Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [ZnCl2(C14H12N4)], ZnII is penta­coordinated by three N-atom donors from one 2-[3-(2-pyrid­yl)pyrazol-1-ylmeth­yl]pyridine (L) ligand and by two Cl anions in a distorted trigonal–bipyramidal geometry. Adjacent mononuclear ZnII complexes form π–π stacking inter­actions between pyridine and pyrazole rings of neighbouring L ligands, with centroid–centroid separations of 3.671 (1) and 3.681 (1) Å, generating one-dimensional chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037646/bi2215sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037646/bi2215Isup2.hkl
Contains datablock I

CCDC reference: 660066

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.073
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn1 - N3 .. 7.79 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn1 - N4 .. 5.71 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 1.84
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Nowadays, much attention is focused on the synthetic approach and the structural control of metal-organic coordination architectures with such ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward et al., 2001). In this field, Ward et al. have reported many novel functional complexes through the use of 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole-based ligands (Bell et al., 2003; Paul et al., 2004; Singh et al., 2003; Ward et al., 2001; Zou et al., 2004). In this paper, we present a zinc chloride complex of the ligand 2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine (denoted L).

In the title complex, ZnII is five-coordinated by three N donors from one L ligand and two Cl- anions (Figure 1). The coordination geometry around each ZnII center can be described as distorted trigonal bipyramidal. The coordinated tridentate L ligand gives rise to one five-membered chelate ring [Zn1/N2/C6/C5/N3], with the N2—Zn1—N3 angle equal to 72.73 (3)°, and one six-membered chelate ring [Zn1/N2/N1/C9/C10/N4], with the N2—Zn1—N4 angle equal to 82.34 (8)°. Distortions from ideal trigonal bipyramidal geometry are evident from the bond lengths and bond angles (Table 1).

The mononuclear ZnII complexes form π···π stacking interactions between adjacent pyridine and pyrazole rings of the L ligands, with centroid-centroid separations of 3.671 (1) Å (dashed open lines in Figure 2) and 3.681 (1) Å (dashed solid lines in Figure 2), and with a dihedral angle of 4.0° between the planes of the rings (Janiak, 2000; Khlobystov et al., 2001). These interactions generate one-dimensional chains along the a axis.

Related literature top

For related literature, see: Bell et al. (2003); Janiak (2000); Khlobystov et al. (2001); Paul et al. (2004); Singh et al. (2003); Song et al. (2005); Steel (2005); Ward et al. (2001); Zou et al. (2004).

Experimental top

The ligand 2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine (L) was synthesized according to a general literature procedure (Singh et al., 2003; Song et al., 2005). Reaction of L (0.1 mmol) with ZnCl2 (0.1 mmol) in the mixed solution of MeOH (15 ml) and CH3CN (5 ml) for a few minutes afforded the yellow solid, which was filtered. The resulting solution was kept at room temperature and yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days. Yield: 30%. Elemental analysis calculated: C, 45.13; H, 3.25; N, 15.04%; found: C, 45.26; H, 3.14; N, 15.11%.

Refinement top

H atoms were included in calculated positions and treated in subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

Nowadays, much attention is focused on the synthetic approach and the structural control of metal-organic coordination architectures with such ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward et al., 2001). In this field, Ward et al. have reported many novel functional complexes through the use of 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole-based ligands (Bell et al., 2003; Paul et al., 2004; Singh et al., 2003; Ward et al., 2001; Zou et al., 2004). In this paper, we present a zinc chloride complex of the ligand 2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine (denoted L).

In the title complex, ZnII is five-coordinated by three N donors from one L ligand and two Cl- anions (Figure 1). The coordination geometry around each ZnII center can be described as distorted trigonal bipyramidal. The coordinated tridentate L ligand gives rise to one five-membered chelate ring [Zn1/N2/C6/C5/N3], with the N2—Zn1—N3 angle equal to 72.73 (3)°, and one six-membered chelate ring [Zn1/N2/N1/C9/C10/N4], with the N2—Zn1—N4 angle equal to 82.34 (8)°. Distortions from ideal trigonal bipyramidal geometry are evident from the bond lengths and bond angles (Table 1).

The mononuclear ZnII complexes form π···π stacking interactions between adjacent pyridine and pyrazole rings of the L ligands, with centroid-centroid separations of 3.671 (1) Å (dashed open lines in Figure 2) and 3.681 (1) Å (dashed solid lines in Figure 2), and with a dihedral angle of 4.0° between the planes of the rings (Janiak, 2000; Khlobystov et al., 2001). These interactions generate one-dimensional chains along the a axis.

For related literature, see: Bell et al. (2003); Janiak (2000); Khlobystov et al. (2001); Paul et al. (2004); Singh et al. (2003); Song et al. (2005); Steel (2005); Ward et al. (2001); Zou et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal packing in the title complex, showing a chain based on π···π stacking (dashed solid and open lines).
Dichlorido{2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine}zinc(II) top
Crystal data top
[ZnCl2(C14H12N4)]F(000) = 752
Mr = 372.55Dx = 1.651 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2602 reflections
a = 7.2813 (10) Åθ = 2.7–24.8°
b = 15.248 (2) ŵ = 1.99 mm1
c = 13.5034 (19) ÅT = 294 K
β = 90.967 (2)°Block, yellow
V = 1499.0 (4) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3037 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 95
Tmin = 0.692, Tmax = 0.768k = 1916
8317 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.3375P]
where P = (Fo2 + 2Fc2)/3
3037 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[ZnCl2(C14H12N4)]V = 1499.0 (4) Å3
Mr = 372.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2813 (10) ŵ = 1.99 mm1
b = 15.248 (2) ÅT = 294 K
c = 13.5034 (19) Å0.20 × 0.18 × 0.14 mm
β = 90.967 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3037 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2174 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.768Rint = 0.040
8317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
3037 reflectionsΔρmin = 0.35 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.16259 (4)1.08055 (2)0.29567 (3)0.03662 (12)
C10.1757 (4)1.1774 (2)0.5136 (2)0.0449 (8)
H1A0.13771.22700.47860.054*
C20.2070 (4)1.1849 (2)0.6138 (2)0.0480 (8)
H2A0.19021.23810.64600.058*
C30.2636 (4)1.1118 (2)0.6654 (2)0.0452 (8)
H3A0.28941.11550.73300.054*
C40.2820 (4)1.0326 (2)0.6165 (2)0.0391 (7)
H4A0.31730.98220.65060.047*
C50.2467 (3)1.03049 (17)0.51566 (19)0.0306 (6)
C60.2617 (3)0.95185 (18)0.4549 (2)0.0318 (6)
C70.3003 (4)0.86392 (19)0.4753 (2)0.0417 (7)
H7A0.32370.83870.53690.050*
C80.2963 (4)0.82293 (19)0.3856 (2)0.0432 (7)
H8A0.31840.76370.37450.052*
C90.2510 (4)0.8755 (2)0.2084 (2)0.0445 (8)
H9A0.26840.81450.19050.053*
H9B0.35280.90870.18200.053*
C100.0750 (4)0.90799 (19)0.1612 (2)0.0404 (7)
C110.0245 (5)0.8540 (2)0.0987 (3)0.0576 (9)
H11A0.01230.79620.08910.069*
C120.1790 (5)0.8857 (3)0.0502 (3)0.0659 (10)
H12A0.24620.85020.00680.079*
C130.2310 (5)0.9702 (3)0.0671 (2)0.0580 (9)
H13A0.33420.99350.03530.070*
C140.1280 (4)1.0205 (2)0.1322 (2)0.0477 (8)
H14A0.16601.07760.14420.057*
N10.2550 (3)0.88307 (15)0.31618 (18)0.0361 (5)
N20.2340 (3)0.96230 (14)0.35770 (16)0.0337 (5)
N30.1972 (3)1.10258 (14)0.46378 (17)0.0353 (6)
N40.0236 (3)0.99150 (15)0.17893 (16)0.0379 (6)
Cl10.41903 (11)1.12397 (6)0.21749 (7)0.0648 (3)
Cl20.05580 (10)1.18623 (5)0.29099 (6)0.0433 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0335 (2)0.03112 (19)0.0450 (2)0.00138 (15)0.00478 (14)0.00854 (16)
C10.0465 (19)0.0372 (17)0.051 (2)0.0021 (14)0.0064 (15)0.0050 (15)
C20.0441 (19)0.0449 (19)0.055 (2)0.0030 (15)0.0004 (15)0.0192 (16)
C30.0386 (18)0.062 (2)0.0355 (18)0.0093 (15)0.0015 (14)0.0085 (16)
C40.0308 (16)0.0507 (19)0.0356 (17)0.0045 (14)0.0016 (12)0.0059 (14)
C50.0225 (14)0.0349 (15)0.0344 (15)0.0004 (12)0.0024 (11)0.0026 (12)
C60.0222 (14)0.0364 (15)0.0367 (16)0.0003 (12)0.0006 (12)0.0046 (12)
C70.0471 (19)0.0393 (17)0.0389 (18)0.0061 (14)0.0026 (14)0.0126 (14)
C80.0466 (19)0.0278 (15)0.055 (2)0.0045 (13)0.0026 (15)0.0056 (14)
C90.0493 (19)0.0441 (18)0.0400 (18)0.0106 (15)0.0011 (14)0.0105 (14)
C100.0410 (18)0.0443 (19)0.0360 (16)0.0022 (14)0.0014 (13)0.0047 (14)
C110.062 (2)0.053 (2)0.057 (2)0.0007 (17)0.0059 (18)0.0208 (17)
C120.064 (3)0.077 (3)0.056 (2)0.004 (2)0.0168 (19)0.023 (2)
C130.049 (2)0.076 (3)0.049 (2)0.0038 (19)0.0168 (16)0.0018 (19)
C140.0442 (19)0.0478 (19)0.051 (2)0.0022 (15)0.0100 (15)0.0033 (16)
N10.0386 (14)0.0296 (12)0.0400 (14)0.0050 (11)0.0006 (11)0.0008 (11)
N20.0390 (14)0.0282 (13)0.0339 (13)0.0030 (10)0.0045 (10)0.0008 (10)
N30.0363 (14)0.0324 (13)0.0371 (14)0.0032 (10)0.0065 (10)0.0021 (10)
N40.0403 (15)0.0385 (14)0.0346 (13)0.0011 (11)0.0060 (11)0.0008 (11)
Cl10.0379 (5)0.0673 (6)0.0895 (7)0.0021 (4)0.0071 (4)0.0308 (5)
Cl20.0409 (4)0.0365 (4)0.0521 (5)0.0065 (3)0.0077 (3)0.0077 (3)
Geometric parameters (Å, º) top
Zn1—Cl12.2596 (9)C7—H7A0.930
Zn1—Cl22.2640 (8)C8—N11.342 (4)
Zn1—N22.051 (2)C8—H8A0.930
Zn1—N32.304 (2)C9—N11.459 (4)
Zn1—N42.302 (2)C9—C101.505 (4)
C1—N31.335 (3)C9—H9A0.970
C1—C21.374 (4)C9—H9B0.970
C1—H1A0.930C10—N41.350 (4)
C2—C31.374 (4)C10—C111.377 (4)
C2—H2A0.930C11—C121.379 (5)
C3—C41.384 (4)C11—H11A0.930
C3—H3A0.930C12—C131.363 (5)
C4—C51.382 (4)C12—H12A0.930
C4—H4A0.930C13—C141.378 (4)
C5—N31.349 (3)C13—H13A0.930
C5—C61.458 (4)C14—N41.337 (3)
C6—N21.334 (3)C14—H14A0.930
C6—C71.396 (4)N1—N21.342 (3)
C7—C81.363 (4)
Cl1—Zn1—Cl2111.34 (3)N1—C9—C10113.5 (2)
Cl1—Zn1—N2104.04 (7)N1—C9—H9A108.9
Cl1—Zn1—N3109.88 (6)C10—C9—H9A108.9
Cl1—Zn1—N4102.14 (7)N1—C9—H9B108.9
Cl2—Zn1—N2144.09 (7)C10—C9—H9B108.9
Cl2—Zn1—N389.36 (6)H9A—C9—H9B107.7
Cl2—Zn1—N495.75 (6)N4—C10—C11121.9 (3)
N2—Zn1—N372.73 (8)N4—C10—C9118.2 (3)
N2—Zn1—N482.34 (8)C11—C10—C9119.9 (3)
N3—Zn1—N4143.13 (8)C10—C11—C12119.9 (3)
N3—C1—C2123.2 (3)C10—C11—H11A120.1
N3—C1—H1A118.4C12—C11—H11A120.1
C2—C1—H1A118.4C13—C12—C11118.6 (3)
C1—C2—C3118.5 (3)C13—C12—H12A120.7
C1—C2—H2A120.8C11—C12—H12A120.7
C3—C2—H2A120.8C12—C13—C14118.9 (3)
C2—C3—C4119.7 (3)C12—C13—H13A120.6
C2—C3—H3A120.1C14—C13—H13A120.6
C4—C3—H3A120.1N4—C14—C13123.6 (3)
C5—C4—C3118.3 (3)N4—C14—H14A118.2
C5—C4—H4A120.9C13—C14—H14A118.2
C3—C4—H4A120.9N2—N1—C8110.4 (2)
N3—C5—C4122.4 (3)N2—N1—C9119.1 (2)
N3—C5—C6113.6 (2)C8—N1—C9130.0 (3)
C4—C5—C6124.0 (3)C6—N2—N1106.7 (2)
N2—C6—C7109.6 (3)C6—N2—Zn1122.67 (18)
N2—C6—C5116.4 (2)N1—N2—Zn1130.60 (17)
C7—C6—C5134.1 (3)C1—N3—C5117.9 (2)
C8—C7—C6105.3 (3)C1—N3—Zn1127.5 (2)
C8—C7—H7A127.3C5—N3—Zn1114.62 (17)
C6—C7—H7A127.3C14—N4—C10117.2 (3)
N1—C8—C7108.0 (3)C14—N4—Zn1118.6 (2)
N1—C8—H8A126.0C10—N4—Zn1123.89 (19)
C7—C8—H8A126.0
N3—C1—C2—C30.2 (5)N3—Zn1—N2—C61.1 (2)
C1—C2—C3—C42.0 (5)Cl1—Zn1—N2—N175.0 (2)
C2—C3—C4—C51.6 (4)Cl2—Zn1—N2—N1114.9 (2)
C3—C4—C5—N30.7 (4)N4—Zn1—N2—N125.6 (2)
C3—C4—C5—C6179.7 (2)N3—Zn1—N2—N1178.2 (2)
N3—C5—C6—N23.1 (3)C2—C1—N3—C52.1 (4)
C4—C5—C6—N2175.9 (2)C2—C1—N3—Zn1177.2 (2)
N3—C5—C6—C7177.0 (3)C4—C5—N3—C12.5 (4)
C4—C5—C6—C74.0 (5)C6—C5—N3—C1178.5 (2)
N2—C6—C7—C80.7 (3)C4—C5—N3—Zn1176.8 (2)
C5—C6—C7—C8179.2 (3)C6—C5—N3—Zn12.2 (3)
C6—C7—C8—N10.9 (3)N2—Zn1—N3—C1180.0 (3)
N1—C9—C10—N457.2 (4)Cl1—Zn1—N3—C180.9 (2)
N1—C9—C10—C11125.4 (3)Cl2—Zn1—N3—C131.6 (2)
N4—C10—C11—C121.7 (5)N4—Zn1—N3—C1130.3 (2)
C9—C10—C11—C12175.6 (3)N2—Zn1—N3—C50.73 (18)
C10—C11—C12—C131.1 (6)Cl1—Zn1—N3—C598.34 (18)
C11—C12—C13—C140.3 (6)Cl2—Zn1—N3—C5149.14 (18)
C12—C13—C14—N41.2 (5)N4—Zn1—N3—C550.4 (2)
C7—C8—N1—N20.7 (3)C13—C14—N4—C100.7 (5)
C7—C8—N1—C9173.4 (3)C13—C14—N4—Zn1174.5 (3)
C10—C9—N1—N258.7 (4)C11—C10—N4—C140.8 (4)
C10—C9—N1—C8129.1 (3)C9—C10—N4—C14176.6 (3)
C7—C6—N2—N10.3 (3)C11—C10—N4—Zn1172.6 (2)
C5—C6—N2—N1179.6 (2)C9—C10—N4—Zn110.0 (4)
C7—C6—N2—Zn1177.39 (18)N2—Zn1—N4—C14149.3 (2)
C5—C6—N2—Zn12.7 (3)Cl1—Zn1—N4—C14107.9 (2)
C8—N1—N2—C60.3 (3)Cl2—Zn1—N4—C145.4 (2)
C9—N1—N2—C6173.9 (2)N3—Zn1—N4—C14102.0 (2)
C8—N1—N2—Zn1177.7 (2)N2—Zn1—N4—C1024.0 (2)
C9—N1—N2—Zn18.7 (4)Cl1—Zn1—N4—C1078.8 (2)
Cl1—Zn1—N2—C6107.9 (2)Cl2—Zn1—N4—C10167.9 (2)
Cl2—Zn1—N2—C662.2 (3)N3—Zn1—N4—C1071.3 (3)
N4—Zn1—N2—C6151.4 (2)

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H12N4)]
Mr372.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.2813 (10), 15.248 (2), 13.5034 (19)
β (°) 90.967 (2)
V3)1499.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.692, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
8317, 3037, 2174
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.01
No. of reflections3037
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Zn1—Cl12.2596 (9)Zn1—N32.304 (2)
Zn1—Cl22.2640 (8)Zn1—N42.302 (2)
Zn1—N22.051 (2)
Cl1—Zn1—Cl2111.34 (3)Cl2—Zn1—N389.36 (6)
Cl1—Zn1—N2104.04 (7)Cl2—Zn1—N495.75 (6)
Cl1—Zn1—N3109.88 (6)N2—Zn1—N372.73 (8)
Cl1—Zn1—N4102.14 (7)N2—Zn1—N482.34 (8)
Cl2—Zn1—N2144.09 (7)N3—Zn1—N4143.13 (8)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds