Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C6H13N4+·[B(C7H4O3)2], contains hexa­methyl­enetetra­minium cations and isolated disalicylatoborate anions. The coordination geometry around the B atom is tetra­hedral and the dihedral angle between the planes of the benzene rings of the two salicylate ligands is 86.1 (1)°. In addition to electrostatic inter­actions between the cations and anions, N—H...O hydrogen bonds are formed between the NH group of the cation and the O atoms of one carboxyl­ate group in the anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042146/bi2234sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042146/bi2234Isup2.hkl
Contains datablock I

CCDC reference: 608071

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.046
  • wR factor = 0.129
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for C5 - C6 .. 5.24 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Inorganic borate compounds have been studied extensively since they can exhibit interesting physical properties, such as nonlinear optical behavior for CsLiB6O10 (Mori et al.,1995), CsB3O5 (Wu et al.,1993) and β-BaB2O4(Chen & Wu,1985). By contrast, studies of organic borates have been less extensive (Zhang et al., 2005; Downard et al., 2002; Green et al., 2000, Li & Liu, 2006). To date, alkali-metal bis(salicylato)borates have received the most attention (Zhang et al., 2005; Downard et al., 2002), since lithium organoborates have been considered as electrolytes for lithium batteries (Barthel et al., 2000). Herein, we report the synthesis and crystal structure of the salt of bis(salicylato)borate with the organic hexamethylenetetraminium cation.

The title compound is composed of [C6H13N4]+ cations and isolated [B(C7H4O3)2]- anions (Fig. 1). In the anion, the sp3-hybridized B atom is bonded to four O atoms in a tetrahedral geometry, with B—O distances in the range 1.444 (4)–1.480 (4) Å and O—B—O angles in the range 105.7 (2)–113.7 (2)°. Each salicylato ligand is approximately planar, and the ring plaes lie almost perpendicular to each other (dihedral angle 86.1 (1) °). In addition to electrostatic interactions between the cations and anions, N—H···O hydrogen bonds are formed between the N—H group of the cation and the two O atoms of one carboxylate group in the anion.

Related literature top

For related literature, see: Barthel et al. (2000); Chen & Wu (1985); Downard et al. (2002); Green et al. (2000); Li & Liu (2006); Mori et al. (1995); Wu et al. (1993); Zhang et al. (2005).

Experimental top

A solution of boric acid (0.337 g) in 5 ml distilled water was added to a stirred solution of salicylic acid (1.394 g) in 10 ml of a mixed ethanol/water (1:1) solvent. The reaction mixture was stirred at 353 K for 20 min, then hexamethylenetetramine (0.725 g) was added slowly. After 4 h continued heating and stirring, the pH of the mixture had changed from 2 to 6, and the clear solution was then allowed to stand for 15 days at room temperature. The title compound was isolated as colorless transparent crystals. Elemental anlalysis calculated: C 56.62, N 13.21, H 5.00%; found C 56.76, N 13.00, H 4.86%.

Refinement top

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.97 Å or N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C/N).

Structure description top

Inorganic borate compounds have been studied extensively since they can exhibit interesting physical properties, such as nonlinear optical behavior for CsLiB6O10 (Mori et al.,1995), CsB3O5 (Wu et al.,1993) and β-BaB2O4(Chen & Wu,1985). By contrast, studies of organic borates have been less extensive (Zhang et al., 2005; Downard et al., 2002; Green et al., 2000, Li & Liu, 2006). To date, alkali-metal bis(salicylato)borates have received the most attention (Zhang et al., 2005; Downard et al., 2002), since lithium organoborates have been considered as electrolytes for lithium batteries (Barthel et al., 2000). Herein, we report the synthesis and crystal structure of the salt of bis(salicylato)borate with the organic hexamethylenetetraminium cation.

The title compound is composed of [C6H13N4]+ cations and isolated [B(C7H4O3)2]- anions (Fig. 1). In the anion, the sp3-hybridized B atom is bonded to four O atoms in a tetrahedral geometry, with B—O distances in the range 1.444 (4)–1.480 (4) Å and O—B—O angles in the range 105.7 (2)–113.7 (2)°. Each salicylato ligand is approximately planar, and the ring plaes lie almost perpendicular to each other (dihedral angle 86.1 (1) °). In addition to electrostatic interactions between the cations and anions, N—H···O hydrogen bonds are formed between the N—H group of the cation and the two O atoms of one carboxylate group in the anion.

For related literature, see: Barthel et al. (2000); Chen & Wu (1985); Downard et al. (2002); Green et al. (2000); Li & Liu (2006); Mori et al. (1995); Wu et al. (1993); Zhang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Hexamethylenetetraminium disalicylatoborate top
Crystal data top
C6H13N4+·C14H8BO6Z = 2
Mr = 424.22F(000) = 444
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.697 (4) ÅCell parameters from 1460 reflections
b = 10.164 (5) Åθ = 2.4–23.4°
c = 12.212 (6) ŵ = 0.11 mm1
α = 71.111 (7)°T = 298 K
β = 72.765 (6)°Plate, colourless
γ = 79.160 (7)°0.41 × 0.29 × 0.12 mm
V = 970.4 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3382 independent reflections
Radiation source: fine-focus sealed tube2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.957, Tmax = 0.987k = 128
5112 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.4284P]
where P = (Fo2 + 2Fc2)/3
3382 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H13N4+·C14H8BO6γ = 79.160 (7)°
Mr = 424.22V = 970.4 (8) Å3
Triclinic, P1Z = 2
a = 8.697 (4) ÅMo Kα radiation
b = 10.164 (5) ŵ = 0.11 mm1
c = 12.212 (6) ÅT = 298 K
α = 71.111 (7)°0.41 × 0.29 × 0.12 mm
β = 72.765 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2132 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.987Rint = 0.016
5112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
3382 reflectionsΔρmin = 0.16 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6656 (3)0.7669 (2)0.5102 (2)0.0535 (6)
H10.55960.75270.54430.064*
N20.8490 (3)0.9067 (2)0.34266 (18)0.0470 (6)
N30.9283 (3)0.6597 (2)0.4279 (2)0.0527 (6)
N40.9022 (3)0.8249 (2)0.53993 (19)0.0492 (6)
O10.4850 (2)0.6951 (2)0.29242 (16)0.0559 (5)
O20.3403 (2)0.8933 (2)0.3087 (2)0.0759 (7)
O30.5212 (2)0.6141 (2)0.11880 (17)0.0584 (5)
O40.5638 (2)0.45922 (19)0.30073 (17)0.0566 (5)
O50.6526 (2)0.2370 (2)0.35252 (18)0.0632 (6)
O60.7469 (2)0.63698 (17)0.18453 (16)0.0481 (5)
B10.5799 (4)0.6034 (3)0.2206 (3)0.0477 (8)
C10.3984 (3)0.8123 (3)0.2488 (3)0.0515 (7)
C20.3747 (3)0.8344 (3)0.1294 (2)0.0475 (7)
C30.4371 (3)0.7340 (3)0.0697 (2)0.0466 (7)
C40.4102 (3)0.7520 (3)0.0412 (3)0.0609 (8)
H40.45250.68390.08100.073*
C50.3218 (4)0.8695 (4)0.0913 (3)0.0793 (10)
H50.30340.88100.16530.095*
C60.2594 (5)0.9713 (4)0.0342 (4)0.0895 (12)
H60.19951.05120.06950.107*
C70.2856 (4)0.9548 (3)0.0761 (3)0.0740 (9)
H70.24391.02390.11480.089*
C80.6813 (3)0.3568 (3)0.2937 (2)0.0454 (6)
C90.8423 (3)0.3944 (3)0.2199 (2)0.0387 (6)
C100.8691 (3)0.5344 (3)0.1716 (2)0.0386 (6)
C111.0252 (3)0.5703 (3)0.1124 (2)0.0451 (6)
H111.04490.66380.08250.054*
C121.1496 (3)0.4677 (3)0.0983 (2)0.0494 (7)
H121.25370.49240.05860.059*
C131.1237 (3)0.3283 (3)0.1418 (2)0.0512 (7)
H131.20900.25970.12970.061*
C140.9706 (3)0.2917 (3)0.2033 (2)0.0466 (6)
H140.95250.19790.23400.056*
C150.6829 (3)0.8848 (3)0.3955 (2)0.0543 (7)
H15A0.63880.86230.34020.065*
H15B0.62240.96970.41200.065*
C160.7608 (3)0.6371 (3)0.4823 (3)0.0552 (7)
H16A0.75190.56050.55540.066*
H16B0.71690.61190.42840.066*
C170.7364 (4)0.8026 (3)0.5945 (2)0.0602 (8)
H17A0.67680.88640.61390.072*
H17B0.72740.72690.66820.072*
C180.9388 (3)0.7771 (3)0.3193 (2)0.0581 (8)
H18A0.89660.75360.26360.070*
H18B1.05160.79230.28190.070*
C190.9915 (4)0.6990 (3)0.5116 (3)0.0616 (8)
H19A0.98460.62280.58480.074*
H19B1.10470.71420.47620.074*
C200.9137 (3)0.9386 (3)0.4284 (2)0.0529 (7)
H20A1.02620.95580.39230.063*
H20B0.85441.02320.44630.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0462 (13)0.0528 (14)0.0587 (14)0.0155 (11)0.0064 (11)0.0128 (12)
N20.0548 (14)0.0414 (13)0.0469 (13)0.0137 (11)0.0184 (10)0.0054 (10)
N30.0558 (14)0.0398 (13)0.0622 (15)0.0049 (11)0.0133 (11)0.0152 (12)
N40.0609 (15)0.0421 (13)0.0519 (13)0.0069 (11)0.0258 (11)0.0118 (11)
O10.0525 (11)0.0609 (13)0.0593 (12)0.0089 (10)0.0192 (9)0.0274 (10)
O20.0596 (13)0.0812 (16)0.0983 (16)0.0059 (11)0.0110 (11)0.0560 (14)
O30.0576 (12)0.0595 (13)0.0687 (13)0.0102 (10)0.0274 (10)0.0314 (11)
O40.0387 (10)0.0484 (12)0.0714 (13)0.0031 (9)0.0071 (9)0.0089 (10)
O50.0564 (12)0.0436 (12)0.0716 (13)0.0113 (9)0.0012 (10)0.0028 (10)
O60.0428 (10)0.0386 (10)0.0615 (11)0.0017 (8)0.0136 (8)0.0133 (9)
B10.0408 (17)0.0463 (19)0.0586 (19)0.0062 (14)0.0179 (15)0.0194 (16)
C10.0338 (15)0.0531 (18)0.0683 (19)0.0066 (13)0.0033 (13)0.0260 (16)
C20.0363 (14)0.0405 (16)0.0623 (17)0.0061 (12)0.0107 (12)0.0106 (14)
C30.0369 (14)0.0477 (17)0.0543 (17)0.0115 (12)0.0118 (12)0.0091 (14)
C40.0569 (18)0.067 (2)0.0607 (19)0.0179 (16)0.0176 (15)0.0121 (16)
C50.085 (3)0.076 (3)0.072 (2)0.023 (2)0.0296 (19)0.002 (2)
C60.089 (3)0.065 (3)0.096 (3)0.003 (2)0.044 (2)0.018 (2)
C70.072 (2)0.0458 (19)0.096 (3)0.0008 (16)0.0225 (19)0.0111 (18)
C80.0453 (15)0.0425 (16)0.0464 (15)0.0067 (13)0.0117 (12)0.0085 (13)
C90.0399 (14)0.0406 (15)0.0339 (13)0.0042 (11)0.0094 (11)0.0082 (11)
C100.0403 (14)0.0413 (15)0.0361 (13)0.0035 (11)0.0128 (11)0.0110 (12)
C110.0509 (16)0.0434 (15)0.0425 (14)0.0133 (13)0.0071 (12)0.0138 (12)
C120.0410 (15)0.0607 (19)0.0465 (15)0.0104 (13)0.0026 (12)0.0200 (14)
C130.0451 (16)0.0522 (18)0.0523 (16)0.0035 (13)0.0082 (13)0.0182 (14)
C140.0525 (17)0.0382 (15)0.0449 (15)0.0039 (13)0.0123 (13)0.0066 (12)
C150.0504 (17)0.0540 (18)0.0580 (17)0.0048 (13)0.0236 (14)0.0065 (15)
C160.0667 (19)0.0416 (16)0.0596 (17)0.0136 (14)0.0147 (14)0.0141 (14)
C170.074 (2)0.062 (2)0.0469 (16)0.0067 (16)0.0154 (15)0.0184 (15)
C180.0597 (18)0.0584 (19)0.0549 (17)0.0112 (15)0.0038 (14)0.0211 (15)
C190.0613 (19)0.0535 (19)0.071 (2)0.0036 (15)0.0311 (16)0.0114 (16)
C200.0615 (18)0.0426 (16)0.0614 (17)0.0148 (13)0.0249 (14)0.0102 (14)
Geometric parameters (Å, º) top
N1—C161.502 (3)C5—C61.372 (5)
N1—C171.507 (3)C5—H50.930
N1—C151.510 (3)C6—C71.384 (5)
N1—H10.910C6—H60.930
N2—C151.424 (3)C7—H70.930
N2—C181.467 (3)C8—C91.466 (3)
N2—C201.468 (3)C9—C101.388 (3)
N3—C161.439 (3)C9—C141.393 (3)
N3—C181.461 (3)C10—C111.391 (3)
N3—C191.479 (3)C11—C121.367 (3)
N4—C171.425 (3)C11—H110.930
N4—C191.454 (3)C12—C131.379 (4)
N4—C201.464 (3)C12—H120.930
O1—C11.326 (3)C13—C141.374 (4)
O1—B11.460 (3)C13—H130.930
O2—C11.217 (3)C14—H140.930
O3—C31.353 (3)C15—H15A0.970
O3—B11.444 (4)C15—H15B0.970
O4—C81.320 (3)C16—H16A0.970
O4—B11.480 (4)C16—H16B0.970
O5—C81.226 (3)C17—H17A0.970
O6—C101.354 (3)C17—H17B0.970
O6—B11.460 (3)C18—H18A0.970
C1—C21.473 (4)C18—H18B0.970
C2—C31.380 (4)C19—H19A0.970
C2—C71.395 (4)C19—H19B0.970
C3—C41.390 (4)C20—H20A0.970
C4—C51.361 (4)C20—H20B0.970
C4—H40.930
C16—N1—C17108.2 (2)O6—C10—C9121.3 (2)
C16—N1—C15108.6 (2)O6—C10—C11119.2 (2)
C17—N1—C15109.0 (2)C9—C10—C11119.5 (2)
C16—N1—H1110.4C12—C11—C10119.7 (2)
C17—N1—H1110.4C12—C11—H11120.1
C15—N1—H1110.4C10—C11—H11120.1
C15—N2—C18108.9 (2)C11—C12—C13121.3 (2)
C15—N2—C20108.7 (2)C11—C12—H12119.3
C18—N2—C20107.8 (2)C13—C12—H12119.3
C16—N3—C18108.7 (2)C14—C13—C12119.3 (3)
C16—N3—C19108.4 (2)C14—C13—H13120.4
C18—N3—C19107.9 (2)C12—C13—H13120.4
C17—N4—C19109.7 (2)C13—C14—C9120.4 (2)
C17—N4—C20109.0 (2)C13—C14—H14119.8
C19—N4—C20108.4 (2)C9—C14—H14119.8
C1—O1—B1123.2 (2)N2—C15—N1110.1 (2)
C3—O3—B1119.7 (2)N2—C15—H15A109.6
C8—O4—B1122.7 (2)N1—C15—H15A109.6
C10—O6—B1119.2 (2)N2—C15—H15B109.6
O3—B1—O6111.8 (2)N1—C15—H15B109.6
O3—B1—O1113.7 (2)H15A—C15—H15B108.1
O6—B1—O1106.8 (2)N3—C16—N1110.4 (2)
O3—B1—O4107.4 (2)N3—C16—H16A109.6
O6—B1—O4111.4 (2)N1—C16—H16A109.6
O1—B1—O4105.7 (2)N3—C16—H16B109.6
O2—C1—O1119.7 (3)N1—C16—H16B109.6
O2—C1—C2123.6 (3)H16A—C16—H16B108.1
O1—C1—C2116.7 (2)N4—C17—N1109.7 (2)
C3—C2—C7119.0 (3)N4—C17—H17A109.7
C3—C2—C1120.2 (2)N1—C17—H17A109.7
C7—C2—C1120.8 (3)N4—C17—H17B109.7
O3—C3—C2121.1 (2)N1—C17—H17B109.7
O3—C3—C4118.3 (3)H17A—C17—H17B108.2
C2—C3—C4120.5 (3)N3—C18—N2112.8 (2)
C5—C4—C3119.8 (3)N3—C18—H18A109.0
C5—C4—H4120.1N2—C18—H18A109.0
C3—C4—H4120.1N3—C18—H18B109.0
C4—C5—C6120.9 (3)N2—C18—H18B109.0
C4—C5—H5119.6H18A—C18—H18B107.8
C6—C5—H5119.6N4—C19—N3111.9 (2)
C5—C6—C7119.9 (3)N4—C19—H19A109.2
C5—C6—H6120.0N3—C19—H19A109.2
C7—C6—H6120.0N4—C19—H19B109.2
C6—C7—C2120.0 (3)N3—C19—H19B109.2
C6—C7—H7120.0H19A—C19—H19B107.9
C2—C7—H7120.0N4—C20—N2112.3 (2)
O5—C8—O4118.9 (2)N4—C20—H20A109.1
O5—C8—C9123.5 (2)N2—C20—H20A109.1
O4—C8—C9117.6 (2)N4—C20—H20B109.1
C10—C9—C14119.6 (2)N2—C20—H20B109.1
C10—C9—C8119.3 (2)H20A—C20—H20B107.9
C14—C9—C8120.9 (2)
C3—O3—B1—O694.9 (3)B1—O6—C10—C916.5 (3)
C3—O3—B1—O126.1 (3)B1—O6—C10—C11165.7 (2)
C3—O3—B1—O4142.7 (2)C14—C9—C10—O6179.1 (2)
C10—O6—B1—O387.8 (3)C8—C9—C10—O64.6 (3)
C10—O6—B1—O1147.3 (2)C14—C9—C10—C113.2 (3)
C10—O6—B1—O432.4 (3)C8—C9—C10—C11173.2 (2)
C1—O1—B1—O325.2 (4)O6—C10—C11—C12179.7 (2)
C1—O1—B1—O698.5 (3)C9—C10—C11—C122.5 (4)
C1—O1—B1—O4142.8 (2)C10—C11—C12—C130.0 (4)
C8—O4—B1—O391.8 (3)C11—C12—C13—C141.7 (4)
C8—O4—B1—O630.9 (3)C12—C13—C14—C91.0 (4)
C8—O4—B1—O1146.5 (2)C10—C9—C14—C131.4 (4)
B1—O1—C1—O2170.0 (2)C8—C9—C14—C13174.8 (2)
B1—O1—C1—C211.6 (4)C18—N2—C15—N158.8 (3)
O2—C1—C2—C3176.4 (2)C20—N2—C15—N158.5 (3)
O1—C1—C2—C31.9 (3)C16—N1—C15—N259.0 (3)
O2—C1—C2—C71.9 (4)C17—N1—C15—N258.6 (3)
O1—C1—C2—C7179.8 (2)C18—N3—C16—N158.2 (3)
B1—O3—C3—C214.7 (4)C19—N3—C16—N158.8 (3)
B1—O3—C3—C4167.4 (2)C17—N1—C16—N359.5 (3)
C7—C2—C3—O3178.5 (2)C15—N1—C16—N358.6 (3)
C1—C2—C3—O30.2 (4)C19—N4—C17—N159.7 (3)
C7—C2—C3—C40.6 (4)C20—N4—C17—N158.9 (3)
C1—C2—C3—C4177.7 (2)C16—N1—C17—N459.3 (3)
O3—C3—C4—C5178.0 (3)C15—N1—C17—N458.5 (3)
C2—C3—C4—C50.0 (4)C16—N3—C18—N259.2 (3)
C3—C4—C5—C60.4 (5)C19—N3—C18—N258.1 (3)
C4—C5—C6—C70.2 (5)C15—N2—C18—N359.9 (3)
C5—C6—C7—C20.3 (5)C20—N2—C18—N357.9 (3)
C3—C2—C7—C60.8 (4)C17—N4—C19—N360.2 (3)
C1—C2—C7—C6177.5 (3)C20—N4—C19—N358.8 (3)
B1—O4—C8—O5170.9 (2)C16—N3—C19—N459.2 (3)
B1—O4—C8—C912.1 (4)C18—N3—C19—N458.3 (3)
O5—C8—C9—C10169.9 (2)C17—N4—C20—N260.5 (3)
O4—C8—C9—C106.9 (3)C19—N4—C20—N258.8 (3)
O5—C8—C9—C146.4 (4)C15—N2—C20—N460.1 (3)
O4—C8—C9—C14176.8 (2)C18—N2—C20—N457.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.911.912.778 (3)160
N1—H1···O4i0.912.533.186 (3)129
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H13N4+·C14H8BO6
Mr424.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.697 (4), 10.164 (5), 12.212 (6)
α, β, γ (°)71.111 (7), 72.765 (6), 79.160 (7)
V3)970.4 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.29 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.957, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5112, 3382, 2132
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.02
No. of reflections3382
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.911.912.778 (3)160
N1—H1···O4i0.912.533.186 (3)129
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds