii158.35 (7)
O8vi—K2—O5vii110.47 (4)S1—O5—K1104.29 (6)
O4vii—K2—O5vii51.12 (4)K1iii—O5—K188.78 (4)
O8—K2—O5vii143.83 (4)S1—O5—K2vi98.14 (6)
O8vi—K2—O7viii72.12 (4)K1iii—O5—K2vi95.88 (4)
O4vii—K2—O7viii155.26 (4)K1—O5—K2vi101.88 (4)
O8—K2—O7viii95.87 (4)S2—O6—Mo1127.63 (7)
O5vii—K2—O7viii107.47 (3)S2—O6—K2vi121.83 (6)
O8vi—K2—O9viii106.95 (4)Mo1—O6—K2vi107.00 (5)
O4vii—K2—O9viii106.35 (4)S2—O6—K189.66 (5)
O8—K2—O9viii119.86 (4)Mo1—O6—K1109.45 (5)
O5vii—K2—O9viii63.67 (3)K2vi—O6—K189.74 (3)
O7viii—K2—O9viii48.91 (3)S2—O7—K1ii154.47 (8)
O8vi—K2—O181.93 (5)S2—O7—K1106.67 (6)
O4vii—K2—O158.59 (4)K1ii—O7—K186.31 (3)
O8—K2—O168.58 (4)S2—O7—K2v99.59 (6)
O5vii—K2—O1101.75 (4)K1ii—O7—K2v103.16 (4)
O7viii—K2—O1146.11 (4)K1—O7—K2v86.41 (4)
O9viii—K2—O1164.67 (4)S2—O8—K2vii124.63 (7)
O8vi—K2—O6vii179.32 (4)S2—O8—K2110.89 (7)
O4vii—K2—O6vii55.70 (4)K2vii—O8—K2124.48 (5)
O8—K2—O6vii77.34 (4)S2—O8—K1viii92.60 (6)
O5vii—K2—O6vii69.31 (3)K2vii—O8—K1viii95.48 (4)
O7viii—K2—O6vii108.55 (3)K2—O8—K1viii81.61 (4)
O9viii—K2—O6vii73.56 (3)S2—O9—K1iv157.94 (8)
O1—K2—O6vii97.48 (4)S2—O9—K2v99.22 (6)
O2—Mo1—O1105.77 (10)K1iv—O9—K2v102.59 (4)
O2—Mo1—O698.04 (4)S2—O9—K1viii101.52 (6)
O1—Mo1—O694.84 (4)K1iv—O9—K1viii82.98 (3)
O2—Mo1—O6i98.04 (4)K2v—O9—K1viii87.16 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x1/2, y, z1/2; (iii) x+1/2, y, z1/2; (iv) x+1, y, z; (v) x+1/2, y, z1/2; (vi) x+1/2, y, z+1/2; (vii) x1/2, y, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK4[MoO2(SO4)3]
Mr572.52
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)120
a, b, c (Å)7.5931 (5), 17.1276 (11), 10.5132 (7)
V3)1367.26 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.28 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionGaussian
(XPREP; Bruker, 2002)
Tmin, Tmax0.512, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
16179, 1693, 1681
Rint0.019
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.11
No. of reflections1693
No. of parameters110
Δρmax, Δρmin (e Å3)0.59, 0.46

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mo1—O11.6889 (18)S2—O61.5532 (12)
Mo1—O21.6883 (18)S2—O71.4621 (12)
Mo1—O32.2665 (17)S2—O81.4575 (13)
Mo1—O42.1837 (16)S2—O91.4577 (12)
Mo1—O62.0365 (12)K1—O5i2.6408 (12)
S1—O31.5044 (17)K1—O8ii3.2305 (14)
S1—O41.5254 (16)K2—O8iii2.7005 (14)
S1—O51.4497 (12)K2—O6iv3.0239 (13)
O2—Mo1—O1105.77 (10)O2—Mo1—O392.29 (8)
O2—Mo1—O698.04 (4)O1—Mo1—O3161.94 (8)
O1—Mo1—O694.84 (4)O6—Mo1—O382.38 (3)
O6—Mo1—O6v158.22 (7)O4—Mo1—O363.43 (6)
O2—Mo1—O4155.71 (8)O3—S1—O4101.14 (9)
O1—Mo1—O498.52 (8)O5—S1—O5v114.68 (10)
O6—Mo1—O479.65 (3)
Symmetry codes: (i) x1/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x, y+1/2, z.
 

Footnotes

Current address: Tårnby Gymnasium & HF, Tejn Allé 5, DK-2770 Kastrup, Denmark.

Acknowledgements

The authors thank Astrid Schønberg and Bodil Holten for help and advice.

References

First citationBerg, R. W. & Thorup, N. (2005). Inorg. Chem. 44, 3485–3493.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorup, F., Berg, R. W. & Nielsen, K. (1990). Acta Chem. Scand. 44, 328–331.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNielsen, K., Fehrmann, R. & Eriksen, K. M. (1993). Inorg. Chem. 32, 4825–4828.  CrossRef CAS Web of Science Google Scholar
First citationNørbygaard, T., Berg, R. W. & Nielsen, K. (1998). Molten Salts XI Electrochem. Soc. Proc. 98–11, 553–565.  Google Scholar
First citationRasmussen, S. B., Rasmussen, R. M., Fehrmann, R. & Nielsen, K. (2003). Inorg. Chem. 42, 7123–7128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalles, L., Robert, F., Semmer, V., Jeannin, Y. & Bregeault, J. (1996). Bull. Soc. Chim. Fr. 133, 319–328.  CAS Google Scholar
First citationSchäffer, S. J. C. & Berg, R. W. (2005). Acta Cryst. E61, i49–i51.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamasi, G. & Cini, R. (2003). Dalton Trans. pp. 2928–2936.  Web of Science CSD CrossRef Google Scholar
First citationTopsøe, H. F. A. & Nielsen, A. (1947). Trans. Dan. Akad. Technol. Sci. 1, 18–24.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds