organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-(9S,10S)-Methyl 1-propyl-1,2,3,4-tetra­hydro-β-carboline-3-carboxyl­ate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden
*Correspondence e-mail: sadaf03_2000@yahoo.com

(Received 26 October 2007; accepted 6 December 2007; online 4 January 2008)

The title compound, C16H20N2O2, was synthesized from (S)-tryptophan methyl ester hydro­chloride and butyraldehyde. The absolute configuration 9S,10S was assigned on the basis of the unchanging chirality of the C9 centre. The NH group of the indole ring is involved in inter­molecular N—H⋯O hydrogen bonding, while the NH group of the six-membered ring is not. This latter ring has a half-chair conformation.

Related literature

For related literature, see: Agurell et al. (1969[Agurell, S., Holmstedt, B., Lindgren, J. E. & Schultes, R. E. (1969). Acta Chem. Scand. 23, 903-916.]); Bein (1953[Bein, H. J. (1953). Experientia, 9, 107-110.]); Herraiz (2000[Herraiz, T. (2000). J. Agric. Food Chem. 48, 4900-4904.]); Johnson et al. (1963[Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. (1963). Cancer Res. 23, 1390-1427.]); Petter & Engelmann (1974[Petter, A. & Engelmann, K. (1974). Arzneim.-Forsch. 24, 876-880.]). For synthetic details, see: Greenstein & Winiz (1961[Greenstein, J. P. & Winiz, M. (1961). Chemistry of Amino Acids, Vol. II, p. 926. Weinheim: John Wiley and Sons Inc.]); Snyder et al. (1948[Snyder, H. R., Corwin, H. H., Katz, L., Parmerter, S. M. & Spaeth, E. (1948). J. Chem. Soc. pp. 219-221.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O2

  • Mr = 272.34

  • Tetragonal, P 43 21 2

  • a = 9.3410 (11) Å

  • c = 36.125 (5) Å

  • V = 3152.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 10764 measured reflections

  • 1778 independent reflections

  • 1285 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.08

  • 1778 reflections

  • 189 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (3) 2.20 (3) 3.037 (3) 177 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 4}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Keeping in mind the diverse biological activities of alkaloids containing an indole or indoline nucleus (Agurell et al., 1969; Bein, 1953; Johnson et al., 1963; Herraiz, 2000), we have designed and synthesized some optically active compounds containing the tetrahydro-β-carboline nucleus. We report here the crystal structure of the title compound.

Related literature top

For related literature, see: Agurell et al. (1969); Bein (1953); Herraiz (2000); Johnson et al. (1963); Petter & Engelmann (1974). For synthesis details, see: Greenstein & Winiz (1961); Snyder et al. (1948).

Experimental top

The title compound was prepared by condensation of (S)-tryptophan methyl ester hydrochloride with an aldehyde under polar protic conditions (Greenstein & Winiz, 1961; Snyder et al., 1948). (S)-tryptophan methyl ester hydrochloride (1.5 g, 0.0059 mol) and butyraldehyde (1.50 ml, 0.0059 mol) were dissolved in methanol/water solution (50 ml, 75/25%, v/v). The mixture was refluxed for 48 h, cooled and the solvent evaporated under vacuum. The residue was dissolved in 14% ammonium hydroxide, extracted with chloroform and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to yield an oily residue which was subjected to column chromatography. The purified oil was crystallized from benzene/pet. ether (b.p. 373–393 K) to give the title compound: yield 1.2 g, 74.8%, m.p. 413 K, Rf 0.84 methanol / chloroform (3:7). [a]D28-132.8 (c = 0.00348, acetonitrile). The product after purification was subjected to different spectroscopic techniques. This data together with the result of elemental analysis confirmed the formation of a pure stereoisomer.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement. All C-bonded H atoms were placed at calculated positions. The two N-bonded H atoms were located from the Fourier map and were refined with the restraint N—H = 0.89 (1) Å. The isotropic displacement parameters of the H atoms were fixed at Uiso(H) = 1.2Ueq(C/N) (1.5Ueq(C) for the methyl groups).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. The intermolecular N—H···O hydrogen bond (dashed line). H atoms not involved in hydrogen bonding are omitted.
cis-(9S,10S)-Methyl 1-propyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylate top
Crystal data top
C16H20N2O2Dx = 1.148 Mg m3
Mr = 272.34Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 87 reflections
Hall symbol: P 4nw 2abwθ = 3.8–15.5°
a = 9.3410 (11) ŵ = 0.08 mm1
c = 36.125 (5) ÅT = 298 K
V = 3152.1 (7) Å3Block, colourless
Z = 80.30 × 0.30 × 0.30 mm
F(000) = 1168
Data collection top
Bruker–Nonius KappaCCD
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 4.5°
ϕ & ω scansh = 1011
10764 measured reflectionsk = 1011
1778 independent reflectionsl = 4243
1285 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.674P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1778 reflectionsΔρmax = 0.18 e Å3
189 parametersΔρmin = 0.14 e Å3
2 restraints
Crystal data top
C16H20N2O2Z = 8
Mr = 272.34Mo Kα radiation
Tetragonal, P43212µ = 0.08 mm1
a = 9.3410 (11) ÅT = 298 K
c = 36.125 (5) Å0.30 × 0.30 × 0.30 mm
V = 3152.1 (7) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1285 reflections with I > 2σ(I)
10764 measured reflectionsRint = 0.043
1778 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.18 e Å3
1778 reflectionsΔρmin = 0.14 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0247 (3)1.1462 (3)0.13466 (8)0.0614 (8)
C21.0963 (4)1.2716 (4)0.12461 (10)0.0795 (10)
C31.0883 (4)1.3850 (4)0.14882 (13)0.0947 (12)
C41.0138 (5)1.3760 (4)0.18233 (12)0.0943 (12)
C50.9434 (4)1.2512 (4)0.19235 (10)0.0787 (10)
C60.9480 (3)1.1324 (3)0.16848 (8)0.0600 (8)
C70.8933 (3)0.9871 (3)0.16950 (7)0.0570 (7)
C80.9361 (3)0.9219 (3)0.13770 (7)0.0559 (7)
C90.9096 (3)0.7685 (3)0.12739 (8)0.0618 (8)
C100.8291 (3)0.7477 (3)0.19244 (7)0.0607 (8)
C110.8098 (4)0.9089 (3)0.19896 (7)0.0654 (8)
C120.8563 (4)0.7499 (3)0.08743 (7)0.0733 (9)
C130.8352 (5)0.5956 (4)0.07535 (9)0.0947 (12)
C140.7879 (7)0.5844 (6)0.03549 (11)0.156 (2)
C150.7327 (3)0.6573 (4)0.21666 (7)0.0668 (8)
C160.6592 (6)0.6136 (5)0.27900 (9)0.140 (2)
O10.6595 (3)0.5587 (3)0.20643 (5)0.0843 (7)
O20.7402 (3)0.6986 (3)0.25177 (6)0.1103 (10)
N11.0152 (3)1.0167 (3)0.11634 (7)0.0639 (7)
N20.7998 (3)0.7132 (3)0.15343 (7)0.0660 (7)
H21.14721.27810.10250.095*
H31.13391.47030.14270.114*
H41.01141.45470.19810.113*
H50.89361.24610.21460.094*
H90.99830.71390.13060.074*
H100.92880.72260.19790.073*
H11A0.70930.93420.19750.078*
H11B0.84490.93490.22330.078*
H12A0.76600.80010.08480.088*
H12B0.92450.79490.07090.088*
H13A0.92440.54380.07850.114*
H13B0.76400.55090.09110.114*
H14A0.70470.64290.03170.235*
H14B0.76530.48660.02980.235*
H14C0.86370.61660.01960.235*
H16A0.55890.61860.27340.211*
H16B0.67570.65110.30340.211*
H16C0.69030.51570.27800.211*
H1N1.052 (3)0.996 (3)0.0958 (9)0.077*
H2N0.799 (3)0.620 (4)0.1515 (9)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0602 (19)0.0582 (19)0.0658 (18)0.0029 (14)0.0028 (15)0.0070 (15)
C20.084 (2)0.067 (2)0.087 (2)0.0118 (18)0.0036 (18)0.0132 (19)
C30.094 (3)0.068 (2)0.121 (3)0.015 (2)0.010 (3)0.017 (2)
C40.105 (3)0.055 (2)0.123 (3)0.001 (2)0.019 (3)0.012 (2)
C50.087 (3)0.068 (2)0.081 (2)0.0092 (19)0.0023 (19)0.0071 (19)
C60.0579 (18)0.0541 (17)0.0679 (18)0.0069 (14)0.0079 (15)0.0013 (15)
C70.0585 (18)0.0534 (17)0.0590 (16)0.0006 (13)0.0017 (13)0.0011 (14)
C80.0575 (17)0.0558 (17)0.0542 (15)0.0043 (14)0.0037 (14)0.0027 (14)
C90.0640 (19)0.0601 (18)0.0614 (16)0.0018 (15)0.0041 (14)0.0013 (14)
C100.0611 (19)0.068 (2)0.0535 (15)0.0128 (15)0.0004 (14)0.0025 (14)
C110.072 (2)0.069 (2)0.0553 (16)0.0053 (16)0.0071 (15)0.0030 (15)
C120.086 (2)0.076 (2)0.0581 (17)0.0049 (18)0.0105 (17)0.0059 (16)
C130.122 (3)0.084 (3)0.078 (2)0.008 (2)0.005 (2)0.018 (2)
C140.239 (7)0.143 (5)0.087 (3)0.011 (5)0.025 (4)0.042 (3)
C150.070 (2)0.079 (2)0.0511 (17)0.0185 (17)0.0037 (15)0.0033 (16)
C160.208 (6)0.148 (4)0.065 (2)0.090 (4)0.027 (3)0.006 (2)
O10.0951 (17)0.0920 (17)0.0658 (13)0.0389 (15)0.0028 (12)0.0037 (12)
O20.150 (2)0.127 (2)0.0542 (12)0.0739 (18)0.0075 (14)0.0014 (14)
N10.0699 (17)0.0634 (16)0.0583 (14)0.0033 (13)0.0096 (13)0.0024 (13)
N20.0749 (17)0.0676 (17)0.0555 (14)0.0187 (14)0.0069 (12)0.0051 (13)
Geometric parameters (Å, º) top
C1—N11.382 (4)C16—O21.473 (4)
C1—C21.397 (4)C2—H20.930
C1—C61.422 (4)C3—H30.930
C2—C31.376 (5)C4—H40.930
C3—C41.399 (5)C5—H50.930
C4—C51.386 (5)C9—H90.980
C5—C61.406 (4)C10—H100.980
C6—C71.452 (4)C11—H11A0.970
C7—C81.360 (4)C11—H11B0.970
C7—C111.508 (4)C12—H12A0.970
C8—N11.388 (3)C12—H12B0.970
C8—C91.501 (4)C13—H13A0.970
C9—N21.484 (4)C13—H13B0.970
C9—C121.537 (4)C14—H14A0.960
C10—N21.471 (4)C14—H14B0.960
C10—C151.513 (4)C14—H14C0.960
C10—C111.535 (4)C16—H16A0.960
C12—C131.519 (5)C16—H16B0.960
C13—C141.510 (5)C16—H16C0.960
C15—O11.206 (3)N1—H1N0.84 (3)
C15—O21.327 (3)N2—H2N0.87 (3)
N1—C1—C2129.8 (3)C6—C5—H5120.4
N1—C1—C6107.5 (3)N2—C9—H9109.1
C2—C1—C6122.7 (3)C8—C9—H9109.1
C3—C2—C1117.0 (3)C12—C9—H9109.1
C2—C3—C4122.0 (3)N2—C10—H10108.4
C5—C4—C3120.9 (4)C15—C10—H10108.4
C4—C5—C6119.2 (3)C11—C10—H10108.4
C5—C6—C1118.1 (3)C7—C11—H11A110.1
C5—C6—C7135.4 (3)C10—C11—H11A110.1
C1—C6—C7106.5 (2)C7—C11—H11B110.1
C8—C7—C6107.1 (2)C10—C11—H11B110.1
C8—C7—C11122.1 (3)H11A—C11—H11B108.5
C6—C7—C11130.8 (3)C13—C12—H12A108.6
C7—C8—N1109.9 (3)C9—C12—H12A108.6
C7—C8—C9126.0 (3)C13—C12—H12B108.6
N1—C8—C9124.0 (2)C9—C12—H12B108.6
N2—C9—C8106.8 (2)H12A—C12—H12B107.5
N2—C9—C12109.4 (2)C14—C13—H13A109.2
C8—C9—C12113.2 (3)C12—C13—H13A109.2
N2—C10—C15108.7 (2)C14—C13—H13B109.2
N2—C10—C11109.9 (2)C12—C13—H13B109.2
C15—C10—C11112.9 (3)H13A—C13—H13B107.9
C7—C11—C10107.8 (2)C13—C14—H14A109.5
C13—C12—C9114.8 (3)C13—C14—H14B109.5
C14—C13—C12112.2 (3)H14A—C14—H14B109.5
O1—C15—O2123.0 (3)C13—C14—H14C109.5
O1—C15—C10125.9 (3)H14A—C14—H14C109.5
O2—C15—C10111.0 (3)H14B—C14—H14C109.5
C15—O2—C16117.0 (3)O2—C16—H16A109.5
C1—N1—C8109.1 (2)O2—C16—H16B109.5
C10—N2—C9113.7 (2)H16A—C16—H16B109.5
C3—C2—H2121.5O2—C16—H16C109.5
C1—C2—H2121.5H16A—C16—H16C109.5
C2—C3—H3119.0H16B—C16—H16C109.5
C4—C3—H3119.0C1—N1—H1N127 (2)
C5—C4—H4119.6C8—N1—H1N124 (2)
C3—C4—H4119.6C10—N2—H2N107 (2)
C4—C5—H5120.4C9—N2—H2N108 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (3)2.20 (3)3.037 (3)177 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1/4.

Experimental details

Crystal data
Chemical formulaC16H20N2O2
Mr272.34
Crystal system, space groupTetragonal, P43212
Temperature (K)298
a, c (Å)9.3410 (11), 36.125 (5)
V3)3152.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10764, 1778, 1285
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.08
No. of reflections1778
No. of parameters189
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: COLLECT (Nonius, 1999), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2007), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (3)2.20 (3)3.037 (3)177 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1/4.
 

Acknowledgements

MH is grateful to the Alexander von Humboldt Foundation, Germany, and AF thanks the Swedish Research Council for financial assistance.

References

First citationAgurell, S., Holmstedt, B., Lindgren, J. E. & Schultes, R. E. (1969). Acta Chem. Scand. 23, 903–916.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBein, H. J. (1953). Experientia, 9, 107–110.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenstein, J. P. & Winiz, M. (1961). Chemistry of Amino Acids, Vol. II, p. 926. Weinheim: John Wiley and Sons Inc.  Google Scholar
First citationHerraiz, T. (2000). J. Agric. Food Chem. 48, 4900–4904.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. (1963). Cancer Res. 23, 1390–1427.  PubMed CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPetter, A. & Engelmann, K. (1974). Arzneim.-Forsch. 24, 876–880.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSnyder, H. R., Corwin, H. H., Katz, L., Parmerter, S. M. & Spaeth, E. (1948). J. Chem. Soc. pp. 219–221.  CrossRef Google Scholar
First citationWestrip, S. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds